ALLBASE/SQL
Reference Manual

HP 3000 MPE/iX Computer Systems

(D Preateis

Manufacturing Part Number: 36216-90216
EO0300

U.S.A. March 2000

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (¢) (1,2).

Acknowledgments

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1996 - 2000 by Hewlett-Packard Company

Contents

1.

Introduction
ALLBASE/SQL COMPONENTS oottt et e e e e e e 42
Utility Programs 43
ALLBASE/SQL Databases. 44
Logical CoNCEPLSot 44
Physical Concepts e 45
ALLBASE/SQL Data ACCESSottt 48
USING QUEKIES . .« . ittt e e e e e 49
ALLBASE/SQL ODJECES e 50
ALLBASE/SQL USBIS . .o e 51
SQL Language StrUuCtUNe. e e e e e e 52
Using Comments within SQL Statements 53
SQL Statement Categoriesottt 54
Error Conditions in ALLBASE/SQL i 56
SeVeritY Of EFTOrS ... e 56
Atomicity of Error Checking. o e 56
Additional Information about Errors. 57
Native Language SUPPOITt e e e 57

2. Using ALLBASE/SQL

Creating DBENVIrONMENTS 60
Specifying a Native Language Parameter. i 60
Initial Privileges 61

Starting and Terminatinga DBE SesSion i 62
Sessions With Autostart 62
Sessions without Autostart. e 62
Terminating DBE SeSSIONS.t 62

Creating Physical Storage 63

Defining How Data is Stored and Retrieved. 64
Creatinga Table e 64
Specifying a DBEFIleSet. e 67
Specifying Native Language Tablesand Columns 67
Creating a VieWo 67
Creating INeXeSo 68
Specifying Integrity Constraints e 68
Creating Procedures 68
Creating RUIES. 69

Understanding Data Access Paths e 70
SErIAl ACCESS . . . ottt 70
INAEXEA ACCESS . . v vttt ettt e 70
Hashed ACCESS. . . .o e e 72
Differences between Hashed and Indexed Access. 74
When to Use a Hash Structure i 74
I ACCESS . . o ottt 74

Controlling Database ACCESSttt 75
AULNOIITIES. 75
Obtaining Authorization. e 75
DBA AULNOKITY. . . .o 76
GraNTS . . . 76

Contents

Grantable Privileges 76
WIS NI, . . 77
Default Owner RUIES 78
Ownership Privileges 78
AUthorization GroUPS. 79
ClaSSS . . 80
Differences between Groups and Classesttt 80
Manipulating Data 81
INnserting Data e 81
Updating Data e 82
Deleting Data 82
Managing Transactions. i e e e 83
Objectives of Transaction Management i 83
Starting Transactions i 85
ENding Transactions e 85
UsiNg SAVEPOINT . ..o 86
Scoping of Transaction and Session Attributes 87
Transaction Limits and TIMEOUTS e 89
Monitoring TransactioNs e e 90
Tips on Transaction Management. e 90
Auditing DBENVIFONMENTS e 91
Partitions in Audit DBENVIFONMENTS e 91
Using Wrapper DBENVIFONMENTS.o e e e 92
Using SQLAUITt e 92
Application Programmingo 93
Pl PIOCESSOr 93
AUthOrization e 94
DBENvironment Changes e 94
Host Variables e 94
Multiple-Row Manipulations. e 95
Using Multiple Connections and Transactions with Timeouts 95
Connecting to DBENVIrONMENTS e e e 96
Setting the Current CoNNEeCtioN e e e 96
Setting Timeout Values e e e 97
Setting the Transaction Mode e e e 99
Disconnecting from DBENvironments. 103
AdministeringaDatabase 105
Understanding the System Catalog i i i 105

3. SQL Queries

Using the SELECT Statement e e 110
SIMple QUEKIES. . . . 112
ComMPIEeX QUEKIES . . . oot 116
UNION QUEKIES . ..ttt e e e e e e e e e e e e e e 117
Using Character Constants with UNION. 119
SUDQUEKIES . o 120
Special Predicates 120
Quantified Predicate i e 120
IN Predicate 123

Contents

EXISTS Predicate e 124
Correlated Versus Noncorrelated Subqueries. i, 126
OULEN JOINS . . .ttt e e e e e 126
Using GENPLAN to Display the Access Plan 134
Generating a Plan. e 134
Displaying a Query Access Plan. 134
Interpreting a Display e 135
Updatability of QUErIes e 136

4. Constraints, Procedures, and Rules

Using Integrity ConsStraints. e 137
Unique Constraints. 137
Referential Constraints 138
Check Constraints. 139
Examples of Integrity Constraints. 141
Inserting Rows in Tables Having Constraints. 143
How Constraints are Enforced 144

USING ProCeAUIES . . . o ot e e e e e e 145
Understanding Procedures. e 146
Creating ProCcedures 146
EXecuting ProceduUres o 147
Procedures and Transaction Management i, 147
Using SQL Statements in Procedures e e 148
Queriesinside Procedures e 151
Using a Procedure Cursor in ISQL e 153
Error Handling in Procedures Not Invoked by Rules. 154
Using RAISE ERROR IN Procedures e 155
Recommended Coding Practices for Procedures, 156

USING RUIES . .o 157
Understanding RUles 158
Creating RUIES. 158
Techniques for Using Procedureswith Rules 159
Error Handling in Procedures Invoked by Rules 161
Using RAISE ERROR in Procedures Invoked by Rules 161
Enabling and Disabling Rules 163
Special Considerations for Procedures Invoked by Rules. 163
Differences between Rules and Integrity Constraints 166

5. Concurrency Control through Locks and Isolation Levels

Defining TransactionNs e e 168
Understanding ALLBASE/SQL Data ACCESSot ittt et 169
Use of Locking by Transactions. e 171
Basics of LOCKING. 171
LOCKS @and QUEKIES. ot e 171
Costs Of LOCKING e 172
Defining Isolation Levels between Transactionsc ... 174
Repeatable Read (RR)ot 174
Cursor Stability (CS). e 174

Contents

Read Committed (RC) e e e e e 175
Read Uncommitted (RU) e 176
Details of LOCKING 177
Lock Granularitieso e 177
Types Of LOCKS.o 179
Lock Compatibility e 180
WeakK LOCKS 181
What Determines LOCK TYPeS. . . .o oot e 181
Type of SQL Statement e 182
Locking Structure Implicitat CREATE TABLE Time. 182
Use of the LOCK TABLE Statement. e e e 183
Choice 0F @ SCaN TYPe. e e 183
Choice of Isolation Level 184
Updatability of CUrsors or VIeWS e 187
Use Of SOMtiNgo oot 187
Scope and Duration of LOCKS. 188
Examples of Obtaining and Releasing Locks. i 189
Simple Example of Concurrency Control through Locking 189
Sample Transactions Using Isolation Levels 191
Resolving Conflicts among Concurrent Transactions 194
LOoCK Walits. . . . o 194
Deadlocks e 195
Table Type and Deadlock e 195
Table Size and Deadlock e 196
Avoiding Deadlock e 197
Undetectable Deadlock. 198
Monitoring Locking with SQLMON 199
MONITOR AULNOFItY . . . oo e e e 199
Monitoring Tasks e 199
6. Names
BasiC NaMeS. e 202
Native Language Object Namest e 203
DBEUSEIIDS 203
OWNEr NS . . . e e e 203
Authorization Names e 204
Compound Identifiers e 204
Host Variable Names. e 205
Local Variable Names e 205
Parameter Names 205
DBEnvironment and DBECon File Names i, 205
DBEFile and Log File Identifiers 206
TempPSPace NaAIMES. 206
Special NamMES 206

7. Data Types
Type SPecifications e 208
Value CompariSONs e 211

Contents

Overflow and TrunCationo e e 212
UNderflow 212
TYpPe CONVEISION . . . o oottt e e e e e e e e e e e 213
NUILValUES . . .o 215
Decimal Operations e 216
Date/Time Operationst e e 217
EXampIes . . . 217
Use of Date/Time Data Types in Arithmetic Expressions 218
Use of Date/Time Data Types in Predicates 219
.. 220
Binary Operations e 220
LoNg OPErationSottt e e e e 221
Defining LONG Column Data with CREATE TABLE or ALTER TABLE. 221
Defining Input and Output with the LONG Column /O String 222
Using INSERT with LONG Column Data. 222
Using SELECT with LONG ColumnData, 224
Using UPDATE with LONG ColumnData.......... 224
Native Language Data. e 226

8. Expressions

EXPrESSION . . .o 228
S0P . o ot 228
SQL SYNTAXttt 228
ParameterS 229
DS HIPtION. . . 231
EXamle. . 233

Add Months FUNCLION. e 234
SO . o o 234
SOL SYNTAXttt 234
ParameterS 234
DS IIPtION. . . 234
EXamle. . 235

Aggregate FUNCLIONS 236
S0P . o o 236
SOL SYNTAXttt 236
ParameterS 236
DS IIPtION. . . 237
EXamle. . 237

CAST FUNCLION . . .o e e e e e 238
S0P . o o 238
SOL SYNTAXttt 238
ParameterS 238
DS IIPtION. . . 238
EXamPIES . . o 241

CONS AN . . . 243
S0P . o o 243
SOL SYNTAXttt 243
ParameterS 243

CUrreNt FUNCLIONS oo e e e e 244

Contents

S0P . ittt 244
SOQL SYNEAX. . o .ttt 244
DESCIIPLION . . e 244
EXamples. . .o 244
Date/Time FUNCHiONS e e 245
S0P . ittt e 245
SQL Syntax—Conversion FUNCLIONS. e 245
Parameters—Conversion FUNCLIONS e e 245
SQL Syntax—FormatSpecification 246
Parameters—FormatSpecification. e 246
DS IIPLION . . o 247
EXamples. . .o 250
Long Column FUNCLIONS e e e e e 251
S0P . .ttt 251
SOQL SYNEAX. . o .ttt 251
ParamM e erS 251
DS IIPLION . . 251
EXamples. . .o 252
StriNg FUNCHIONS e e e 253
Function Specification e 253
EXamples: . . o 254
S0P . ottt 255
SOL SYNEAX. . o .ttt 255
ParamM e erS 255
DESCIPLION . . o 256
EXamples. . .o 256
TID FUNCLION . . .o o e e e e e e 258
S0P . .ttt 258
SOQL SYNEAX. . ottt 258
ParamM e S 258
DESCIIPLION . . o e 258
EXample .. 260

9. Search Conditions

Search Condition 262
S0P . o 262
SOL SYNEAX. . . oottt 262
ParameterS 262
DESCrIPLION . . .o 263

BETWEEN Predicate e 264
S0P . o 264
SOL SYNEAX. . . oottt 264
ParameterS 264
DS EIPLION . . .ot 264
EXamIPlE 264

Comparison Predicate 265
S0P . o 265
SOL SYNEAX. . . oottt 265
ParameterS 265

Contents

DS CrIPLION. . . o 265
EXample. . . 266
EXISTS Predicate.o e 267
SO . ot 267
SOL SYNTAX . o ottt 267
ParameterS . .. o 267
DS CrIPLION. . . oo 267
EXample. . . 267
IN Predicate 268
SO . it 268
SOL SYNTAX . . ottt 268
ParameterS . . . o 268
DS CrIPLION. . . o 270
EXample. . . 270
LIKE PrediCate.o e e e e 272
SO . it 272
SOL SYNTAX . . ottt e 272
ParameterS 272
DESCrIPLION. . .o 274
EXample. . . 274
NULL Predicate e e e e e 275
SO . ot 275
SOL SYNTAX . . ottt e 275
ParameterS 275
DESCrIPLION. . . oo 277
EXample. . . 277
Quantified Predicate 278
SO . ot 278
SOL SYNTAX . . ottt 278
ParameterS . . . 278
DS CrIPLION. . . oo 280
EXample. . . 281

10. SQL Statements A-D

SQL Statement SUMMAIYot 283
ADD DBEFILE. 293
S0P . o o 293
SQL SYNTAXttt 293
ParameterS 293
DS HIPtION. . . 293
AUTNOKIZAtioN. 293
EXamle. . 293
ADD TO GROUP . . . e e 295
SO . o i 295
SOQL SYNTAX . . .ottt 295
ParameterS 295
DS HIPtION. . . 295
AUTNOKIZAtioN. 295
EXamle. . 295

Contents

ADVANCE . . . 297
S0P . . ottt e 297
SOQL SYNEAX. . o .ttt 297
ParametersS . . . 297
DESCIIPLION . . o 297
AUTNONIZAtioN e 298
EXample .. 298

ALTER DBEFILE 299
S0P . .ttt 299
SOQL SYNEAX. . o .ttt 299
ParametersS . . . 299
DS IIPLION . . o 299
AUTNONIZAtioN 299
EXample .. 300

ALTER TABLE . . 301
S0P . .ttt 301
SOQL SYNEAX. . o .ttt 301
Parameters—ALTER TABLE 301
SQL Syntax—AddColumnSpecification i 301
Parameters—AddColumnSpecification. 301
SQL Syntax—AddConstraintSpecification. 302
Parameters—AddConstraintSpecification i 302
SQL Syntax—DropConstraintSpecification 302
Parameters—DropConstraintSpecification. 302
SQL Syntax—SetTypeSpecification 303
Parameters—SetTypeSpecification. 303
SQL Syntax—SetPartitionSpecification 304
Parameters—SetPartitionSpecification e 304
DESCIIPLION . . o 304
AUTNONIZAtioN 306
EXamples. . .o 306

ASSIONMIENT (). . oo 307
S0P . ottt 307
SOL SYNEAX. . o .ttt 307
ParameterS . . . 307
DESCIIPLION . . o 307
AUTNONIZAtioN e 307
EXample .. 308

BEGIN . . 309
S0P . ittt 309
SOQL SYNEAX. . o .ttt 309
ParametersS . . . 309
DESCIPLION . . o 309
AUTNONIZAtioN 309
EXample .. 309

BEGIN ARCHIVE 310
S0P . ottt e 310
SOQL SYNEAX. . o .ttt 310
DESCIPLION . . o e 310

10

Contents

AULNOrIZatioN. 310
BEGIN DECLARE SECTIONo e e 311
SO . it 311
SOL SYNTAX . o ottt 311
DS CrIPLION. . . oo 311
AULNOrIZatioN. 311
EXample. . . 311
BEGIN WORK . . . 312
SO . ot 312
SOL SYNTAX .« ottt 312
ParameterS . . . o 312
DS CrIPLION. . . o 313
AULNOrIZatioN. 314
EXamples . . . 314
CHE CK P OINT . .o e e e e e 316
SO . it 316
SOL SYNTAX .« ottt 316
ParameterS . . . 316
DS CrIPLION. . . o 316
AULNOrIZatioN. 317
EXample. . . 317
CLOSE . ..ot 319
SO . ot 319
SOL SYNTAX . o oottt e 319
ParameterS . . . 319
DESCrIPLION. . . oo 320
AULNOrIZatioN. 320
EXamples . .. 320
COMMIT ARCHIVE . .. e e 322
SO . ot 322
SOL SYNTAX . . ottt 322
DESCrIPLION. . . o 322
AULNOrIZatioN. 322
COMMIT WORK . . e e e 323
SO . ot 323
SOL SYNTAX . . oottt 323
ParameterS . . . o 323
DESCrIPLION. . . o 323
AULNOrIZatioN. 323
EXample. . . 324
CONNE CT . 325
SO . ot 325
SOL SYNTAX . . oottt 325
ParameterS . . . o 325
DS CrIPLION. . . oo 326
AULNOrIZatioN. 326
EXample. . . 326
CREATE DBEFILEo e 327
SO . it 327

11

Contents

SOL SYNaX. . ..o 327
Parameters e 327
DESCIIPLION . . e 328
AUthorization e 329
EXample .. 329
CREATE DBEFILESET e e e 330
S0P . ittt e 330
SOL SYNEaX. . ..o 330
Parameters e 330
DS IIPLION . . o 330
AUthorization e 331
EXample .. 331
CREATE GROUP . . e e 332
S0P . ottt 332
SOL SYNaX. . ..o 332
Parameters 332
DS IPLION . . o 332
AUthorization e 332
EXample .. 333
CREATE INDEX . . . e e e e e 334
S0P . ottt 334
SOL SYNaX. . ..o 334
Parameters e 334
DS IPLION . . o 335
AUthorization e 335
EXample .. 336
CREATE PARTITION e e e e e e e 337
S0P . ottt 337
SOL SYNaX. . ..o 337
Parameters e 337
DS IPLION . . o 337
AUthorization e 338
EXample .. 338
CREATE PROCEDURE e e e 339
S0P . ottt 339
SOL SYNEaX. 339
Parameters e 339
SQL Syntax—ParameterDeclaration 340
Parameters—ParameterDeclaration. e 341
SQL Syntax—ResultDeclaration. 341
Parameters—ResultDeclaration e 341
DESCIPLION . . o 342
AUthorization e 344
EXamples. . .o e 344
CREATE RULE e e e e e e 346
S0P . .ttt 346
SOL SYNEaX. . ..o 346
Parameters 346
DS IIPLION . . o 348

12

Contents

AULNOrIZatioN. 349
EXample. . . 349
CREATE SCHEMA . . e 351
SO . it 351
SOL SYNTAX . . .ottt e 351
ParameterS . . . 351
DESCIIPLION. . . o 352
AULNOrIZatioN. 352
EXample. . . 352
CREATE TABLE . .. e 354
SO . ot 354
SQL Syntax—CREATE TABLE e 354
Parameters—CREATE TABLE 354
SQL Syntax—Column Definition. 357
Parameters—Column Definition 357
SQL Syntax—Unique Constraint (Table Level) L. 358
Parameters—Unique Constraint (Table Level). i .. 358
SQL Syntax—Referential Constraint (Table Level) 358
Parameters—Referential Constraint (Table Level). 359
SQL Syntax—Check Constraint (Table Level) 359
Parameters—Check Constraint (Table Level). 359
DESCrIPLION. . . oo 359
AULNOrIZatioN. 362
EXamples . . . 362
CREATE TEMPSPACE e e 365
SO . ot 365
SOQL SYNTAX . . . ettt 365
ParameterS . . . 365
DESCrIPLION. . . oo 365
AULNOrIZatioN. 366
EXample. . . 366
CREATE VIEW . e 367
SO . ot 367
SOQL SYNTAX . . .ttt 367
ParameterS . . . o 367
DS CrIPLION. . . o 368
AULNOrIZatioN. 369
EXamples . . . 369
DECLARE CURSORo e e 371
SO . it 371
SOQL SYNTAX . . . ettt e 371
ParameterS . . . o 371
DESCrIPLION. . . o 372
AULNOrIZatioN. 373
EXamples . . . 374
DECLARE Variable e 376
SO . it 376
SOL SYNTAX . . .ottt e 376
ParameterS . . . 376

13

Contents

DESCIIPLION . . e 376
AUthorization 377
EXample .. 377
DELETE. . . 378
S0P . ittt e 378
SOQL SYNEAX. . ottt 378
ParamM e erS 378
DS IIPLION . . o 378
AULhOrization 380
EXample .. 380
DELETE WHERE CURRENT e 381
S0P . ottt 381
SOQL SYNEAX. . o .ttt 381
ParamM e erS 381
DS IPLION . . o 381
AULhOrization 382
EXample .. 383
DESCRIBE. . . . 384
S0P . ottt 384
SOQL SYNEAX. . o .ttt 384
ParamM e erS 384
DS IPLION . . o 385
AULhOrization 386
EXamples. . .o 386
DISABLE AUDIT LOGGING e 389
S0P . ottt 389
SOL SYNEAX. . o .ttt 389
DESCIPLION . . o 389
AUthOrization e 389
EXample .. 389
DISABLE RULES e e e 390
S0P . .ttt 390
SOL SYNEAX. . o .ttt 390
DS IIPLION . . o 390
AUthOrization 390
EXample .. 390
DISCONNE CT 391
S0P . it e 391
SOL SYNEAX. . o .ttt 391
ParamM e erS 391
DS IIPLION . . o 391
AUthOrization 392
EXample .. 392
DROP DBEFILE 393
S0P . ottt 393
SOQL SYNEAX. . ottt 393
ParamM e erS 393
DS IIPLION . . o 393
AUthOrization 393

14

Contents

EXample. . . 393
DROP DBEFILESET e 395
SO . ot 395
SOL SYNTAX .« ottt 395
ParameterS . . . o 395
DS CrIPLION. . . o 395
AULNOrIZatioN. 395
EXample. . . 395
DROP GROUP . . . e e e 397
SO . ot 397
SOL SYNTAX . o ottt 397
ParameterS . .. o 397
DS CrIPEION. . . o 397
AULNOrIZatioN. 397
EXample. . . 397
DROP INDEX . . ot 399
SO . it 399
SOL SYNTAX .« ottt 399
ParameterS 399
DESCrIPLION. . . oo 399
AULNOrIZatioN. 399
EXample. . . 400
DROP MODULE e e 401
SO . it 401
SOL SYNTAX . . oottt 401
ParameterS . . . o 401
DESCrIPLION. . . o 401
AULNOrIZatioN. 401
EXamples . . . 402
DROP PARTITION . . e e e e 403
SO . ot 403
SOL SYNTAX . o ottt 403
ParameterS . . . o 403
DS CrIPLION. . . o 403
AULNOrIZatioN. 403
EXample. . . 403
DROP PROCEDURE e e e e e 404
SO . it 404
SOL SYNTAX . . oottt 404
ParameterS 404
DS CrIPLION. . . o 404
AULNOrIZatioN. 404
EXample. . . 404
DROP RULE. . . . e e e 405
SO . it 405
SOL SYNTAX . . oottt 405
ParameterS . . . o 405
DESCrIPLION. . . o 405
AULNOrIZatioN. 405

15

Contents

EXample .. 405
DROP TABLE . . . 406
S0P . ittt 406
SOQL SYNEAX. . o .ttt 406
ParamM e erS 406
DESCIIPLION . . e 406
AUthorization 406
EXample .. 406
DROP TEMPSPACEo e 408
S0P . ottt 408
SOQL SYNEAX. . o .ttt 408
ParamM e erS 408
DS IPLION . . o 408
AULhOrization 408
EXample .. 408
DROP VIEW . 409
S0P . ottt 409
SOQL SYNEAX. . o .ttt 409
ParamM e erS 409
DS IPLION . . o 409
AULhOrization 409
EXample .. 409

11. SQL Statements E - R

ENABLE AUDIT LOGGING e e 411
S0P . o o 411
SOL SYNEAX. . . oottt 411
DESCEIPLION . .ot 411
AULNONIZAtioN e 411
EXamMIPIE . 411

ENABLE RULES. e 413
S0P . o o 413
SOL SYNEAX. . . oottt 413
DESCEIPLION . . .ot 413
AULNONIZAtioN 413
EXamMIPIE . 413

END DECLARE SECTION. e e 414
S0P . o 414
SOL SYNEAX. . . oottt 414
DESCrIPLION . . .ot 414
AULNONIZAtioN e 414
EXamIPlE 414

EXECUTE . . 415
S0P . o o 415
SOL SYNEAX. . . oottt 415
ParameterS 415
SQL Syntax — HostVariableSpecification 416
Parameters — HostVariableSpecification. i 416
DS rIPEION . . .ttt 417

16

Contents

AULNOrIZatioN. 417
EXamples . . . 418
EXECUTE IMMEDIATE. . .. e e e 420
SO . ot 420
SOQL SYNTAX . . .ot ettt 420
ParameterS . .. o 420
DS CrIPLION. . . oo 420
AULNOrIZatioN. 420
EXample. . . 420
EXECUTE PROCEDURE e e 421
SO . it 421
SYNEAX . oo e 421
ParameterS . . . 421
SQL Syntax—ActualParameter 421
Parameters—ParameterDeclaration 421
DS CrIPLION. . . o 422
AULNOrIZatioN. 423
EXampIes . . . 423
FET CH .o 424
SO . ot 424
SOQL SYNTAX . . .o ettt 424
ParameterS . . . 424
SQL Syntax — BULK HostVariableSpecification. 425
Parameters — BULK HostVariableSpecification 425
SQL Syntax — non-BULK HostVariableSpecification 425
Parameters — non-BULK HostVariableSpecification. 426
DESCrIPLION. . . oo 426
AULNOrIZatioN. 426
EXampIes . . . 427
GENP AN . 429
SO . ot 429
SOQL SYNTAX . . .ottt e e 429
ParameterS . . . o 429
DESCrIPLION. . . o 429
AULNOrIZatioN. 433
EXampIes . . . 433
GOT O 435
SO . ot 435
SOQL SYNTAX . . . ettt e 435
ParameterS . . . o 435
DS CrIPLION. . . o 435
AULNOrIZatioN. 435
EXample. . . 435
GRANT . 436
SO . it 436
SQL Syntax — Grant Table or View Authority. 436
Parameters — Grant Table or View Authority 436
Authorization — Grant Table or View Authority 437
SQL Syntax — Grant RUN or EXECUTE Authority 437

17

Contents

Parameters — Grant RUN or EXECUTE Authority 438
Authorization — Grant RUN or EXECUTE Authority 438
SQL Syntax — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority .
438
Parameters — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority . .
438
Description — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority . .
439
Authorization — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
439

SQL Syntax — Grant DBEFileSet Authority. 439
Parameters — Grant DBEFileSet Authority 439
DS IIPLION . . o 440
Authorization — Grant DBEFilesSet Authority 440
EXamples. . .o 440
] 442
S0P . ottt 442
SOL SYNTAX. . . oottt 442
ParamM e erS 442
DS IPLION . . o 442
AULhOrization 442
EXample .. 443
INCLUDE . . e 444
S0P . ottt 444
SOL SYNEAX. . . o ottt 444
ParamM e erS 444
DS IPLION . . o 444
AULhOrization 444
EXample .. 444
INSERT .. 445
S0P . ottt 445
SQL Syntax - Insert Rows with Defined Values. 445
Parameters - Insert Rows with Defined Values 445
SQL Syntax — SingleRowValues 446
Parameters — SingleRowValues 446
SQL Syntax — LongColumnlOString. e 448
Parameters — LongColumnlOString i e e 448
Description — LongColumnlOString e 448
SQL Syntax — BulkValues 450
Parameters — BulkValues. 450
Description — Insert Rows with SingleRowValues and BulkValues 450
SQL Syntax — DynamicParameterValues 452
Parameters — DynamicParameterValues 452
Description — Insert Rows with DynamicParameterValues. 452
Authorization — Insert Rows with SingleRowValues and Bulk Values 453
SQL Syntax — INSERT Rows Defined by a SELECT Command (Type 2 Insert) 453
Parameters — INSERT Rows Defined by a SELECT Command (Type 2 Insert) 453
Description — INSERT Rows Defined by a SELECT Command (Type 2 Insert). 454
Authorization — INSERT Rows Defined by a SELECT Command (Type 2 Insert). 455

18

Contents

EXamples . . . 456
Labeled Statement e 458
SO . it 458
SOL SYNTAX .« ottt 458
ParameterS . . . 458
DESCIIPLION. . . o 458
AULNOrIZatioN. 458
EXample. . . 458
LOCK TABLE. . . 460
SO . ot 460
SOL SYNTAX . o oottt 460
ParameterS . . . 460
DESCrIPLION. . . oo 460
AULNOrIZatioN. 461
EXampIes . . . 461
LOG COMMENTT . .. e e e e 462
SO . ot 462
SOL SYNTAX . . ottt 462
ParameterS 462
DS CrIPEION. . . o 462
AULNOrIZatioN. 462
EXample. . . 463
OPEN . 464
SO . it 464
SOL SYNTAX . o oottt 464
ParameterS . . . 464
DS CrIPLION. . . o 465
PREPARE . . . 466
SO . it 466
SOL SYNTAX . o oottt 466
ParameterS . . . 466
DS CrIPLION. . . o 468
AULNOrIZatioN. 468
EXamples . . . 468
PRIN T L 471
SO . ot 471
SOL SYNTAX . o oottt 471
ParameterS . . . o 471
DS CrIPLION. . . oo 472
AULNOrIZatioN. 472
EXamples . . . 472
RAISE ERROR 474
SO . it 474
SOL SYNTAX .« ottt 474
ParameterS . . . o 474
DESCrIPLION. . . oo 475
AULNOrIZatioN. 475
EXamples . . . 475
REFET CH. . .o 476

19

Contents

S0P . ittt 476
SOQL SYNEAX. . o .ttt 476
ParamM e erS 476
DESCIIPLION . . e 476
AUthorization 477
EXample .. 477
RELEASE. . . oo 479
S0P . ittt 479
SOQL SYNEAX. . o .ttt 479
DS IIPLION . . o 479
AUthorization 479
EXample .. 479
REMOVE DBEFILE e e e 480
S0P . ottt 480
SOQL SYNEAX. . o .ttt 480
ParamM e erS 480
DS IPLION . . o 480
AULhOrization 480
EXample .. 480
REMOVE FROM GROUP e e e 482
S0P . ottt 482
SOL SYNEAX. . o .ttt 482
ParamM e erS 482
DESCIPLION . . o 482
AUthOrization e 482
EXample .. 483
RENAME COLUMN e e 484
SO . ittt 484
SOQL SYNEAX. . o .ttt 484
ParamM e erS 484
DESCIIPLION . . o e 484
AUthOrization e 484
EXample .. 484
RENAME TABLE . ..o e 485
S0P . it e 485
SOL SYNEAX. . o .ttt 485
ParamM e erS 485
DS IIPLION . . o 485
AUthOrization 485
EXample .. 485
RESE T . o 486
S0P . ottt e 486
SOL SYNEAX. . o .ttt 486
ParamM e erS 486
DESCIIPLION . . o e 486
AUthOrization e 486
EXample .. 486
RETURN . . 487
S0P . .ttt 487

20

Contents

SOQL SYNTAX . . . ettt 487
ParameterS . . . o 487
DS CrIPLION. . . o 487
EXample. . . 487
REVOKE . . . 489
SO . ot 489
SQL Syntax — Revoke Table or View Authority. 489
Parameters — Revoke Table or View Authority 489
Description — Revoke Table or View Authority 490
Authorization — Revoke Table or View Authority 490
SQL Syntax — Revoke RUN or EXECUTE or Authority. 491
Parameters--Revoke RUN or EXECUTE Authority 491
SQL Syntax — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
491
Parameters — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
491
Description — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
492
Authorization — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
492
SQL Syntax — Revoke DBEFileSet Authority oo, 492
Parameters — Revoke DBEFileSet Authority. 492
Description — Revoke DBEFileSet Authority. i 492
Authorization — Revoke DBEFileSet Authority. 493
EXampIes . . . 493
ROLLBACK WORK . .o e 495
SO . it 495
SOL SYNTAX . . . ettt e 495
ParameterS 495
DS CrIPLION. . . o 495
AULNOrIZatioN. 496
EXample. . . 496

12. SQL Statements S-Z

SAVE PR OINT . . 497
SO . oot 497
SOL SYNEAX . . .ttt 497
ParameterS 497
DS HIPtION. . . 498
AUTNOKIZAtioN. 498
EXamle. . 498

SELE CT .o 499
SO . o ot 499
SQL Syntax — Select Statement Level 499
SQL Syntax — Subquery Level 499
SQL Syntax — Query Expression Level 499
SQL Syntax — Query Block Level 499
SelEC LISt . . . o 499
HostVariableSpecification — With BULK Option., 499

21

Contents

HostVariableSpecification — Without BULK Option. 500
FrOmM S PEC . . . 500
TableSPeC . . 500
SQL Syntax — Select Statement Level. 500
Parameters — Select Statement Level 500
Description — Select Statement Level e 501
SQL Syntax — Subquery Level. 501
Parameters — Subquery Level e 502
Description — Subquery Level e 502
SQL Syntax — Query Expression Level 503
Parameters — Query Expression Level 503
Description — Query Expression Level 503
SQL Syntax — Query Block Level. 505
Parameters — Query Block Level 505
SQL Syntax — SelectList. 507
Parameters — SeleCtList e 507
SQL Syntax — BULK HostVariableSpecification 508
Parameters — BULK HostVariableSpecification. 508
SQL Syntax — non-BULK HostVariableSpecification. 508
Parameters — non-BULK HostVariableSpecification 508
SQL Syntax — FrOMSPEC 509
Parameters — FrOMSPEC o 509
Description — Query Block Level 511
AUthOrization 515
EXamples. . .o 515
SET CONNECTION . ..o e e e 519
S0P . ottt 519
SOL SYNEAX. . . o ottt 519
ParamM e erS 519
DS IPLION . . o 519
AULhOrization 519
EXample .. 520
SET CONSTRAINT S. .« . e e e e 521
S0P . ottt e 521
SOL SYNTAX. . . o ottt e 521
ParamM e erS 521
DESCIIPLION . . o e 521
AUthOrization e 522
EXample .. 522
SET DEFAULT DBEFILESET e 524
S0P . it e 524
SOL SYNTAX. . . o ottt 524
ParamM e erS 524
DS IIPLION . . o 524
AUthOrization 525
EXample .. 525
SET DML ATOMICITY . oo e e e 526
S0P . ottt e 526
SOL SYNTAX. . . oottt 526

22

Contents

ParameterS . . . o 526
DS CrIPLION. . . o 526
AULNOrIZatioN. 527
EXample. . . 527
SET MULTITRANSACTION. . ..o e e 529
SO . ot 529
SOQL SYNTAX . . .ot ettt 529
ParameterS . .. o 529
DS CrIPEION. . . o 529
AULNOrIZatioN. 529
EXample. . . 530
SET O P T . 531
SO . it 531
SyNtaxX — SETOPT . ..o 531
SYNTAX — SCaANM ACCESS . .ttt ittt 531
Syntax — Join Algorithm 531
ParameterS . . . o 531
DESCrIPLION. . . oo 532
AULNOrIZatioN. 532
EXamples . . . 532
SET PRINTRULES . . . e e 534
SO . it 534
SOL SYNTAX . . . ettt e 534
ParameterS 534
DS CrIPLION. . . o 534
AULNOrIZatioN. 535
EXample. . . 535
SET SESSION . .o 536
SO . ot 536
SOQL SYNTAX . . . ettt 536
ParameterS . . . 536
DESCrIPLION. . . o 538
AULNOrIZatioN. 541
EXample. . . 541
SET TRANSACTION e e 542
SO . ot 542
SOL SYNTAX . . .o ettt 542
ParameterS . . . 542
DESCrIPLION. . . o 544
AULNOrIZatioN. 546
EXample. . . 547
SETUSER TIMEOUT e e 548
SO . it 548
SOQL SYNTAX . . .ot ettt e 548
ParameterS . . . o 548
DESCrIPLION. . . o 548
AULNOrIZatioN. 549
EXample. . . 549
SOLEXPLAIN. .« . 550

23

Contents

S0P . ittt 550
SOL SYNTAX. . . o ottt 550
ParamM e erS 550
DESCIIPLION . . e 550
AUthorization 550
EXample .. 551
START DBE . . . 552
S0P . ittt 552
SOL SYNTAX. . . o ottt 552
ParamM e erS 552
DS IIPLION . . o 553
AUthorization 554
EXample .. 554
START DBE NEW . . . e 555
S0P . ottt 555
SQL Syntax — START DBE NEW e 555
Parameters — START DBE NEW. e 555
SQL Syntax — DBEFileODefinition 559
Parameters — DBEFileODefinition. 559
SQL Syntax — DBELogDefinition 560
Parameters — DBELogDefinition. 560
DS IPLION . . o 560
AULhOrization 562
EXample .. 562
START DBE NEWLOG.o e e e e 563
S0P . ottt 563
SQL Syntax — START DBE NEWLOG e 563
Parameters — START DBE NEWLOG. e 563
SQL Syntax — NewLogDefinition. 567
Parameters — NewLogDefinition 567
DS IIPLION . . o e 567
AULhOrization 569
EXample .. 569
STOP DBE . . .o 571
S0P . ottt 571
SOL SYNEAX. . . oottt 571
DS IIPLION . . 571
AULhOrization 571
EXample .. 571
TERMINATE QUERY . . . e e 572
S0P . ottt 572
SOL SYNTAX. . . o ottt 572
ParamM e erS 572
DS IIPLION . . o 572
AUthOrization 572
EXample .. 572
TERMINATE TRANSACTION. . .. e e 573
S0P . ittt e 573
SOL SYNEAX. . . oottt 573

24

Contents

ParameterS . . . o 573
DS CrIPLION. . . o 573
AULNOrIZatioN. 573
EXample. . . 573
TERMINATE USER. e e 574
SO . it 574
SOL SYNTAX . . .ottt e 574
ParameterS . . . 574
DESCIIPLION. . . o 574
AULNOrIZatioN. 574
EXample. . . 575
TRANSFER OWNERSHIP e 576
SO . it 576
SOL SYNTAX . . . ettt 576
ParameterS 576
DS PLION. . . o 576
AULNOrIZatioN. 576
EXample. . . 577
TRUNCATE TABLE e e 578
SO . ot 578
SOQL SYNTAX . . .o ettt 578
ParameterS . . . 578
DESCrIPLION. . . oo 578
AULNOrIZatioN. 578
EXample. . . 579
UP DD AT E . . . 580
SO . ot 580
SOQL SYNTAX . . . ettt 580
ParameterS . . . o 580
DESCrIPLION. . . o 580
SQL Syntax — LongColumnlOString i 582
Parameters — LongColumnlOString. 582
Description — LongColumnlIOString.ot 583
AULNOrIZatioN. 584
EXample. . . 584
UPDATE STATISTICS . .o e e 585
SO . it 585
SOQL SYNTAX . . .ot ettt e 585
ParameterS 585
DS CrIPLION. . . o 585
AULNOrIZatioN. 586
EXample. . . 586
UPDATE WHERE CURRENT e e 587
SO . it 587
SOQL SYNTAX . . . ettt e 587
ParameterS 587
DS CrIPLION. . . o 588
SQL Syntax — LongColumnlOString i 589
Parameters — LongColumnlOString. 589

25

Contents

Description — LongColumnlOString 590
AUthorization 591
EXample .. 591
VA LD AT E . . 592
S0P . ittt 592
SOL SYNTAX. . . o ottt 592
ParamM e erS 592
DS IIPLION . . o e 592
AUthorization 593
EXamples. . .o 594
WHENEVER . . . 595
S0P . . ittt e 595
SOL SYNTAX. . . o ottt 595
ParamM e erS 595
DS IIPLION . . o 595
AUthorization 596
EXample .. 596
WHILE . . 597
S0P . ottt 597
SOL SYNTAX. . . oottt 597
ParamM e erS 597
DESCIIPLION . . o 597
AUthOrization 597
EXample .. 597

A. SQL Syntax Summary

.. 599
ADD DBEFILE. 599
ADD TO GROUP . .. e 599
ADV AN CE. . .o 599
ALTER DBEFILE. e 599
ALTER TABLEo 599
ASSIGNMENT (F) . . . oo e 600
BEGIN. . o 600
BEGIN ARCHIVE e 600
BEGIN DECLARE SECTIONo e 600
BEGIN WORK . . 600
CHE CK P OINT . .o e e 601
CLOSE . .t 601
COMMIT ARCHIVE . .. e e e 601
COMMIT WORK . . e e 601
CONNE CT . 601
CREATE DBEFILE 601
CREATE DBEFILESET e e 601
CREATE GROUP . . . e 601
CREATE INDEX . .o e e 601
CREATE PARTITION . ..o e e e 602
CREATE PROCEDURE. e 602
CREATE RULE e 602

26

Contents

CREATE SCHEMA e e 602
CREATE TABLE. e e e 603
CREATE TEMPSPACE e e e e 603
CREATE VIEW e e e 604
DECLARE CURSOR. . .. e e 604
DECLARE Variable. 604
DELETE .. 604
DELETE WHERE CURRENT e e e 604
DESCRIBE . .. 604
DISABLE AUDIT LOGGING.ot e e 604
DISABLE RULES e e 604
DISCONNEC CT .. 605
DROP DBEFILE 605
DROP DBEFILESET e 605
DROP GROU e 605
DROP INDEX . .. e 605
DROP MODULE e e 605
DROP PARTITION . . .o e e e 605
DROP PROCEDURE e e e e e i 605
DROP RULE 605
DROP TABLE 605
DROP TEMPSPACE e e 605
DROP VIEW . o 605
ENABLE AUDIT LOGGINGot e e e i 606
ENABLE RULES e e 606
END DECLARE SECTION ...t e e e e i 606
EXECUTE e 606
EXECUTE IMMEDIATE e e e i 606
EXECUTE PROCEDURE. e e 606
FET CH. . 606
GENPLAN . . e 607
GOT 0. . o e 607
GRANT L e 607
L e 608
INCLUDE . .. e e 608
INSERT - L . e 608
INSERT - 2 o e 609
Labeled Statement e 609
LOCK TABLE 609
LOG COMMENTo e e 609
OPEN . o e 609
PREPARE . .. 610
PRINT .. 610
RAISE ERROR 610
REFET CH . .. 610
RELEASE 610
REMOVE DBEFILE e e i 610
REMOVE FROM GROUP e e e 610
RENAME COLUMN e e i 610

27

Contents

RENAME TABLE. 610
RESE T . oo 610
RETURN . .o 611
REVOKE . . . 611
ROLLBACK WORK . .. e 611
SAVEP OINT . . 612
SELECT . 612
SET CONNECTION. . .. e e 613
SET CONSTRAINT S . . e e 613
SET DEFAULT DBEFILESET e 613
SET DML ATOMICITY .. e 613
SET MULTITRANSACTION. . ..o e 613
SET O P T . 613
SET PRINTRULES . . . e 614
SET SESSION . .o 614
SET TRANSACTION e e 615
SETUSER TIMEOUT e 615
SOQLEXPLAIN. . . 615
START DBE . .. 616
START DBE NEW . . 616
START DBE NEWLOG e 617
STOP DBE . .. 617
TERMINATE QUERY . .. e e 617
TERMINATE TRANSACTIONo e 617
TERMINATE USER. e 618
TRANSFER OWNERSHIP e 618
TRUNCATE TABLE e 618
UP D AT E . . o 618
UPDATE STATISTICS . .o e e e 618
UPDATE WHERE CURRENT e 618
VA LD ATE . . 619
WHENEVER . . 619
WHILE . 619

B. ISQL Syntax Summary

.. 621
CHANGE . .. 621
DO . . e 621
ED T o 621
EN . . o 621
ERASE . . 621
EXIT 621
EX T RAC T o 621
HEL . . o 621
HO LD . o 622
INF O . 622
INPUT . 622
INS T AL L. . . 622
LIST FILE. . .o 622

28

Contents

LIST HISTORY . . e 622
LIST INSTALL . . e e 622
LIST SET . . o 622
LOADD . . 622
RECALL. . . 623
RED O . . . 623
RENAME . . 623
SELECTSTATEMENT e e 623
SE T o 623
SOLGEN . 624
SQLUT I . 624
ST AR T 624
ST ORE . . 624
SY ST EM 624
UNLOADD . . 624

C. Sample DBEnvironment

Installing the Files for PartsDBE e 626
Setting Up PartsDBE. 627

USING SQLSETUDt 627

Creating PartsDBE 628

USING SETUD . . . et 628
Listings of ISQL Command Files 629
STARTDBE Command File e e e 630
CREATABS Command File e e 631
LOADTABS Command File. e e 635
CREAINDEX Command File. e e e 638
CREASEC Command File 639
Data in the Sample DBENVIrONMENT e 645
ManufDB.SupplyBatches Table. 646
ManufDB.TestData Table 647
PurchDB.Inventory Table 648
PurchDB.Orderltems Table. 650
PurchDB.Orders Table. 653
PurchDB.Parts Table e e e 654
PurchDB.Reports Table 655
PurchDB.SupplyPrice Table 656
PurchDB.Vendors Table. 659
RecDB.Clubs Table. 661
RecDB.Events Table. e 662
RecDB.Members Table. 663
Sample Program Files 664

D. Standards Flagging Support

INTrodUCTIONo 665
Non-standard Statements and EXtensions. e 666
Non-Standard Data TYpesSt e 675
Non-Standard Expression EXteNSiONS 676

29

Contents

Non-Standard Syntax Rules

30

Figures

Figure 1-1. .
Figure 1-2. .
Figure 1-3..
Figure 1-4. .
Figure 3-1. .
Figure 4-1. .
Figure 5-1.
Figure 5-2. .
Figure 5-3. .
Figure 5-4. .
Figure 5-5. .
Figure 5-6.
Figure 5-7. .
Figure 5-8. .
Figure 5-9. .
Figure 5-10.
Figure 9-1. .
Figure C-1. .

Components of ALLBASE/SQL 42
How Tables, DBEFiles, and DBEFileSets AreRelated 46
Databases and DBEFileSets 46
Elements of an ALLBASE/SQL DBEnvironment 47
Range of Complex QUEry TYPES.ottt e e 116
Referential Constraintsina Setof Tables 142
. Transactions over TIMeot 168
Multiuser DBENvironment 169
Page Versus Table Level Locking 177
Row Versus Page Level Locking 178
Locks at Different Granularities. 180
. Scope and Duration of Share Locks for Different Isolation Levels. 188
Lock Requests 1: Waiting for Exclusive Lock. 190
Lock Requests 2: Waiting for Share Locks 190
Lock Requests 3: Share Locks Granted 191
cDeadlock 196
Logical Operations on Predicates Containing NULL Values 263
SQLSetup MenuU 627

31

Figures

32

Tables

33

Tables

34

Preface

This manual contains basic information about ALLBASE/SQL as well as in-depth
information about ALLBASE/SQL data types and statements. The first three chapters are
for all readers, including new users of ALLBASE/SQL. The remaining chapters are for
experienced SQL users and SQL application programmers. The titles of the chapters are
as follows:

= Chapter 1, “Introduction,” presents the components of ALLBASE/SQL and introduces
fundamental ALLBASE/SQL concepts and terms.

e Chapter 2, “Using ALLBASE/SQL.,” describes basic ALLBASE/SQL usage rules.

= Chapter 3, “SQL Queries,” presents a full treatment of queries, including the use of
subqueries, UNION, and special predicates.

= Chapter 4, “Constraints, Procedures, and Rules,” presents data objects which provide a
high degree of data consistency and integrity inside the DBEnvironment.

< Chapter 5, “Concurrency Control through Locks and Isolation Levels,” describes ways
of managing concurrent database transactions.

= Chapter 6 , “Names,” presents general rules for names used in ALLBASE/SQL
statements.

= Chapter 7, “Data Types,” details the data types available in ALLBASE/SQL.
= Chapter 8, “Expressions,” describes ALLBASE/SQL expressions.

< Chapter 9, “Search Conditions,” presents the basic syntax of ALLBASE/SQL
predicates.

< Chapter 10, “SQL Statements A - D,” contains an alphabetical reference of all the SQL
statements and other elements of syntax.

= Chapter 11, “SQL Statements E - R,” contains an alphabetical reference of all the SQL
statements and other elements of syntax.

e Chapter 12, “SQL Statements S - Z,” contains an alphabetical reference of all the SQL
statements and other elements of syntax.

The appendixes contain additional reference information as follows:

= contains an alphabetical summary of all ALLBASE/SQL statements and other
elements of syntax.

e contains an alphabetical summary of all ALLBASE/ISQL commands.

= describes the sample DBEnvironment, PartsDBE, which is supplied with the product.
An explanation is provided of how to install, and set up a copy of PartsDBE for practice
use.

= contains information about ALLBASE/SQL FIPS 127.1 compliance.

Most of the examples in this manual are based on the tables, views, and other objects in
the sample DBEnvironment PartsDBE. For complete information about PartsDBE, refer
to appendix C.

35

ALLBASE Manuals
The following is a list of the documentation titles for this MPE release of ALLBASE.

e ALLBASE/ISQL Reference Manual

e ALLBASE/NET User's Guide

e ALLBASE/SQL Advanced Application Programming Guide
e ALLBASE/SQL C Application Programming Guide

e ALLBASE/SQL COBOL Application Programming Guide
e ALLBASE/SQL Database Administration Guide

e ALLBASE/SQL FORTRAN Application Programming Guide
< ALLBASE/SQL Message Manual

e ALLBASE/SQL Pascal Application Programming Guide

e ALLBASE/SQL Performance and Monitoring Guidelines

< ALLBASE/SQL Reference Manual

e HP PC API User's Guide for ALLBASE/SQL

= Up and Running with ALLBASE/SQL

< ODBCLINK/SE Reference Manual

36

New Features in G1, G2 and G3
The following table highlights the new or changed functionality added in G1, G2 and G3

releases, and shows you where each feature is documented.

concatenate
strings
(Standards)

character or binary strings in an
expression. New operand: | |

Ver. Feature (Category) Description Documented in...

G3 String Functions The supported SQL syntax has In future version of the
(Usability) been enhanced to include the ALLBASE/SQL Reference

following string manipulation Manual.
functions: UPPER, LOWER,
POSITION, INSTR, TRIM,

LTRIM, AND RTRIM . These
string functions allow you to
manipulate or examine the CHAR
and VARCHARalues within the
SQL syntax, allowing for more
sophisticated queries and
manipulation commands to be
formed.

G2 Allow or disallow Grants or revokes the ability to ALLBASE/SQL Reference
SQLMONor users. run SQLMONor specific users. Manual, GRANT, REVOKE in
(Usability) New attribute for GRANTand “SQL Statements.”

REVOKE: MONITOR

G2 Allow or disallow Grants or revokes the ability to ALLBASE/SQL Reference
authority to create | create modules for specific users. | Manual, GRANT, REVOKE in
modules. New attributes for GRANTand “SQL Statements.”
(Usability) REVOKE: INSTALL .

G2 PC ODBC 16-bit ODBCLINKI/SE allows ODBCLINK/SE Reference
and 32-bit support | connectivity to ALLBASE and Manual
(Connectivity, IMAGE/SQL servers from a PC
Client/Server) running MS Windows using

ODBC.
G2 Year 2000 solution | Provides the JCW “Date/Time Functions” in the
(Standards) HPSQLSPLITCENTURYo use in “Expressions” chapter of the
setting a value between 0 and ALLBASE/SQL Reference
99. This value is used to change Manual.
the century part of the DATEand
DATETIMEfunctions to override
the default of 19.
G1 New operand to Adds an operand to concatenate | ALLBASE/SQL Reference

Manual, “Expressions.”

37

Ver.

Feature (Category)

Description

Documented in...

G1

RENAMEolumn or
Table (Usability)

Adds capability of defining a new
name for an existing table or
column in a DBEnvironment.
You cannot rename a table or
column that has check
constraints or an IMAGE/SQL
table. New commands: RENAME
COLUMN, RENAME TABLE

ALLBASE/SQL Reference
Manual, RENAME COLUM&ahd
RENAME TABLEN “SQL
Statements.”

G1

CASTfunction
added to
Expression syntax
(Usability)

Adds the CASTfunction to allow
explicitly converting from one
data type to another. It allows
conversion between compatible
data types and between
normally incompatible data
types such as CHAR and
INTEGER. New Expression
function: CastFunction.

ALLBASE/SQL Reference
Manual, “Cast” in
“Expressions.”

Gl

Syntax added to
VALIDATE
(Usability,
Performance)

Automates execution of COMMIT
WORIMafter each module or
procedures is validated when
WITH AUTOCOMMITs used. All
sections are revalidated whether
valid or invalid when FORCHs
used. This can reduce log space
and shared memory
requirements for the VALIDATE
statement. New syntax for
VALIDATE: FORCE, WITH
AUTOCOMMIT

ALLBASE/SQL Reference
Manual, VALIDATE in “SQL
Statements.”

G1

Syntax added to
DELETE(Usability,
Performance)

Automates execution of COMMIT
WORHat the beginning of the
DELETEand after each batch of
rows is deleted when WITH
AUTOCOMMITS used. Reduces
log-space and shared-memory
requirements. WITH
AUTOCOMMIgannot be used in
some cases (see the DELETE
statement). New syntax for
DELETE: WITH AUTOCOMMIT

ALLBASE/SQL Reference
Manual, DELETEIn “SQL
Statements.”

G1

Decimal
operations
(Usability)

Increases maximum precision
from 18 to 27.

ALLBASE/SQL Reference
Manual, “Decimal Operations”
in “Data Types.”

38

Ver. Feature (Category) Description Documented in...

G1 Terminate a query | Allows termination of a query for | ALLBASE/SQL Reference
(Usability, a connection or transaction. New | Manual, TERMINATE QUERY,
Performance) statement: TERMINATE QUERY | SET SESSION, SET

New syntax for SET SESSION, TRANSACTIONN “SQL
SET TRANSACTION Statements.”

G1 Terminate a Allows stopping of a given ALLBASE/SQL Reference
transaction transaction. New statement: Manual, TERMINATE
(Usability, TERMINATE TRANSACTIONNew | TRANSACTION, SET
Performance) syntax for SET SESSION, SET SESSION, SET TRANSACTION

TRANSACTION in “SQL Statements.”

G1 Timeout enhanced | Allows specifying the action ALLBASE/SQL Reference
to allow specifying | when a timeout expires. New Manual, in “SQL Statements.”
what is rolled back | attributes for SET SESSIONand
or terminated SET TRANSACTION
(Usability, TERMINATION AT LEVEL,

Performance) USER TIMEOUT, ON TIMEOUT
ROLLBACK

G1 New SQLUtil Flushes the data in parallel to ALLBASE/SQL Database
command the CHECKPOINTcommand in Administration Guide,
CHKPTHLReduces | ISQL. New SQLUtil command: CHKPTHLHN “SQLUtil”
time for flushing CHKPTHLP
data
(Performance)

G1 Allow or disallow Grants or revokes the ability to ALLBASE/SQL Reference
SQLMONor users. run SQLMON for specific users. Manual, GRANT, REVOKENn
(Usability) New attribute for GRANTand “SQL Statements.”

REVOKE: MONITOR

G1 Allow or disallow Grants or revokes the ability to ALLBASE/SQL Reference
authority to create | create modules for specific users. | Manual, GRANT, REVOKEn
modules. New attributes for GRANTand “SQL Statements.”
(Usability) REVOKE: INSTALL .

Gl Script for Provides SQLLINSTL script for SQLINSTL file; Communicator
migration toanew | migration to a new release of 3000 MPE/iX Release 5.5
release (Usability, | ALLBASE/SQL. Read the (Non-Platform Software
Tools) SQLINSTL file on your system Release C.55.00),

for more information. “ALLBASE/SQL
Enhancements”;
ALLBASE/SQL Database
Administration Guide in
‘SQLINSTL” section of the
“DBA Tasks and Tools”
chapter.

G1 GENPLAMN a Obtains an access plan of a ALLBASE/SQL Reference

section (Usability)

stored static query by specifying
the module and section number.
Changed syntax: GENPLAN

Manual, GENPLANN “SQL
Statements.”

39

Ver. Feature (Category) Description Documented in...
Gl POSIX support Starting with G1, the Communicator 3000 MPE/iX
(Tools) ALLBASE/SQL preprocessor Release 5.5 (Non-Platform

(PSQLCOB) supports Software Release (C.55.00),
preprocessing and generation of | “ALLBASE/SQL
Microfocus COBOL source code Enhancements.”
under POSIX (Portable
Operating system Interface).

Gl Terminate a user’s | Terminates one or more ALLBASE/SQL Reference

connections
(Connectivity)

connections for a user. New
syntax for TERMINATE USER
CID ConnectionID.

Manual, TERMINATE USERiIn
“SQL Statements.”

Run Queue
Control for
ALLBASE/NET
(Connectivity)

Allows running HPDADVRn D
gueue for an MPE/iX session or
HP-UX connection or C queue for
an MPE/iX job connection. New
environment variable:
HPSQLJOBTYPE

Communicator 3000 MPE/iX
Release 5.5 (Non-Platform
Software Release
C.55.00),”ALLBASE/SQL
Enhancements.”

PC ODBC 16-bit
and 32-bit support
(Connectivity,
Client/Server)

ODBCLINK/SE allows
connectivity to ALLBASE and
IMAGE/SQL servers from a PC
running MS Windows using
ODBC.

ODBCLINK/SE Reference
Manual

Year 2000 solution
(Standards)

Provides the JCW
HPSQLSPLITCENTURYo use in
setting a value between 0 and
99. This value is used to change
the century part of the DATEand
DATETIMEfunctions to override
the default of 19.

“Date/Time Functions” in the
“Expressions” chapter of the
ALLBASE/SQL Reference
Manual.

40

1

Introduction

Introduction

This manual describes ALLBASE/SQL, which you use to create, maintain, and access
relational database environments. SQL stands for Structured Query Language, a

language for accessing a relational database.

In order to define terms and provide an overview of the subject, this chapter includes the
following sections:

ALLBASE/SQL Components
ALLBASE/SQL Databases
ALLBASE/SQL Data Access

Using Queries

ALLBASE/SQL Objects
ALLBASE/SQL Users

Using Comments within SQL Statements
SQL Language Structure

SQL Statement Categories

Error Conditions in ALLBASE/SQL
Native Language Support

Chapter 1

41

Introduction
ALLBASE/SQL Components

ALLBASE/SQL Components

ALLBASE/SQL consists of several distinct components, which are shown in Figure 1-1..

Figure 1-1. Components of ALLBASE/SQL

Application [C Preprocessor |
Programs COBOL Preprocessor |
| FORTRAN Preprocessor]

Pascal Preprocessor

ISQL

Query
Processor

SQLMigrate
SQLGEN
Storage
SQLUtil Manager
(DBCore) Database
LG200199_015

To access data with ALLBASE/SQL, you use ALLBASE/SQL statements, which conform to
industry standards for SQL statements for relational databases.

You can submit SQL statements interactively or in application programs as described
here:

< Interactively, you use ISQL (Interactive SQL) to key in statements at a terminal. ISQL
is the interactive interface to ALLBASE/SQL.

< Programmatically, you embed statements in a C, COBOL, FORTRAN, or Pascal
application program. Then, before compiling the program, you use an ALLBASE/SQL
preprocessor to prepare the program for run-time database access. The preprocessor
converts an embedded SQL program into a source file for input to a C, COBOL,
FORTRAN, or Pascal compiler.

As SQL statements come from ISQL or from the preprocessors, they are passed along to
the two following subsystems:

= Query Processor checks the syntax of each statement, verifies that the user has the
appropriate authorization for it, and processes queries.

= Storage Manager performs physical file management, and transaction and logging
tasks. The Storage Manager is also referred to as DBCore.

42 Chapter1

Introduction
ALLBASE/SQL Components

Utility Programs
In addition, these utility programs help you perform the necessary maintenance tasks:

= SQLUtil assists with file maintenance, backup, and recovery.

= SQLGEN generates statements for re-creating a given DBEnvironment.

e SQLMigrate lets you move DBEnvironments between releases of ALLBASE/SQL.
e SQLCheck checks the integrity of a DBEnvironment.

e SQLMON helps you monitor DBEnvironment performance.

= SQLVer checks the version strings of the ALLBASE/SQL files.

= SQLAudit organizes audit log records for analysis of operations such as UPDATE,
INSERT, or DELETE perhaps for security reasons.

The utility programs listed that are not included in Figure 1-1 all interact with the Storage
Manager (DBCore).

ISQL is described in the ALLBASE/ISQL Reference Manual. The preprocessors are
documented in separate ALLBASE/SQL application programming guides for each
language and the release specific ALLBASE/SQL Advanced Application Programming
Guide.

SQLULtil, SQLGEN, SQLMigrate, SQLCheck, SQLVer, and SQLAudit are documented in
the ALLBASE/SQL Database Administration Guide. SQLMONs documented in the
ALLBASE/SQL Performance and Monitoring Guidelines. The rest of this manual
describes SQL, pointing out differences between interactive and programmatic usage
when they exist. Most of the SQL statements can be executed through either interface.

Chapter 1 43

Introduction
ALLBASE/SQL Databases

ALLBASE/SQL Databases

The largest unit in ALLBASE/SQL is the DBEnvironment, which can be seen logically as
a collection of database objects or physically as a group of files. Objects are database
structures.

Logical Concepts

Logically, the DBEnvironment is a structure which contains one or more relational
databases. In ALLBASE/SQL, a database is a set of tables, views, and other objects that
have the same owner.

The data in a relational database is organized in tables. A table is a two-dimensional
structure of columns and rows:

The Parts Table
PARTNUMBER |PARTNAME |[SALESPRICE
+ +

1123-P-01 |Central Processor | 500.00 |
1133-P-01 |Communication Processor | 200.00 |- rows
1143-P-01 |Video Processor | 180.00 |

| | |

+ + +

|
columns

Often a table is referred to as a relation, and a row as a tuple. You can also think of a row
as a record, and a column as a field in a file, or table.

A view is a table derived by placing a “window” over one or more tables to let users or
programs view only certain data. A view derived from the Parts table shown above might
look like this:

The PartsID View

4

PARTNUMBER |PARTNAME
1123-P-01 |Central Processor
1133-P-01 |[Communication Processor
1143-P-01 |Video Processor

The owner of a table or view can be one of the three following entities:

1. Individual as identified by the DBEUserID, which is the login name. An individual
who logs in as WOLFGANG.ACCOUNTNAKEnown to ALLBASE/SQL as
WOLFGANG@ACCOUNTNAME.

2. Authorization group, a named collection of individuals or other groups. Wolfgang
might be part of a group named Managers . A group must be created explicitly by using
the CREATE GROUP statement.

3. Class, a name that identifies a user-defined abstraction, such as a department or a
function. Wolfgang might use tables owned by a class called Marketing . A class is

44 Chapter 1

Introduction
ALLBASE/SQL Databases

created implicitly when you create objects that have a class name as owner name.

Refer to Chapter 2, “Using ALLBASE/SQL,” in this manual and to the chapter “Logical
Design” in the ALLBASE/SQL Database Administration Guide for additional information
about authorization groups and classes.

To use data in a database, you need to specify the names of the tables and views you need.
You must also specify the owner name associated with the table or view unless you own it
(or you have used the ISQL SET OWNERcommand). When accessing the Composers table,
Wolfgang needs to specify only Composers. However, when accessing the quotas table, he
needs to specify Marketing.Quotas because Marketing owns the Quotas table.

You also need the proper authority to access data. An authority is a privilege given to a
user to perform a specific database operation, such as accessing certain tables and views
and creating groups or tables. ALLBASE/SQL uses authorities to safeguard databases
from access by unauthorized users. In the example above, before Wolfgang can access the
Quotas table, he must be granted the authority to do so by the owner of the table.

If you have been granted the proper authorization, you access databases by first
connecting to the DBEnvironment in which they reside:

CONNECT TO' DBEnvironmentName '

Physical Concepts

Physically, the DBEnvironment is a collection of files for one or more logical databases.

A DBEFile is an MPE XL file. Most files in a DBEnvironment are DBEFiles. Data in the
tables of logical databases is stored in one or more DBEFiles. Indexes are also stored in
DBEFiles; an index is a structure that ALLBASE/SQL can use to quickly find data in a
table.

A DBEFileSet is a collection of DBEFiles. You associate physical storage with a
DBEFileSet by adding DBEFiles to the DBEFileSet. Each DBEFileSet can have more than
one DBEFile, but a single DBEFile cannot contain data for more than one DBEFileSet.

When you create a table, you can specify the DBEFileSet with which the table and its
indexes will be associated. This causes physical storage space for the table and indexes to
be allocated from the DBEFiles associated with the specified DBEFileSet. Figure 1-2.
illustrates the relationships among tables, DBEFiles, and DBEFileSets.

Chapter 1 45

Introduction
ALLBASE/SQL Databases

Figure 1-2. How Tables, DBEFiles, and DBEFileSets Are Related

Table 2

Table 1 Table 2 Index
l- ___________________________ |
| Y l
| |
| DBEFile1 DBEFile2 l
| |
| DBEFileSet :

LG200199_020

A DBEFileSet specifies the files that contain data for one or more tables associated with
the DBEFileSet. These tables do not have to be in the same database. Figure 1-3.
illustrates that, while a DBEFileSet can contain data for all the tables in a database, a
DBEFileSet can also contain data for some of the tables in a database, or for tables in more
than one database. Thus DBEFileSets offer a way to allocate data storage independently of
how users think about the data.

Figure 1-3. Databases and DBEFileSets

Database? Database3

Yy \

DBEFileSet1 DBEFileSet2 DBEFileSet3

LG200199_022

46 Chapter1

Introduction
ALLBASE/SQL Databases

A DBEnvironment, illustrated in Figure 1-4., houses the DBEFiles for one or more

ALLBASE/SQL databases, plus the following, which contain information for all databases
in the DBEnvironment:

« A DBECon file. This file contains information about the DBEnvironment
configuration, such as the size of various buffers and other startup parameters. The
name of the DBECon file is the same as the name of the DBEnvironment.

= A system catalog. The system catalog is a collection of tables and views that contain
data describing DBEnvironment structure and activity. The parts of the system catalog
necessary for DBEnvironment startup reside in a DBEFile known by default as
DBEFile0. All system catalog DBEFiles are associated with a DBEFileSet called
SYSTEM.

= Oneor two log files. A log file contains a log of DBEnvironment changes.
ALLBASE/SQL uses log files to undo (roll back) or redo (roll forward) changes made
in the DBEnvironment. The log files are known by default as DBELogl and
DBELog2.

Figure 1-4. Elements of an ALLBASE/SQL DBEnvironment

DBECon
DBEnvironment / File
System Log
Catalog File(s) |

LG200199_021

Most database users need not be concerned with the physical aspects of ALLBASE/SQL
databases beyond knowing which DBEnvironment contains the databases they want to
access.

Chapter 1 47

Introduction
ALLBASE/SQL Data Access

ALLBASE/SQL Data Access

The DBEnvironment determines both what data can be accessed in a transaction and
what data can be recovered. Following a failure, a transaction can be recovered, or all data
can be recovered, as follows:

= A transaction is one or more SQL statements that together perform a unit of work on
one or more databases in a DBEnvironment. Work done within a transaction can be
made permanent (committed) or undone (rolled back).

= After a system or hardware failure, all data within a DBEnvironment is recovered to a
consistent state. Changes performed by any transactions incomplete at failure time are
rolled back. Changes performed by transactions completed before failure time are made
permanent.

You can have more than one DBEnvironment on your system. When you connect to a
DBEnvironment, ALLBASE/SQL establishes a DBE session for you. The query processor
can process statements only when you are in a DBE session. You can access any
DBEnvironment in either of the two following modes:

= Single-user mode—only one user or program can use a DBEnvironment.

= Multiuser mode—more than one user and/or program can use a DBEnvironment at
the same time.

48 Chapter 1

Introduction
Using Queries

Using Queries

After connecting to a DBEnvironment, you use queries to retrieve data from database
tables. A query is a statement in which you describe the data you want to retrieve. In
ALLBASE/SQL, a query is performed by using the SELECTstatement. For example:

SELECT PartName, SalesPrice
FROM PurchDB.Parts
WHERE PartNumber = '1123-P-01'
OR PartNumber = '1133-P-01"

The result of a query is called a query result. In the case of the query above, which
retrieves the name and selling price of two parts from the table named PurchDB.Parts, the
result is a table made up of two columns and two rows:

PARTNAME |[SALESPRICE

+
Central Processor | 500.00
Communication Processor | 200.00

A detailed presentation of queries and other forms of data manipulation appears in the
“SQL Queries” chapter.

Chapter 1 49

Introduction
ALLBASE/SQL Objects

ALLBASE/SQL Objects

The following structures play a significant role in the use of an ALLBASE/SQL database
and are known as database objects:

= Tables

= Views

= Columns (in tables and views)
= Authorization groups

< Indexes (on tables)

« Hash structures (for tables)
= Constraints

= Rules (on tables)

= Procedures

< DBEFiles

= DBEFileSets

= TempSpaces

= Modules

Many of the SQL statements let you create and then create and manipulate objects as
described below:

= Data in tables and views

= Columns within tables and views

= Grant authorities to authorization groups

= Indexes for specific tables

= Hash structures for specific tables

= Constraints on specific tables, views, or columns

< Rules on specific tables

< Procedures containing SQL and control flow statements
< DBEFiles and associate them with DBEFileSets

= TempSpaces that are used for sorting

= Modules when you preprocess an application program containing SQL statements

50 Chapter1

Introduction
ALLBASE/SQL Users

ALLBASE/SQL Users

ALLBASE/SQL users fall into the three categories as described here. One person may do
all the tasks within these categories.

= Application programmers. These users write application programs that access
ALLBASE/SQL databases. They embed SQL statements in source code to manipulate
data. Programmers then use the preprocessor that supports their programming
language. The preprocessor prepares the application program for compilation and
stores database access information in a module in the DBEnvironment; the stored
module contains optimized data access paths that are used at run time. Once the
program is compiled, authorized users can execute it.

Application programmers also use ISQL throughout program development.
DBEnvironments for testing and running applications can be created via ISQL. You can
determine the effect of many SQL statements by using ISQL.

< Database administrators. These individuals, referred to as DBAs, are responsible for
the creation and maintenance of ALLBASE/SQL DBEnvironments. They use SQL
statements, usually via ISQL, to perform the following tasks:

— Define DBEnvironments, grant and revoke authorities, add and drop DBEFiles,
alter tables, define indexes, and define views using SQL, ISQL, or preprocessed
programs.

— Alter the configuration of a DBEnvironment, move or purge DBEFiles, and back up
DBEnvironments using SQLULil

— Access information in the system catalog to monitor DBEnvironment usage and help
ensure efficient access to data.

— Re-create all or part of a DBEnvironment on a different system by using SQLGEN.

< ENnd users. These users run application programs that access ALLBASE/SQL
databases. They do not need to be aware of the components of ALLBASE/SQL in many
cases. These users may occasionally use ISQL to issue simple SQL statements that
retrieve or change data. Relational databases are particularly well-suited for data
access of this nature, because you can access data without specifying specific access
paths. End users only need to know table and column names.

Chapter 1 51

Introduction
SQL Language Structure

SQL Language Structure

SQL statements begin with a verb and can include clauses or names. For example:

SELECT PartNumber FROM PurchDB.Parts

owner		
	name	
(I		
statement		table
verb		name
I		
column +------mm-mmeeo- +		
name		
FROM
clause

Statements always contain a verb, one or more words that describe the action of the
statement. A statement can also contain one or more clauses. A clause is a group of names
and keywords describing what the verb should operate on. A verb can operate on a named
object, such as a table or a column. Some statements can contain expressions or search
conditions. Expressions specify a value. Search conditions screen data against specific
criteria:

SELECT * FROM PurchDB.Parts WHERE SalesPrice > 200.00
I | ||

all | | expression |
columns |] |

|
|
| search condition |
| |
+

|
WHERE

clause

+

The syntax of SQL is fully described in chapters 7-12 of this manual.

52 Chapter1

Introduction
Using Comments within SQL Statements

Using Comments within SQL Statements

You can initiate comments within any SQL statement or ISQL prompt either by prefixing
each line of the comment with two hyphens or with the combination of slashes and
asterisks at the beginning and end of the comments:

SELECT *
FROM PurchDB.SupplyPrice
WHERE PartNumber = '1723-AD-01'
AND DeliveryDays < 30

--This statement selects values from the SupplyPrice table based on
--part number and delivery days.

SELECT *
FROM PurchDB.SupplyPrice
WHERE PartNumber = '1723-AD-01'
AND DeliveryDays < 30

[*This statement selects values from the SupplyPrice table based on*/
[*part number and delivery days.*/

Chapter 1 53

Introduction
SQL Statement Categories

SQL Statement Categories

Writing queries is the basis of data manipulation in ALLBASE/SQL. All users employ the
SELECTstatement for this purpose. SQL has several other general-purpose statements,
and also has statements specifically for use by application programmers or database
administrators. The SQL statements are functionally summarized inTable 1-1. For the
commands in each category, refer to Table 10-1., “SQL Statement Summary.”

Table 1-1. SQL Statement Categories

Group Category Purpose
General-purpose DBEnvironment Statements for obtaining and terminating
statements session management database access.

Data definition Statements for defining tables, views, indexes,
DBEFiles, DBEFileSets, TempSpace, and other
SQL objects.

Data manipulation Statements for selecting, inserting, and
changing rows.

Transaction Statements for committing or rolling back work

management done within a single transaction. A transaction
is a unit of work and may consist of one or
multiple SQL statements.

Concurrency Statements for managing data contention in
multiuser mode.

Module Maintenance Statements for managing modules and
procedures.

Application Single row data Statements for manipulating a single row with
programming manipulation each statement execution.
statements

Bulk data Statements for manipulating multiple rows

manipulation with a single statement execution.

Cursor management Statements for manipulating individual rows
in a set of rows that satisfy a SELECT
statement.

Preprocessor directives | Statements for declarations in application
programming.

Dynamically Statements for handling statements

preprocessed queries preprocessed at run time.

Status messages A statement for retrieving an ALLBASE/SQL
message describing the status of an SQL
statement execution.

54 Chapter 1

Table 1-1. SQL Statement Categories

Introduction
SQL Statement Categories

DBEnvironment
configuration and use

Space management

Logging

DBEnvironment
statistics management

Procedure control flow

Group Category Purpose
Database Authorization Statements for controlling DBEnvironment
administration access.
statements

Statements for controlling DBEnvironments.

Statements for managing DBEFiles used for
tables and indexes; statements for managing
temporary space for sorting.

Statements for managing log files.

Statements related to the system catalog.

Statements used only inside procedures.

statements
Procedure General and Control Statements used only inside procedures.
statements Flow Statements

If you are embedding SQL statements in an application program, refer to the
ALLBASE/SQL application programming guide for the language you are using. Bulk data

manipulation is not available for FORTRAN. COBOL and FORTRAN do not provide the

full set of dynamic preprocessing statements.

Chapter 1

55

Introduction
Error Conditions in ALLBASE/SQL

Error Conditions in ALLBASE/SQL

When you issue an SQL statement, error messages are returned if the statement cannot be
carried out as intended. In an interactive session with 1SQL, the messages are displayed

on your terminal. In application programs, you access the message buffer directly by using
the SQLEXPLAINstatement. The effect of an error on your session depends on three factors:

= Severity of the error
= Atomicity level set within the transaction

= Constraint checking mode set within the transaction

Severity of Errors

In general, errors result in partially or completely undoing the effects of an SQL
statement. If the error is very severe, the transaction is rolled back. When a transaction is
rolled back, ALLBASE/SQL displays a message like the following along with other
messages:

Your current transaction was rolled back by DBCore. (DBERR 14029)

If an error is less severe, the statement is undone, but the transaction is allowed to
continue.

Atomicity of Error Checking

By default, error checking is done at the statement level. In other words, the entire
statement either succeeds or fails. This means that for set operations, the statement
succeeds for all members of the set or fails for all members of the set. For example, if there
is an error on the fifteenth row of a twenty-row BULK INSERT statement, the entire
statement has no effect, and no rows are inserted. Or if an UPDATEstatement that affects
twenty rows creates a uniqueness violation for one row, the statement will fail for all rows.
This approach guarantees data integrity for the entire statement. Under special
circumstances, you can choose a different atomicity level for error checking:

« Row level

= Beyond the statement level

Setting the Atomicity to the Row Level

Sometimes statement level atomicity has drawbacks which you can correct. For example,
data manipulation statements involving large amounts of data require considerable
overhead for logging when issued at statement level, and this can impair performance. For
better performance, you can set atomicity to row level. With row level atomicity, if an error
occurs on one row, earlier rows are not undone. For example, for an error on the fifteenth
row of a twenty-row BULK INSERT, statement execution stops at the fifteenth row, but the
first fourteen rows will be processed unless you use the ROLLBACK WORiatement. To use
row level error checking, issue the following statement:

SET DML ATOMICITY AT ROW LEVEL

56 Chapter1

Introduction
Native Language Support

Only DML statements can be checked for errors at the row level of atomicity. Refer to the
SET DML ATOMICITY statement in Chapter 12 , “SQL Statements S - Z,” for complete
details.

Deferring Error Checking beyond the Statement Level

Sometimes statement level atomicity is too narrow for your needs. For operations involving
more than one table, it may be useful to defer error checking until all tables are updated.
For example, if you are loading two tables that have a referential relationship that is
circular--that is, each table references a primary key element in the other table--then you
must defer constraint error checking until both tables are loaded; otherwise any attempt to
load a row would result in a constraint error. To defer referential constraint error checking
beyond the statement level, issue the following statement:

SET REFERENTIAL CONSTRAINTS DEFERRED
After the loading of both tables is complete, issue the following statement:
SET REFERENTIAL CONSTRAINTS IMMEDIATE

This turns on constraint error checking and reports any constraint errors that now exist
between the two tables. Only integrity constraint error checking can be deferred beyond
the statement level. For complete details, refer to the SET CONSTRAINTSstatement
Chapter 12, “SQL Statements S - Z.”

Additional Information about Errors

Refer to the “Introduction” to the ALLBASE/SQL Message Manual for a general description
of error handling. For the coding of error handling routines in application programs, refer
to the chapter “Using Data Integrity Features” in the ALLBASE/SQL Advanced
Application Programming Guide and the “Runtime Status Checking and the SQLCA”
chapter in the application programming guide for the language of your choice. For error
handling in procedures, refer to Chapter 4 , “Constraints, Procedures, and Rules.” For row
level error checking, see the SET DML ATOMICITY statement, and for deferred constraint
checking, see the SET CONSTRAINTSstatement, both in Chapter 12, “SQL Statements S -
Z”

Native Language Support

ALLBASE/SQL lets you manipulate databases in a wide variety of native languages in
addition to the default language, known as NATIVE 3000. You can use either 8-bit or
16-bit character data, as appropriate for the language you select. In addition, you can
always include ASCII data in any database, because ASCII is a subset of each supported
character set. The collating sequence for sorting and comparisons is that of the native
language selected.

Chapter 1 57

Introduction
Native Language Support

You can use native language characters in a wide variety of places, including these:

e Character literals
= Values stored in host variables for CHARor VARCHARIata (but not as variable names)
< ALLBASE/SQL object names

If your system has the proper message files installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select; and it displays system dates and time
according to local customs. In addition, ISQL accepts responses to its prompts in the native
language selected. However, regardless of the native language used, the syntax of ISQL
and SQL statements--including punctuation--remains in ASCII. Note that MPE XL does
not support either native language file names or DBEnvironment names.

In order to use a native language other than the default, you must follow the steps below:

1. Make sure your 1/O devices support the character set you use.

2. Set the MPE job control word NLUSERAN®@o the number(LangNum) of the native
language you use. Use the following MPE XL command:

SETJCW NLUSERLANG = LangNum

This language then becomes the current language. (If NLUSERLANGs not set, the
current language is NATIVE-3000.)

3. Use the LANG= LanguageName option of the START DBE NEWstatement to specify the
language of a DBEnvironment when you create it. Run the MPE XL utility program
NLUTIL.PUB.SYS to determine which native languages are supported on your system
Here is a list of supported languages, preceded by the LangNumfor each:

0 NATIVE-3000 7 FRENCH 13 SWEDISH 71 HEBREW

1 AMERICAN 8 GERMAN 14 ICELANDIC 81 TURKISH

2 C-FRENCH 9 ITALIAN 41 KATAKANA 201 CHINESE-S
3 DANISH 10 NORWEGIAN 51 ARABIC 211 CHINESE-T
4 DUTCH 11 PORTUGEUSE 52 ARABICW 221 JAPANESE
5 ENGLISH 12 SPANISH 61 GREEK 231 KOREAN

6 FINNISH

Resetting the LANGvariable while you are connected to a DBEnvironment has no effect on
the current DBE session.

58 Chapter1

Using ALLBASE/SQL

2 Using ALLBASE/SQL

This chapter shows how to use SQL statements for the following basic tasks:

Creating DBEnvironments

Starting and Terminating a DBE Session

Creating Physical Storage

Defining How Data is Stored and Retrieved

Understanding Data Access Paths

Controlling Database Access

Manipulating Data

Managing Transactions

Auditing DBEnvironments (including setting up partitions)
Using Wrapper DBEnvironments

Using SQLAudit

Application Programming

Using Multiple Connections and Transactions with Timeouts
Administering a Database

Understanding the System Catalog

The next chapters contain more detailed information about the following topics:

SQL Queries
Constraints, Procedures and Rules

Concurrency Control

The examples in this chapter are not intended to show all the functionality of the
statements. For detailed information on ALLBASE/SQL statements, refer to the chapters
“SQL Statements” in this manual. For information about database administration, refer to
the ALLBASE/SQL Database Administration Guide.

Chapter 2 59

Using ALLBASE/SQL
Creating DBEnvironments

Creating DBENnvironments

Before you can create a database, you must first configure a DBEnvironment. You use the
START DBE NEWstatement, optionally specifying startup parameters to override those
assigned by default. You can use parameters to specify the following information:

= Multiuser or single-user mode

= Single, dual, or audit logging

< Number of page and log buffers

< Maximum number of partitions and concurrent transactions
= Number of runtime control blocks

< Timeout parameters

= DBEFile0 characteristics

= DBELogl and DBELo0g2 characteristics

The DBEnvironment name, SomeDBE for example, is specified within single quotation
marks in the START DBE NEWstatement:

START DBE 'SomeDBE' MULTI NEW

This statement configures a DBEnvironment named SomeDBE in your group and account.
This DBEnvironment contains the following files:

< A DBECon file named SomeDBE

= A DBEFile named DBEFile0O, which is associated with a DBEFileSet named SYSTEM
< DBEFile0, containing a system catalog

< Assingle log file named DBELogl

The startup parameter MULTI makes this DBEnvironment accessible in multiuser mode by
default.

The DBECon file stores the startup parameters defined by the START DBE NE¥tatement.
For more information on startup parameters, refer to START DBE NEW Chapter 12 , “SQL
Statements S - Z.”

Once a DBEnvironment exists, one or more databases can be created in it. Because
databases are collections of tables and views, databases are created by defining tables and
views. The definition of tables and views is discussed later in this chapter in “Defining
How Data is Stored and Retrieved.”

Specifying a Native Language Parameter

You can specify a native language parameter in creating a DBEnvironment. Use the
LANG = LanguageName option in the START DBE NEWstatement to specify a native
language other than NATIVE 3000, as in the following example:

START DBE 'SomeDBE' NEW LANG = JAPANESE;

60 Chapter2

Using ALLBASE/SQL
Creating DBEnvironments

If you want to specify the name of the DBEnvironment in a native language, then the
native language you specify in the LANGclause must be covered by the same character set
as the language designated as the current language at the operating system level. The
current language can be different from that of the DBEnvironment. In that case, all
processing--including comparisons and sorting--will take place in accordance with the
language of the DBEnvironment, but messages will appear in the
operating-system-designated language if the appropriate message catalog is available.
Also, scanning of user input will be in the current language. See “Native Language
Support” in Chapter 1, “Introduction,” for information about specifying a native language
as the current language.

Initial Privileges
When a DBEnvironment is configured, ALLBASE/SQL grants the following initial
privileges:

< DBECreator status. The logon name that issues the START DBE NE¥tatement is the
DBECreator. Users with this status can use all the SQLUtil statements to maintain
the DBEnvironment.

= DBA authority. The DBECreator is given DBA authority. When you have DBA
authority, you are authorized to use all the SQL statements in a DBEnvironment.

Nobody other than the DBECreator can connect to or issue SQL statements in the
DBEnvironment until the DBECreator grants the appropriate authorities.

DBA authority cannot be revoked from the DBECreator.

Chapter 2 61

Using ALLBASE/SQL
Starting and Terminating a DBE Session

Starting and Terminating a DBE Session

A DBE session is the period between establishing and terminating a connection to a
DBEnvironment by a user or a program. You must be in a DBE session to execute any of
the SQL statements except the START DBEor CONNECS$tatements.

You can establish either a single-user DBE session or a multiuser DBE session for a
DBEnvironment. When you have a single-user session, no other users can connect to the
DBEnvironment for the duration of that session. When you have a multiuser session,
others can access the DBEnvironment at the same time.

How you establish a DBE session depends on whether the DBEnvironment is configured to
operate in autostart mode. Autostart is ON by default, but the DBA can reset it by using
SQLULtil. Refer to the “DBA Tasks and Tools” chapter in the ALLBASE/SQL Database
Administration Guide for more information about using SQLUtil.

Sessions with Autostart

When the autostart flag for a DBEnvironment has the value of ON, users with CONNECT
authority can start a DBE session by using the CONNECS$tatement:

CONNECT TO 'PartsDBEC.SomeGrp.SomeAcct'

Initiate a single-user session if the DBEnvironment is configured to operate in single-user
mode. Initiate a multiuser session if the DBEnvironment is configured for multiuser mode.

You can have up to 32 simultaneous DBEnvironment connections.

Sessions without Autostart

When the autostart flag has the value of OFF, a DBA must issue the START DBEtatement
to make a DBEnvironment accessible. For example:

START DBE 'PartsDBE.SomeGrp.SomeAcct'

The START DBEstatement illustrated above initiates a single-user session for the
DBEnvironment. To make multiuser access possible, the MULTI option is specified as
follows:

START DBE 'PartsDBE.SomeGrp.SomeAcct

After a DBEnvironment has been started up with the MULTI option, users with CONNECT
authority can initiate multiuser sessions as in the following example:

CONNECT TO 'PartsDBE.SomeGrp.SomeAcct'
The START DBEstatement also lets the DBA temporarily override several of the DBECon

file startup parameters.
Terminating DBE Sessions

To terminate a DBE session, you simply specify the RELEASEstatement as shown below:
RELEASE

62 Chapter2

Using ALLBASE/SQL
Creating Physical Storage

Creating Physical Storage

To create physical storage, you use data definition statements to create the following
storage areas:

< DBEFileSets
< DBEFiles
= TempSpace

File space for tables and indexes is managed by adding and dropping DBEFiles from
DBEFileSets. DBEFiles are units of physical storage and DBEFileSets are logical
collections of DBEFiles. You use the CREATE DBEFILESETstatement to define a
DBEFileSet, and the CREATE DBEFILE statement to define DBEFiles. You associate
physical storage with the DBEFileSet by associating DBEFiles with it, using the ADD
DBEFILE statement.

CREATE DBEFILESET WarehFS
CREATE DBEFILE WarehD1 WITH PAGES = 50, NAME = 'WarehD1'
ADD DBEFILE WarehD1 TO DBEFILESET WarehFS

Once you have created DBEFileSets and added DBEFiles to them, you need to specify the
name of a DBEFileSet in your table creation statements. This then defines, for that table,
the physical files that will be used to store the data. For complete details about creating

DBEFiles and DBEFileSets, refer to the ALLBASE/SQL Database Administration Guide.

TempSpace can be optionally defined and is a specific area of storage used by the system
for performing sorts in the database. TempSpaces are created and dropped by using the
CREATE TEMPSPAGHd DROP TEMPSPAGEatements. Temporary files are allocated under
the available TempSpaces as they are needed for performing a sort, and deallocated once
the sort is completed. TempSpace information is accessible through the system catalog
view SYSTEM.TEMPSPACEA TempSpace is referred to by a unique name. If a TempSpace is
not defined, sorting is done in the current group.

Chapter 2 63

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved

Defining How Data is Stored and Retrieved
To create database objects, you use data definition statements to define the following:

* Tables

= Views

= Indexes

= Constraints
= Procedures

< Rules

Creating a Table

When you define a table, use the CREATE TABLEstatement to accomplish the following
tasks:

1. Establish an automatic locking mode and default access authorities.

2. Name the table.

3. Describe the columns.

4. ldentify a DBEFileSet for storage of its rows.

The following example contains numbers that refer to the list of tasks shown above:

1 N

| |
CREATE PUBLIC TABLE PurchDB.Parts

(PartNumber CHAR(16) NOT NULL, ---
PartName VARCHAR(30), | -3
SalesPrice DECIMAL (10,2))

IN WarehFS

|
4

You can also specify native language characteristics and integrity constraints at both the
table and the column level.
Choosing the Locking Mode and Default Access Authorities

ALLBASE/SQL uses one of four locking modes for controlling access to data in a table by
different transactions. A transaction is one or more SQL statements that together perform
a unit of work. The locking modes are as follows:

< PRIVATE mode allows only one transaction at a time to access a table for reading or
updating. Locking is done at the table level. PRIVATE is the default mode.

< PUBLICREADmode allows multiple transactions to read a table, but only one to update
it. Locking is done at the table level.

64 Chapter2

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved

= PUBLIC mode allows multiple transactions to concurrently read and update a table.
Locking is done at the page level.

< PUBLICROWnode allows multiple transactions to concurrently read and update a table.
Locking is done at the row level, which permits greater concurrency than PUBLIC mode.

ALLBASE/SQL automatically uses the locking mode in the table definition whenever you
access a table. You can use the LOCK TABLE statement to override automatic locking. You
can use the ALTER TABLE statement to permanently change the implicit locking mode.

Tables created with PUBLICREAD, PUBLIC, and PUBLICROWdptions also have the following
initial authorities associated with them:

< A PUBLICREADtable can be read by anyone who can start a DBE session.

= A PUBLICROWr PUBLIC table can be read and updated by anyone who can start a DBE
session.

A DBA or the table's owner can use the GRANTand REVOKEtatements to change these
authorities.

The choice of PUBLICROWather than PUBLIC mode may result in a transaction's obtaining
more locks, since each row must be locked individually. For more information about the
guantity of locking in PUBLIC and PUBLICROWables, refer to the section “Effects of Page
and Row Level Locking” in the “Physical Design” chapter of the ALLBASE/SQL Database
Administration Guide.

Naming the Table and Columns

The name you assign to a table or column can be up to 20 bytes long and is governed by the
rules in Chapter 6 , “Names.”

Defining the Columns

You enclose the column definitions in parentheses, separating multiple column definitions
with a comma. At least one column must be defined. Each column is defined by a name and
a data type.

Specifying Data Types

Data types describe the kind of data that can be stored in a column. ALLBASE/SQL has
five numeric data types, two string data types, four date/time data types, and four binary
data types as follows:

< Numeric data types:

DECIMAL
FLOAT
REAL
INTEGER
SMALLINT

Chapter 2 65

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved

= Character string data types:
CHAR(n)
VARCHAR()

= Date/time data types:

DATE
TIME
DATETIME
INTERVAL
e Binary string data types:
BINARY(n)
VARBINARY (n)
LONG BINARY(n)
LONG VARBINARY ()

When you define a column to be of a certain data type, ALLBASE/SQL ensures that each
value stored in the column is in the range for the data type. Some data types (CHAR(n),
VARCHAR(), BINARY(n), VARBINARY(n), LONG BINARY(n) and LONG VARBINARY())
require a column length. CHAR({) has a default length of 1; VARCHAR() does not. Other
data types allow the specification of a precision (DECIMAL, FLOAT) and a scale (DECIMAL) .
Data types also affect the operations you can perform on data. Chapter 7, “Data Types,”
defines the attributes of each data type as well as how the type affects various operations.

Specifying Column Options

You can also specify a NOT NULL, DEFAULTnative language, or constraints option for each
column. The native language and constraint options are discussed in separate sections
below.

When you define a column as NOT NULL, ALLBASE/SQL ensures that it contains no null
values. NULL is a special data type that indicates the absence of a value.

The DEFAULToption allows you to specify a default value for a column. If the DEFAULT
option is defined for a column and a value is not specified when an INSERT statement is
executed, ALLBASE/SQL inserts the default value. Default values are of the following

types:

= Constant

 NULL

= Current date and/or time

The following example specifies column options:

CREATE TABLE PurchDB.Parts
(Column 1 char(20),
Column 2 DEFAULT NULL)

66 Chapter2

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved

You cannot use the DEFAULToption for a LONGdata type column.

Specifying a DBEFileSet

The table rows are stored in the DBEFiles previously associated with the DBEFileSet
named in the IN clause of the CREATE TABLEstatement. If you do not specify a
DBEFileSet, rows for the table are stored in the SYSTEM DBEFileSet. For best
performance, explicitly specify a DBEFileSet other than the SYSTEM DBEFileSet.

Specifying Native Language Tables and Columns

Use the LANG= TableLanguageName option in the CREATE TABLEstatement to specify a
language other than the DBEnvironment's language. You can only specify NATIVE 3000
or the current native language of the DBEnvironment.

CREATE TABLE NewTable
LANG = "NATIVE 3000"
(Column1 char(20),
Column2 char(10))

You must use double quotes around the name “NATIVE 3000” because it contains a
hyphen. Normally, native language names do not require quotes. For more information on
naming rules, refer to the “Names” chapter.

Use the LANG= ColumnLanguageName option in the column definitions of the CREATE
TABLE statement to specify a column with a language different from that of the table as a
whole. For example:

CREATE TABLE NewTable
(Columnil char(20) LANG = "NATIVE 3000",
Column2 char(20))

Sorting and pattern matching follow the rules of the column language. In order to
maintain ASCII performance as much as possible, NATIVE 3000 column sorting and
matching are done in ASCII.

By default, the language of a new table is the language of the DBEnvironment, and the
language of a new column is the language of the table it belongs to.

Creating a View

A view is a table derived by placing a “window” over one or more tables to let users or
programs see only certain data. Views are useful for limiting data visibility; they are also
useful for pulling together data from various tables for easier use. The tables from which
data for the view is derived are called base tables.

You define a view with the CREATE VIEWstatement. The following are components of a
view definition:

1. Name of the view
2. Name of its columns

3. Definition of how to derive data for the view

Chapter 2 67

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved

4. Specification of WITH CHECK OPTION, if desired

The following example contains numbers that refer to the view components listed above:

1
I
CREATE VIEW HiPrice
(PartNum, Price) --2
AS SELECT PartNumber, SalesPrice ---
FROM PurchDB.Parts [--3

WHERE SalesPrice > 1000
View names are governed by the same rules as table names.

The columns in a view can have the same names as the columns in the table(s) they are
based on, or they can have different names. You only need to include column names in a
view definition if you are using multiple base tables which have duplicate column names or
if you want to rename the columns. You enclose the names in parentheses, but omit data
types, which depend on the types of the columns in the base tables.

The derivation of the view is a SELECTstatement. In the previous example, the view is
derived from the PurchDB.Parts table. Each row in the view contains a part number and a
price; only rows for parts costing more than $1000 can be accessed through this view.

Unlike a table definition, a view definition does not require that you specify where to store
rows. A view is a SELECTstatement stored in the system catalog, not a physical copy of the
data; ALLBASE/SQL extracts data from physical tables at the time you use the view.
Views can be used for both retrieving and modifying data. Refer to “Updatability of
Queries” in Chapter 3, “SQL Queries,” for restrictions governing the use of a view to
change data in a base table.

The WITH CHECK OPTIONfor views is described in Chapter 4 , “Constraints, Procedures,
and Rules.”

Creating Indexes

You can create an index on one or more columns in a query. An index can provide quick
access to the data in your tables. For information on indexes, refer to section
“Understanding Data Access Paths” later in this section.

Specifying Integrity Constraints

Using integrity constraints helps to ensure that a database contains only valid data.
Integrity constraints provide a way to check data within the database system rather than
by coding elaborate validation checks within application programs. An integrity constraint
is either a unique constraint, a referential constraint, or a check constraint. These
constraints are described in Chapter 4 , “Constraints, Procedures, and Rules.”

Creating Procedures

You can define procedures to enforce relationships among database tables or to automate
nearly any operation in the DBEnvironment. The following example shows creating a
procedure to perform deletions from the SupplyPrice table in the sample DBEnvironment

68 Chapter2

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved

PartsDBE:

CREATE PROCEDURE PurchDB.DelSupply(Part CHAR(16) NOT NULL) AS
BEGIN

DELETE FROM PurchDB.SupplyPrice

WHERE PartNumber = :Part;
END

The procedure definition includes a parameter declaration. The parameter Part accepts a
value into the procedure at run time. You execute the procedure with a statement like the
following example:

EXECUTE PROCEDURE PurchDB.DelSupply ('1123-P-01')

The effect of the procedure is to delete all rows in the SupplyPrice table whose part
number is 1123-P-01. For detailed information about creating and using procedures, refer
to Chapter 4 , “Constraints, Procedures, and Rules.”

Creating Rules

Once a table is defined, you can create a rule that will execute a procedure whenever a
specific firing condition is met. For example, you can define a rule that will execute a
procedure to delete rows from the SupplyPrice table whenever a specific part is dropped
from the Parts table in the sample DBEnvironment PartsDBE:

CREATE RULE PurchDB.RemovePart AFTER DELETE FROM PurchDB.Parts
EXECUTE PROCEDURE PurchDB.DelSupply (PartNumber)

Once the rule exists, you activate it by performing a DELETE

DELETE FROM PurchDB.Parts
WHERE PartNumber = '1123-P-01'

For detailed information about creating and using rules, refer to the “Constraints,
Procedures, and Rules” chapter.

Chapter 2 69

Using ALLBASE/SQL
Understanding Data Access Paths

Understanding Data Access Paths

In creating a database, you must consider not only the arrangement of data, but also the
ways in which the data will be accessed during data manipulation operations. The four
following access methods are supported directly by ALLBASE/SQL.:

= Serial access
= Indexed access
= Hashed access
e TID access

For indexed access, you must create a named index, or unique or referential constraint on
a table. Unique and referential constraints are supported by constraint indexes, which are
similar to B-tree indexes. For information on B-trees, refer to the section “Designing
Indexes” in the chapter “Logical Design” of the ALLBASE/SQL Database Administration
Guide

For hashed access, you must define a hash structure as you create the table.

By default, you do not explicitly choose an access method when you issue a query;
ALLBASE/SQL does this for you in a process known as optimization. Optimization
determines the best access path to the data for the query you have submitted. If a choice is
available among the different access methods--for example, if serial, indexed, and hashed
access are all possible for the same query--then the optimizer picks the best path. If no
other choice is available, the optimizer chooses serial access, also known as a sequential or
table scan. Serial access is always possible.

To override the access method chosen by the optimizer, use the SETOPTstatement.

Serial Access

Serial access does not require the existence of any special object in addition to the table
itself. If ALLBASE/SQL chooses serial access when you issue a query, it starts reading
data from the first page in the table and continues to the end. Serial access is probably the
best access method when you intend to read all the data in the table. For example, an
application that updates every row in a table in exactly the same way would perform best
using a serial scan.

Indexed Access

Indexed access requires the use of a named index defined on specific columns in the table
to be accessed. Indexes can be plain, or they can be unique and/or clustering. Tables having
a unique index cannot have duplicate data values in the key column(s). A clustering
index causes rows with similar key values to be stored near to each other on disk when
this is possible. A table that is to use a clustering index should be loaded in the key order
specified by the clustering index. A clustering index can be defined on a unique or
referential constraint.

Whenever you issue a query, the query processor checks to see if an index exists for one or

70 Chapter2

Using ALLBASE/SQL
Understanding Data Access Paths

more of the columns in the query. If an index is available and if the optimizer decides that
using the index is the fastest way to access the data, ALLBASE/SQL looks up the key
values in the index first, then goes directly to the pages containing table data.

For example, in the following query, assume that PurchDB.Parts contains a large number
of rows and that a unigue index exists on the PartNumber column:

isql=> SELECT PartName, SalesPrice FROM PurchDB.Parts
> WHERE PartNumber = '1323-D-01";

The optimizer would probably choose this unique index for access to the single row because
the alternative choice--a serial scan--would require reading each page in the table until the
qualifying row is reached.

You define an index with the CREATE INDEXstatement. The components of an index
definition are as follows:

1. Type of the index (optional)

2. Name of the index

3. Table on which the index operates
4. Key column(s)

The following example contains numbers that refer to the index components listed above:

1
I
CREATE UNIQUE INDEX
Partindex --2
ON PurchDB.Parts --3
(Partno) -4

ALLBASE/SQL can choose to use an index when processing the SELECT, UPDATE, or
DELETEstatements if the following criteria are satisfied:

= The statement contains a WHERElause, which consists of one or more predicates. A
predicate is a comparison of expressions that evaluates to a value of True or False.
Refer to the “Search Conditions” chapter for more information on predicates.

= The statement contains explicit join syntax.

= Predicates are optimizable, which means that the use of an index is considered in
choosing an access path for the data. The following predicates are optimizable when all
the data types within them are the same; in the case of DECIMAL data, the precisions
and scales of the values must be the same:

— WHEREolumnl ComparisonOperator Column2 , in which
ComparisonOperator is one of the following: =, >, >=, <, or <=. An index may be
used if Columnl and Column2 are in different tables and an index exists on either
column. For example:

WHERE PurchDB.Parts.PartNumber = PurchDB.SupplyPrice.PartNumber

— WHEREColumnl ComparisonOperator (Constant or HostVariable) ,in
which ComparisonOperator is as defined above. An index may be used if one exists
on Columnl; however, an index may be used if a host variable appears in the

Chapter 2 71

Using ALLBASE/SQL
Understanding Data Access Paths

predicate only if the comparison operator is =, >, >=, <, or <= . For example:
WHERE SupplyPrice = :SupplyPrice

— WHERKEolumn1l BETWEENColumn2 or Constant or HostVariable) AND
(Column2 or Constant or HostVariable). For example:

WHERE OrderNumber BETWEEN '1123-P-01' AND '1243-MU-01'

< Some queries which use the MIN or MAXaggregate function on an indexed column as
follows are optimizable:

— MIN/MAX column is the first column of a nonhashed index.
— MIN/MAX indexed column on a single table with or without predicates.
— MIN/MAX indexed column on the outermost table of a nested loop join query.
— Single MIN/MAX within one query.
< ALLBASE/SQL does not use an index in the following types of queries:

— The query contains a WHERElause using a not-equal (<>) arithmetic operator, such
as, WHEREolumnl <> (Column2 or Constant or Host Variable). For example:

WHERE VendorState <> :VendorState

— The query contains a predicate using an arithmetic expression. For example:
WHEREColumnl > Column2*:. HostVariable

— MIN or MAXis used with the GROUP BY, ORDER BY, or HAVING clause.

— A MIN or MAXindexed column exists in the inner table of a nested-loop, join query.

— A MIN or MAXindexed column exists on all tables of a sort-merge, join query.

— MIN or MAXis used with an expression.

— One query contains multiple MINs or MAJS.

— A LIKE predicate contains a host variable.

If other predicates are used, then an index is considered in choosing an access path.

For more information about indexes, refer to the “Designing Indexes” section in the
“Logical Design” chapter of the ALLBASE/SQL Database Administration Guide.

Hashed Access

Hashed access requires you to specify hashing when you create the table, before loading
data. Because a hash structure is specified as part of the table definition, you do not assign
a name to it, as you do with an index. However, you must identify specific key columns and
a number of primary pages for data storage. ALLBASE/SQL determines the placement of
rows based on specific unique key values. You can define one hash structure per table at
table creation time; and if a hash is defined, you cannot define a clustering index on the
table. You can define a multiple-column key for a hash structure; up to 16 columns are
permitted in the key.

A hash structure is a group of designated pages in a DBEFile that are set aside for the
storage of tuples according to the values in a unique hash key. The key enforces

72 Chapter2

Using ALLBASE/SQL
Understanding Data Access Paths

uniqueness; duplicate values cannot exist in the hash key column(s). A well-chosen hash
key, like a good index key, provides the optimizer with the choice of a potentially faster
data access method than a serial scan.

Create a hash structure at the time you create a table. In addition to the components of a
table definition, a hash structure definition includes:

1. Columns that define the hash key
2. Number of primary pages

The reference numbers in the following example refer to the table definition components
listed above:

CREATE PUBLIC TABLE PurchDB.Vendors
(VendorNumber INTEGER NOT NULL,
VendorName CHAR(30) NOT NULL,
ContactName CHAR(30),
PhoneNumber CHAR(15),
VendorStreet CHAR(30) NOT NULL,
VendorCity CHAR(20) NOT NULL,
VendorState CHAR(2) NOT NULL,
VendorZipCode CHAR(10) NOT NULL,
VendorRemarks VARCHAR(60))

UNIQUE HASH ON (VendorNumber) -1
PAGES =101 -2
IN PurchFS

Use the UNIQUE HASHclause or the HASH ON CONSTRAINTlause to specify one or more
columns for a hash key. Use the PAGES= clause to define a number of primary pages in
which to store the data in the table. This is different from ordinary data storage, which
does not require a number of primary pages.

Based on the key and the number of primary pages you specify, ALLBASE/SQL calculates
a page number for each row before insertion into the table. The page number depends
directly on the data in the key. Because a specific number of primary pages is specified, you
must create the hash structure as you create the table; you cannot modify a table from
normal to hash storage at a later time.

The optimizer can decide to use hashed access provided the statement contains a WHERE
clause with an EQUALfactor for each column in the hash key. This makes hashing
especially useful for tables on which you need quick random access to a specific row.

For example, assuming you have defined a hash key on VendorNumber, the optimizer
might choose hashed access for the following:

isql=> SELECT * FROM PurchDB.Vendors
> WHERE VendorNumber = 9002;

However, it would not consider hash access for the following:

isql=> SELECT * FROM PurchDB.Vendors
> WHERE VendorNumber > 9002
> ORDER BY VendorName;

Chapter 2 73

Using ALLBASE/SQL
Understanding Data Access Paths

Hash structures operate like unique indexes; that is, they enforce the uniqueness of each
key in the table. If you attempt to insert a duplicate key, ALLBASE/SQL will return an
error message.

Differences between Hashed and Indexed Access

Hashing may provide faster access than B-tree lookups for many types of common queries,
and it does not require the overhead of additional file space required by B-tree indexes. In
addition, hashing is not subject to the overhead of updating index pages when you insert or
modify rows. However, updating key values in a hash table requires you to delete the row
containing the key value and then insert a row containing the new value. This means that
you should choose a non-volatile key for hashing whenever possible.

When to Use a Hash Structure

Hashing offers high performance when you need essentially random access to individual
tuples. It is not appropriate for applications that require sorting of the query result. In
cases where both random access and sorting are required at different times, you can define
a B-tree index as well as a hashing structure. This allows the optimizer the choice of the
most efficient method for the specific query.

The best candidates for the use of hash structures are applications in which the following
occur:

< Keys are not frequently updated. Remember that you cannot use the UPDATEstatement
on hash key columns. This means that you must delete and then insert rows that
contain changes to key values.

= Most queries contain EQUALfactors on hash key columns.
e Tuples are of fixed size, with a minimum of VARCHARSNd NULL values.

You should not use a hash structure if your queries need to scan large areas, for instance,
with BETWEENIauses or with predicates containing <> factors.

TID Access

Each row of a table has a unique address called the tuple identifier, or TID. TID
functionality provides the fastest possible data access to a single row. You can obtain the
TID of any row with the SELECTstatement. For more information on TID access refer to
the ALLBASE/SQL application programming manual for the language you are using.

74 Chapter2

Using ALLBASE/SQL
Controlling Database Access

Controlling Database Access

ALLBASE/SQL uses authorities to determine who can issue which SQL statements and
who can execute programs that access databases in a DBEnvironment. For complete
details about security schemes refer to the ALLBASE/SQL Database Administration
Guide.

Authorities
ALLBASE/SQL has the following several kinds of authorities:

< Table and view authorities are the following privileges used to access data in a
specific table or through a specific view and to add columns and indexes, and create
foreign keys referencing a specific table:

SELECT retrieve rows

INSERT insert rows

DELETE delete rows

UPDATE change one or more columns in a row
ALTER add new columns to a table

INDEX create an index for the table

REFERENCES refer to one or more columns when defining a foreign key in a
referencing table

< RUN authority is the privilege to execute a specific program module that accesses a
DBEnvironment.

EXECUTE execute a procedure

= Special authorities are the following privileges:
CONNECT connect to a DBEnvironment
RESOURCE create tables and authorization groups

DBA issue all SQL statements and to execute any program that accesses an
ALLBASE/SQL DBEnvironment

 OWNER authority controls specific programs, tables, views, or authorization groups.

Obtaining Authorization
You obtain authority by the following methods:

= Configuring a DBEnvironment and automatically becoming a DBA.
= Being granted one or more specific authorities.

= Owning a table, view, module, or group.

Chapter 2 75

Using ALLBASE/SQL
Controlling Database Access

DBA Authority

When a DBEnvironment is configured, DBA authority is automatically given to the login
name of the DBECreator.

A user with DBA authority (also referred to as the DBA) has extensive control over data in
a DBEnvironment. The DBA can issue almost all the SQL statements and execute all the
programs that access the DBEnvironment. The two SQL statements that only a
DBECreator can issue are, START DBE NEWLOGNd START DBE RECOVERSome SQL
statements onlya DBA can issue. Most of these statements are DBEnvironment-wide in
scope. For example, only DBAs can grant the special authorities (CONNECTRESOURCEand
DBA and define DBEFiles and DBEFileSets. In addition, only a DBA can issue statements
that control objects owned by a class name; for example, only DBAs can drop or issue
grants for a table owned by a class name.

Grants

All authorities except OWNERuthority can be granted by using the GRANTstatement. The
GRANTstatement gives authorities to individual users, to authorization groups, or to all
users.

The following grants authorize a user with a logOn name of WOLFGANG@DBMS to start
a DBE session and to retrieve rows from the table named Quotas. Wolfgang can also create
his own database because he is also granted RESOURCERuthority.

GRANT CONNECT TO WOLFGANG@DBMS
GRANT SELECT ON Marketing.Quotas TO WOLFGANG@DBMS
GRANT RESOURCE TO WOLFGANGg@DBMS

The following grants authorize the group named Managers to start a DBE session and all
users to retrieve rows from the table Forecast:

GRANT CONNECT TO Managers
GRANT SELECT ON Marketing.Forecast TO PUBLIC

The REVOKEtatement is used to eliminate authorities:
REVOKE RESOURCE FROM WOLFGANG@DBMS

DBAs can grant or revoke authorities. The only individuals entitled to grant and revoke
authorities are users or members of groups that own tables, views, or modules, or those
who have received grantable privileges, as described below. Individuals or members of
groups that own tables, views, or modules can issue grants for objects they own.

Grantable Privileges

If a grantor specifies the WITH GRANT OPTIOBlause when issuing the GRANTstatement on
table and view authorities, the grantee receives not only the privilege, but the authority to
grant that same privilege, with or without the WITH GRANT OPTION to another user. The
grantee is also entitled to revoke authorities he or she granted. This kind of privilege is
called a grantable privilege. The use of grantable privileges can result in chains of grants.

A cycle in a chain of grants is not allowed; that is, a user cannot be granted the same
authority more than once on an object. If a grant of authority causes a cycle, you will
receive an error message. The WITH GRANT OPTIONclause cannot be specified when the

76 Chapter2

Using ALLBASE/SQL
Controlling Database Access

grantee is a group. The following statement grants UPDATEauthority to Amanda, who can
then grant that authority to individual users or a class:

GRANT UPDATE ON Marketing.Forecast TO AMANDA@DBMS WITH GRANT OPTION,;

Users with a grantable privilege can only revoke privileges they have granted and chains
they have caused. To revoke the privilege given to the grantee and any subsequent
grantees in a chain, the grantor must use the CASCADBption of the REVOKEtatement.

Owners can revoke any privilege on their object, but to revoke a privilege that has been
given to subsequent grantees, the CASCADBption must be used. The DBA does not have to
use the CASCADBption to revoke a grantable privilege from a user. However, if CASCADHsS
not used, that privilege is removed from the specified grantee only, not from the
subsequent chain of grants. Then, an orphaned privilege is created. An orphaned privilege
can be given a parent by the DBA with the BY clause of the GRANTstatement. For more
information on orphaned privileges, refer to “Using the WITH GRANT OPTION Clause” in
the chapter “Database Creation and Security” in the ALLBASE/SQL Database
Administration Guide.

Ownership
The following six objects have owners associated with them:

« Tables

= Views

< Authorization groups
= Modules

= Procedures

= Rules

These objects can be owned by an individual, an authorization group, or a class; but an
object can have only one owner at a time.

An owner becomes associated with an object in one of several ways:

= When an individual creates one of the five objects, that individual becomes its owner.
The owner name is derived from the individual's login name. To create a table or group,
you need DBAor RESOURCHRuthority. To create a module, you need DBAor CONNECT
authority. To create a view, you need DBA, SELECT, or OWNERuthority for the tables
and views it is based on.

= A DBA or the owner of an object can transfer ownership of the object to another
individual, a group, or a class by using the TRANSFER OWNERSH)I§tatement. The
ownership of modules cannot be transferred. WOLFGANG@DBMS can transfer
ownership of his Composers table to Wendy as follows:

TRANSFER OWNERSHIP OF TABLE Composers TO WENDY @ROBERTS

< A DBA can create any of these objects and name the owner in the statement that
creates the object. Other users can name any group as owner when creating an object if
they are a member of that group. With the following statements, a DBA creates a group
called Managers; a DBA or a member of Managers can assign ownership of the table

Chapter 2 77

Using ALLBASE/SQL
Controlling Database Access

named Salary to that group when creating the table:

CREATE GROUP Managers
CREATE TABLE Managers.Salary...

When you refer in an SQL statement to a table, a view, a module, or an authorization
group, you specify both the owner's name and the name of the object. If you own the object,
however, you can omit the owner's name. When WOLFGANG@DBMS retrieves
information from the Parts table, for example, he must specify the owner name. For
example:

SELECT PartNumber FROM PurchDB.Parts

The system views belong to special owners named SYSTEM and CATALOG. Therefore
when you refer to one of the system views, you must specify that name:

SELECT * FROM System.Table
or
SELECT * FROM Catalog.Table

Default Owner Rules

In several statements, when a name is specified, such as table name, rule name, group
name, or index name, specification of the owner name is optional. The method of
determining the default owner when no owner is specified is as follows:

< If the name is within a CREATE PROCEDUR$Eatement (except for the procedure name
itself), and it is not within a CREATE SCHEMAtatement in that procedure, then the
default owner is the procedure's owner.

« |If the name is within a CREATE SCHEMAtatement and it is not within a CREATE
PROCEDURS&atement in that schema, then the default owner name is the
authorization name of that schema.

= If you have specified an owner using the ISQL SET OWNERcommand, everything you
create will be owned by the owner specified in that command.

= If you use the -0 option to specify an alternate DBEUserID prior to preprocessing an
application containing embedded SQL statements, then the owner specified is the
default owner of the module.

< If none of the above apply, then the default owner name is the current DBEUserID. The
DBEUserlID is the logon name concatenated with ‘@’ and concatenated with the group
name.

In CREATE INDEX, CREATE RULE, DROP INDEX, DROP RULE , the default owner for the
index or rule name, respectively, has additional possible values which are described with
those statements.

Ownership Privileges

The following summarizes the privileges that extend to users or members of groups that
own objects:

< Group owners can add members to and remove them from their group as well as drop
the group.

78 Chapter2

Using ALLBASE/SQL
Controlling Database Access

= Group members have ownership privileges over all objects owned by their group.
= Group members have all privileges granted to the group.
= Table owners can add columns to the table or drop the table.

They can add and drop constraints.

They can create and drop indexes for the table. They can grant and revoke authorities
for the table, and transfer their ownership to another owner. They can retrieve data
from the table, change the data, update statistics, lock the table, and create views on
the table. Transferring ownership of a table transfers the ownership of indexes,
constraints, and rules defined on the table. And grantor of privileges by owner also
changes.

« Index owners can drop their indexes. The index owner must be the same as the owner
of the table the index is defined upon. Index ownership is transferred along with the
ownership of the table the index is defined upon.

= View owners can drop their view. They can grant and revoke authorities for the view
and transfer their ownership to another owner. They can also access data through their
views.

< Module owners can execute, validate, and drop their modules. They can grant and
revoke RUNauthority for their modules. Ownership of modules cannot be transferred.

= Procedure owners can drop their procedures. They can grant and revoke EXECUTE
authority for their procedures, and they can transfer ownership to another owner.

= Rule owners can drop their rules. The rule owner must be the same as the owner of
the table the rule is defined upon. Rule ownership is transferred along with the
ownership of the table the rule is defined upon.

Authorization Groups

An authorization group is a named collection of users or other groups. The CREATE GROUP
statement is used to define groups, and the ADD TO GROURstatement is used to associate
individuals or other groups with the group. The GRANTtatement assigns authorities to a
group. All three statements are used in the following example:

CREATE GROUP PurchManagers
ADD MARGUERITE@RYAN, RON@HART, SHARON@MULDOON TO GROUP PurchManagers
GRANT SELECT on PurchDB.Parts TO PurchManagers

Any member of the group PurchManagers can select data from table PurchDB.Parts.
Authorization groups have several advantages as described here:

= Groups simplify authorization. They make it possible to grant authorities to multiple
users or groups with one GRANTstatement. In addition, as new users need authorities,
the DBA can simply add them to a group already possessing the appropriate
authorization.

= Groups make control over the type of data access independent of control over who can
access data. For example, the owner of a table can grant different types of access
(SELECT, UPDATE, etc.) to a group; but who belongs to the group is controlled by the
DBA or the group's owner, not by the table's owner.

Chapter 2 79

Using ALLBASE/SQL
Controlling Database Access

Classes

A class is a special category of owner that is neither a conventional DBEUserID nor a
group. You may wish to assign ownership of objects to a class when you do not want any
individual or group to have automatic access to them. With class ownership, the DBA
controls all authorities, because objects that belong to a class can be created and
maintained only by the DBA. For a class to be useful, its class name must be different from
the name of any existing DBEUserID or group name.

A DBA can create a class by doing one of the following:

= Creating a table or view with the class nhame as owner name.
= Preprocessing an application with the class name as owner name.
= Transferring ownership of an object to a class hame.

For example, the sample DBEnvironment contains several tables owned by the class
PurchDB. The table PurchDB.Parts was created with the following statement:

CREATE TABLE PurchDB.Parts
(PartNumber CHAR(16) NOT NULL,
PartName CHAR(30),

SalesPrice DECIMAL(10,2))
IN WarehFS;

After creating objects owned by the class, you must grant the specific authorities you wish
users or groups to have. Suppose you have a group PurStaff consisting of DBEUserIDs for
members of the Purchasing department. You could grant authorities to the group as
follows:

GRANT SELECT, UPDATE ON PurchDB.Parts to PurStaff;

Differences between Groups and Classes

You create a group explicitly by using the CREATE GROUBtatement. You create a class
implicitly by creating objects that use the class name as the owner name.

A group has members, all of which have the privileges the group has. For example, if a user
is a member of the group Sales, then that user can drop or alter objects owned by Sales.

A class does not have members, nor can it use any authorities, although you can grant
them if you wish. This can be useful in a scenario in which you want to preassign
ownership of objects to a DBEUserID which has no logon ID on your system.

80 Chapter2

Using ALLBASE/SQL
Manipulating Data

Manipulating Data

Most users of ALLBASE/SQL are primarily interested in manipulating data in
DBEnvironments. Data manipulation consists of following operations:

= Selecting data

= Inserting data into tables
= Updating rows in tables
= Deleting rows

In order to select data, you create queries, which are fully described in the next chapter.
The other types of data manipulation are presented briefly in the next sections. For
complete information, refer to the descriptions of the SELECT, INSERT, UPDATE , and
DELETEstatements in the “SQL Statements” chapter.

Inserting Data
You use the INSERT statement to add rows to a table, specifying the following information:

1. Atable or view name

2. Column names

3. Column values

The following example contains numbers that refer to the items in the list above:

1

I
INSERT INTO PurchDB.Parts

(PartNumber, PartName) -2
VALUES ('9999-AJ','Interface Engine’)

I
3

Only a single table name or view name can be specified. Only certain views can be used to
insert rows into a base table, as described under “Updatability of Queries” in Chapter 3,
“SQL Queries.”

The column names can be omitted if you are going to put a value into every column in the
row. Otherwise, you name the columns you want to assign values to, enclosing the column
names in parentheses and separating multiple column names with commas. Columns not
named are assigned their default values. If no default exists for a column, it is assigned the
null value. If you define a column as NOT NULLwhen you create a table, then you must
assign a non-null value or specify a default value to the column.

The column values are also enclosed in parentheses and separated by commas. Character
data is delimited with single quotation marks. The value NULLcan be entered into columns
that permit null values.

Chapter 2 81

Using ALLBASE/SQL
Manipulating Data

You can copy rows from one or more tables or views into another table by using a form of
the INSERT statement (often called a type 2 Insert) in which you specify the following
items:

1. A table or view name
2. A SELECTstatement
Note that the numbers in the next example refer to the items listed above:

1

I
INSERT INTO PurchDB.Drives

SELECT * FROM PurchDB.Parts -- 2
WHERE PartName LIKE 'Drives%'

The rows in the query result produced by the SELECTstatement are inserted into
PurchDB.Drives. The SELECTstatement cannot contain an ORDER BYclause and cannot
name the target table in the FROMlause. The target table must exist prior to an INSERT
operation.

Updating Data

You change data in one of more columns by using the UPDATEstatement. These are the
components of the UPDATEstatement:

1. The name of a table or a view
2. A SETclause
3. A WHERElause

The following example illustrates the UPDATEstatement and its components; the reference
numbers identify the components listed above.

UPDATE PurchDB.Parts --1
SET SalesPrice = 15.95 --2
WHERE PartNumber ='9999-AJ" --3

Only a single table name or view name can be specified. Only certain views can be used to
update, as described under “Updatability of Queries” in Chapter 3, “SQL Queries.” For
each column to be updated, you specify a column name and value in the SETclause. NULL is
a valid value for columns that can contain null values. Unless you specify a WHER clause,
all rows of the named table or view are updated. A search condition in this clause
describes which rows to update. The search condition in the previous example specifies
that the row(s) to be updated must name PartNumber 9999-AJ.

Deleting Data

You use the DELETEstatement to delete entire rows. This statement has two components
as follows:

1. A table or view name
2. A WHERElause

82 Chapter2

Using ALLBASE/SQL
Managing Transactions

The following example illustrates the DELETEstatement and its two components:

DELETE FROM PurchDB.Parts --1
WHERE PartNumber = '9999-AJ' --2

Only a single table name or view name can be specified. Only certain views can be used to
delete rows, as described under “Updatability of Queries” in Chapter 3, “SQL Queries.”

The WHEREIlause is optional. You omit it if you want to delete all the rows in a table or
view. Otherwise, you use it to specify a search condition for which row(s) to delete.

Managing Transactions

A transaction is a logical unit of work that changes the database. All actions within this
logical unit of work must succeed, or all of them must fail. When a transaction completes
successfully, it is said to commit. Should a transaction fail, none of the changes it
generates are recorded in the database, and the transaction aborts.

A transaction is bounded by the BEGIN WORKand COMMIT WORKtatements. One or more
SQL statements, and any number of programming language statements can be contained
within a transaction. An example of a simple transaction is as follows:

BEGIN WORK

UPDATE PurchDB.Parts
SET PartName = 'Defibrillator’
WHERE PartNumber = '1152-DE-95683'

COMMIT WORK

The SQL statements used in transaction management are as follows:

BEGIN WORK Starts the transaction.

COMMIT WORK Terminates a successful transaction.

ROLLBACK WORK Undoes any changes made by the current transaction.
SAVEPOINT Permits partial rollback of a transaction.

Objectives of Transaction Management

The objectives of transaction management are related to one another. Data integrity is
enforced by proper transaction management, but must be balanced by the need for high
concurrency. The use of transactions facilitates the recovery of data after a crash,
maintaining data integrity.

Ensuring Logical Data Integrity

The data in the database must be accurate and consistent. For example, adding a part to
the warehouse inventory entails inserting a row into three tables: PurchDB.Parts,
PurchDB.SupplyPrice, and PurchDB.Inventory. All three inserts must succeed, or else the

Chapter 2 83

Using ALLBASE/SQL
Managing Transactions

database is left in an inconsistent state. To enforce data integrity, the three inserts are
contained in a single transaction. If any one insert fails, then the entire transaction fails
and none of the other inserts takes effect. The following example shows how this
transaction might be coded:

BEGIN WORK
INSERT INTO PurchDB.Parts ...
If the insert into PurchDB.Parts fails then
ROLLBACK
else
INSERT INTO PurchDB.SupplyPrice ...
If the insert into PurchDB.SupplyPrice fails then
ROLLBACK
else
INSERT INTO PurchDB.Inventory ...
If the insert into PurchDB.Inventory fails then
ROLLBACK
else
COMMIT WORK
endif
endif
endif

Maximizing Concurrency

Concurrency is the degree to which data can be accessed simultaneously by multiple users.
For example, an application that allows one hundred users to access a table
simultaneously has higher concurrency, and therefore better performance, than an
application that allows only one user at a time to access the table. Locking regulates the
simultaneous access of data. For example, if one user updates a row, the row is locked and
other users cannot access the row until the first user is finished. Locking the row enforces
data integrity, but reduces concurrency because other users are forced to wait. The
isolation level specified in a BEGIN WORKstatement affects the duration and types of locks
held within a transaction. Isolation levels are fully discussed in Chapter 5, “Concurrency
Control through Locks and Isolation Levels.” Well-managed transactions balance the
conflicting requirements of minimal lock contention and maximum concurrency.

Facilitating Recovery

When a soft crash occurs, incomplete transactions are automatically rolled back when the
DBEnvironment is restarted. If archive logging is in effect when a hard crash occurs,
committed transactions are applied to the database during rollforward recovery. In both
cases, only those transactions that were uncommitted when the crash occurred need to be
redone.

84 Chapter2

Using ALLBASE/SQL
Managing Transactions

Starting Transactions

A transaction is initiated with either an implicit or explicit BEGIN WORKstatement. An
implicit BEGIN WORkstatement is issued by ALLBASE/SQL when any SQL statement is
executed, except for the following:

ASSIGN BEGIN ARCHIVE BEGIN DECLARE SECTION
BEGIN WORK CHECKPOINT COMMIT ARCHIVE
COMMIT WORK CONNECT DECLARE VARIABLE
DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING END DECLARE SECTION
GOTO IF INCLUDE

PRINT RAISE ERROR RELEASE

RESET RETURN ROLLBACK TO SAVEPOINT
ROLLBACK WORK SET SESSION EX SET TIMEOUT

SET TRANSACTION START DBE STOP DBE
SQLEXPLAIN TERMINATE USER WHENEVER

WHILE

Explicit BEGIN WORKstatements are recommended, for the following reasons:

= Explicit BEGIN WORKstatements make your code easier to read.

= You must use an explicit BEGIN WORKtatement to specify a non-default isolation level
or transaction priority.

= You might unintentionally lock out other users by the default isolation level of an
implicit BEGIN WORK

Since nested transactions are not allowed, an error is generated if a session with an active
transaction issues a BEGIN WORKtatement. The first transaction must end before another
transaction can begin.

Ending Transactions

A transaction ends when either a COMMIT WORKr a ROLLBACK WORSgtatement is issued.
All locks held by the session are released when the transaction ends, except those held by a
kept cursor.

Using COMMIT WORK

Issue the COMMIT WORKtatement when the transaction is successful and you want the
changes made permanent. Unlike the BEGIN WORKand ROLLBACK WOR&tatements, the
COMMIT WOREKtatement is never issued automatically by ALLBASE/SQL. You must issue
the COMMIT WOREXxplicitly for each transaction. The COMMIT WORKtatement causes the
contents of the log buffer to be written to a log file. If rollforward recovery is needed at a
later time, the transactions recorded in the log file are applied to the database.

Chapter 2 85

Using ALLBASE/SQL
Managing Transactions

Using ROLLBACK WORK

The ROLLBACK WOR#&tatement ends the transaction and undoes all data modifications
made since the BEGIN WORKstatement, unless it references a savepoint. (See the
discussion of savepoints in the following section.) The ROLLBACK WORitatement is issued
automatically by ALLBASE/SQL under the following conditions:

= A non-archive log file becomes full.
< A RELEASEstatement is issued before the end of the transaction.

= A system failure occurs. When the system is up again, and a START DBEstatement is
issued, incomplete transactions are rolled back.

< ALLBASE/SQL chooses the transaction as the victim when breaking a deadlock.
= The session is terminated by a TERMINATE USERcommand.

The ROLLBACK WORgtatement should be issued explicitly to maintain data integrity. You
may want to issue a ROLLBACK WORKi an application program when any of the following
situations arise:

= The transaction contains more than one SQL statement and one of the statements
generates an error. For example, if your transaction contains three INSERT statements,
and the second INSERT fails, you should rollback the entire transaction.

< An INSERT, UPDATE, or DELETEstatement that affects multiple rows generates an
error after some of the rows have been modified. You should rollback the transaction if
the partial changes will leave your database in an inconsistent state.

= The end user provides input indicating that he or she does not want to commit the
transaction.

Using SAVEPOINT

The SAVEPOINTstatement allows you to rollback part of a transaction. Multiple savepoints
are permitted within a transaction anywhere between the BEGIN WORKand COMMIT WORK
statements. Each SAVEPOINTstatement places a unique marker, called a savepoint
number, within the transaction. When a subsequent ROLLBACKeferences the savepoint
number, only those database changes made after the savepoint are rolled back. Rolling
back to a savepoint does not end the transaction, but it does release locks obtained after
the savepoint was issued.

In the following ISQL example, the number identifying the savepoint marker is 6. The
update performed after the SAVEPOINTstatement is undone by the ROLLBACKtatement,
but any database changes made before savepoint 6 are unaffected.

isql=> SAVEPOINT;
Savepoint number is 6. Use this number to do ROLLBACK WOR0 6.

isql=> UPDATE PurchDBParts
> SET SalesPrice = 244.00
> WHERE PartNumber = '1243-MU-01";

isql=> ROLLBACK WORK to 6;

86 Chapter2

Using ALLBASE/SQL
Managing Transactions

After a rollback to a savepoint has been executed, use the COMMIT WORifatement to make
the changes that were not rolled back permanent. If you want to rollback the entire
transaction, issue the ROLLBACKstatement without a savepoint.

Savepoints are suitable for transactions that perform several operations, any of which may
need to be rolled back. In the following example, a travel agency is booking tour
reservations for 15 people. When the first attempt to make a hotel reservation fails, only
that part of the transaction is rolled back. The car reservations are unaffected by the roll
back because they were made prior to the savepoint.

BEGIN WORK
Make 15 car reservations.
SAVEPOINT

Savepoint number is 1. An attempt to make 15 hotel reservations fails because the
designated hotel is full.

ROLLBACK WORK TO 1
SAVEPOINT

Savepoint number is 2. Make 15 hotel reservations at another hotel.
COMMIT WORK

Scoping of Transaction and Session Attributes

A set of attributes is associated with each transaction and user session. This section
discusses the statements used to specify the following transaction and session attributes:

= priority

= isolation level

= label

< fill option

= constraint checking mode
= DML atomicity level

Each attribute can be specified in one or more of the statements listed in Table 2-1. You
can issue such statements at any point in an application or ISQL session (with the
exception of BEGIN WORK/hich cannot be issued within a transaction). However they may
not take effect immediately, and the duration of their effect differs as described in the
following paragraphs. Chapter 10, “SQL Statements A - D,” and Chapters 11 and 12
contains complete syntax for each statement.

When beginning a transaction, attributes specified in a BEGIN WORkKstatement take effect
immediately and remain in effect until the transaction ends, unless reset by a SET
TRANSACTION, SET CONSTRAINTS or SET DML ATOMICITY statement within the
transaction.

Within a transaction, the attributes specified in a SET TRANSACTION, SET CONSTRAINTS,
or SET DML ATOMICITY statement take effect immediately and remain in effect until the
transaction ends, unless subsequently reset by such a statement. A SET SESSION

Chapter 2 87

Using ALLBASE/SQL
Managing Transactions

statement issued within a transaction has no effect on the present transaction, instead it
takes effect for the next transaction and remains in effect for the duration of the session,
unless reset by a subsequent BEGIN WORKSET TRANSACTION, SET CONSTRAINTS, SET
DML ATOMICITY, or SET SESSION statement.

Outside of a transaction, the attributes specified in a SET TRANSACTIONor SET SESSION
statement take effect for the next transaction, unless subsequently reset by such a
statement or by a BEGIN WORKtatement. The SET TRANSACTION, SET CONSTRAINT&nd
SET DML ATOMICITYtatements remain in effect for the duration of the transaction, unless
subsequently reset. The SET SESSION statement remains in effect for the duration of the
session, unless subsequently reset.

Table 2-1. shows these statements, the attributes associated with each, when each
statement goes into effect after being issued and the scope of each statement's attributes if
not reset by a subsequent statement:

Table 2-1. Transaction Attribute Scope

Statement Attributes When Effective | Duration of Begins a
Attribute Transaction if
Setting None Already
Begun
SET SESSION?@ | isolation level for the next until the no
priority transaction session ends
label
constraint checking
mode
DML atomicity level
fill option
SET isolation level for the next or | until the no
TRANSACTION priority current transaction
label transaction ends
constraint checking
mode
DML atomicity level
SET constraint checking for the current | until the yes
CONSTRAINTS mode transaction transaction
ends
SET DML DML atomicity level for the current | until the yes
ATOMICITY transaction transaction
ends
BEGIN WORK isolation level when the until the yes
priority transaction transaction
label begins ends
fill option

a. Note that SET SESSION issued within a transaction is not savepoint sensitive.

For example, you might write an application containing several transactions. Each
transaction contains one or more SELECTstatements. You want to ensure that all data

88 Chapter2

Using ALLBASE/SQL
Managing Transactions

selected has been committed to the database. You know that the default isolation level for
a session is RR, but RR does not provide the concurrency you need. At the beginning of the
session, you set the isolation level to RC (read committed) for all transactions in the
session, as follows:

SET SESSION ISOLATION LEVEL RC

Note that each transaction starts implicitly. In this example, there is no need for any
BEGIN WORKstatements. However, you might choose to include BEGIN WORKstatements to
make your code more readable or to set a different isolation level for a particular
transaction.

SELECT * FROM PurchDB.Orderltems
WHERE VendPartNumber = '2310"
COMMIT WORK

SELECT * FROM PurchDB.Vendors
WHERE VendorNumber = 1234
COMMIT WORK

SELECT * FROM PurchDB.SupplyPrice
WHERE VendorNumber = 1234 AND VendPartNumber = '2310'
COMMIT WORK

For more information on isolation levels, refer to Chapter 5, “Concurrency Control
through Locks and Isolation Levels,” in this manual.

Transaction Limits and Timeouts

The maximum number of concurrent transactions is determined by the MaxTransactions
parameter of the DBECon file. Use either the START DBEtatement or the SQLUtI ALTDBE
command to set MaxTransactions . The SQLUtl SHOWDBE command displays the current
setting of MaxTransactions in the DBECon file. If a session attempts to start a
transaction, but the maximum number of concurrent transactions has already been
reached, the new transaction is placed in the throttled wait queue. The transaction must
wait until it reaches the head of the queue and one of the active transactions terminates.
The throttled wait queue is serviced on a first in, first out basis. The transaction priority
parameter of the BEGIN WORKtatement determines which transaction is aborted to break
a deadlock, not the transaction's position on the throttled wait queue.

If the transaction is still waiting when its timeout limit is reached, the transaction is

Chapter 2 89

Using ALLBASE/SQL
Managing Transactions

aborted. The timeout action can also be set to abort the command being processed instead
of the entire transaction. Set the timeout limit for the DBEnvironment with the STARTDBE
statement or the SQLUtI ALTDBE command. To specify a timeout limit for a particular
session, use the SET USER TIMEOUT statement. Both SET SESSION and SET TRANSACTION
have parameters to specify which action the system should take when a timer expires. The
setting of timeout values is also incorporated into these commands. The SQLUtlI SHOWDBE
command displays the current, default, and maximum values of the timeout parameter in
the DBECon file.

Monitoring Transactions

The SYSTEM.TRANSACTIONMseudo-table contains the user identifier, connection-id, session
identifier, transaction identifier, transaction priority, and isolation level of every current
transaction. To view this information with ISQL, issue the following statement:

isql=> SELECT * FROM System.Transaction;

To identify the transactions on the throttle wait queue, query the SYSTEM.CALL
pseudo-table as follows:

isql=> SELECT * FROM System.Call WHERE Status = 'Throttle wait';

For more information on transaction activity, consult Load subsystem in SQLMONthe
ALLBASE/SQL on-line monitoring tool. SQLMONrovides the following transaction
information:

= total number of active and waiting transactions in the DBEnvironment

« total number of BEGIN WORKCOMMIT WORKNd ROLLBACK WORitatements executed
in the DBEnvironment

= maximum number of transactions configured
= which sessions have active or waiting transactions

« which sessions have executed BEGIN WORK, COMMIT WORKand ROLLBACK WORK
statements

See the ALLBASE/SQL Performance and Monitoring Guidelines for more information on
SQLMON

Tips on Transaction Management

Keep transactions short. As the length of a transaction increases, so does the chance that
other transactions are forced to wait for the locks it holds. In addition to increasing
concurrency, short transactions minimize the amount of data that must be re-entered after
a system crash. When archive logging is in effect, changes made to the database are
written to the log file whenever a COMMIT WORK issued. If the system crashes during a
long transaction, a large number of uncommitted changes will be rolled back.

To shorten a transaction, place program statements not essential to the logical unit of
work outside of the transaction. Retrieve all user input before the start of a transaction, to
ensure that locks are not held if the user walks away from the terminal. Because terminal
writes can also be time consuming, they should not be performed within a transaction.

90 Chapter2

Using ALLBASE/SQL
Auditing DBEnvironments

Careful use of savepoints can decrease the amount of time locks are held, and reduces the
need to resubmit transactions because part of a transaction was unsuccessful.

Set the maximum number of transactions (MaxTransactions) and timeout limit
parameters correctly. If MaxTransactions is too low, transactions will wait for no reason.
However, the overall throughput of the DBEnvironment may be reduced if
MaxTransactions is too high. If the timeout limit is too low, transactions will abort, but if
set too high, the session might wait indefinitely for a transaction slot.

Auditing DBEnvironments

Audit DBEnvironments are created with SQL statements that allow you to generate audit
log records. Audit log records contain information that allows you to group log records for
analysis with SQLAudit . The database operations you might analyze are UPDATE, INSERT,
or DELETEoperations, perhaps for security reasons.

Audit log records contain identifiers such as table names in contrast to non-audit database
log records which contain identifiers such as page references and data. Audit log records
are generated in addition to non-audit database log records.

A unique audit name specifies an audit DBEnvironment. Audit elements indicate which
ALLBASE/SQL statement types generate audit log records. By default, statements that
change data generate audit log records (INSERT, UPDATE, and DELETEstatements); this
default can also be specified explicitly by the DATA AUDIT ELEMENTSparameter. You can
also optionally specify that log comment, data definition, authorization, or section
statements (creation and deletion of sections) generate audit log records.

The Audit Tool, SQLAudit , is introduced below. SQLAudit is fully described in the
ALLBASE/SQL Database Administration Guide. The ALLBASE/SQL Database
Administration Guide describes how to create audit DBEnvironments and how to select
records for audit. Chapter 10, “SQL Statements A - D,” and Chapters 11 and 12 of this
manual contain the detailed syntax to create audit DBEnvironments and partitions.

Partitions in Audit DBEnvironments

Partitions are divisions of DBEnvironments that contain one or more tables processed by
SQLAudit as a unit. Partitions are specified in CREATE PARTITION, CREATE TABLE , and
ALTER TABLE statements. In addition, default partition and comment partition numbers
can optionally be specified.

Chapter 2 91

Using ALLBASE/SQL
Using Wrapper DBEnvironments

Using Wrapper DBEnvironments

A wrapper DBEnvironment is a DBEnvironment created to wrap around the log files
orphaned after a hard crash of a DBEnvironment. Wrapping log files means associating
the files with a wrapper DBEnvironment. After a DBEnvironment becomes inaccessible,
its log files are not associated with any DBEnvironment. These orphaned log files are then
also inaccessible.

Wrapper DBEnvironments are usually used with inaccessible audit DBEnvironments,
but they can be used to retrieve the log files of any inaccessible DBEnvironment.

After you wrap the log files, you can then try to extract audit information from the audit
log records in the wrapped log files with SQLAudit by partition number.

Access to wrapped log files avoids having a gap in the ongoing record of audit information.
The use of archive logging facilitates wrapper DBEnvironment use, but nonarchive logging
does not prevent use of wrapper DBEnvironments.

To wrap log files, the orphaned log files marked Usable are first displayed and selected.
Then, it must be ensured that each log file is inactive. A DBEnvironment is then created
with the START DBE NEWstatement and the new DBEnvironment is converted to a
wrapper DBEnvironment with the SQLUtI WRAPDBE command.

NOTE Recovery of the database itself is a separate operation. It is recommended
that the log files be wrapped before recovery operations.

For detailed information on database recovery and wrapper DBEnvironments, refer to the
ALLBASE/SQL Database Administration Guide.

Using SQLAudit

SQLAudit is an ALLBASE/SQL utility program that can be used in conjunction with audit
DBEnvironments to view the changes that have been made to the DBEnvironment. You
use SQLAudit to audit only committed transactions. For security reasons, you need DBA
authorization to use SQLAudit.

Refer to the “DBA Tasks and Tools” chapter of the ALLBASE/SQL Database
Administration Guide for a full description of SQLAudit.

92 Chapter2

Using ALLBASE/SQL
Application Programming

Application Programming

To use SQL statements in an application program, you embed the statements in source
code, then use the ALLBASE/SQL preprocessor that supports the source language.

Preprocessor
The ALLBASE/SQL preprocessor performs the following tasks:

= Checks the syntax of SQL statements embedded in an application program.

= Translates embedded SQL statements into compilable C, FORTRAN, COBOL, or Pascal
constructs that call ALLBASE/SQL external procedures at run time.

e Stores a module in the DBEnvironment.

A module contains a group of sections. A section consists of ALLBASE/SQL instructions
for executing an SQL statement at run time. ALLBASE/SQL ensures that any objects
referenced in the section exist and that current authorization criteria are satisfied. The
optimal data access path is determined at preprocessing time rather than at run time
which enhances runtime performance.

When an application program becomes obsolete, you can use the DROP MODULEtatement
to delete its module from the DBEnvironment and thus ensure the program can no longer
operate on the databases in the DBEnvironment. For example:

DROP MODULE MyProgram

ALLBASE/SQL has the following statements that create modules when the information
for an SQL statement cannot be completely defined in advance. These dynamic
preprocessing statements are used in both programmatic and interactive environments:

PREPARE
EXECUTE
EXECUTE IMMEDIATE

In addition to the above statements, ALLBASE/SQL includes the following statements
which cannot be used interactively:

BEGIN DECLARE SECTION CLOSE CURSOR DECLARE CURSOR

DELETE WHERE CURRENT DESCRIBE END DECLARE SECTION
FETCH INCLUDE OPEN

REFETCH SQLEXPLAIN UPDATE WHERE CURRENT
WHENEVER

Preprocessed programs receive messages from ALLBASE/SQL through the SQL
Communication Area, called the SQLCA. Information is sent to ALLBASE/SQL through
the SQL Description Area, called the SQLDA. These structures and the above
statements are explained in detail along with examples in the ALLBASE/SQL application
programming guides.

Chapter 2 93

Using ALLBASE/SQL
Application Programming

Authorization

ALLBASE/SQL authorization governs who can preprocess and execute a program that
accesses a DBEnvironment as described here:

= To preprocess a program, you need DBAor CONNECauthority and the authorities
needed to execute all activities against the database that are executed by the program.
The module stored for the program is owned by the login name of the individual who
invokes the preprocessor. A DBA however, can associate the module with a different
owner at preprocessing time. Other users can assign a group name as the module owner
if they belong to the group.

< To run a program, you need either RUNauthority or OWNERuthority for the stored
module. You also need the authority to start the DBE session as it is started in the
program.

DBENnvironment Changes

Certain DBEnvironment changes can affect preprocessed programs. For example, one of
the tables used by the program can be dropped from a database, or the authorities held by
the module's owner can change. When you run a preprocessed program, ALLBASE/SQL
automatically determines whether changes such as these have occurred. If any have,
ALLBASE/SQL attempts to revalidate the affected sections. The only SQL statements that
are executed at run time are those that operate on existing objects and those which the
module's owner is authorized to execute.

Some changes do not affect successful execution of the program, but others can. If, for
example, the owner of the program had SELECTand UPDATEauthority for a table updated
by the program and the UPDATEauthority is later revoked, the program is no longer able to
update that table. But if SELECTauthority is revoked instead, the UPDATEstatements for
the table can still execute successfully.

Host Variables

Data is passed back and forth between a program and ALLBASE/SQL in host variables.
SQL statements use both input and output host variables. Input host variables are used to
transfer data into ALLBASE/SQL from the application. Output host variables move
information from ALLBASE/SQL into the application.

An indicator variable is a special type of host variable. In the SELECT, FETCH, UPDATE,
UPDATE WHERE CURRENANnd INSERT statements, the indicator variable is an input host
variable whose value depends on whether an associated host variable contains a null
value. If the indicator variable contains a negative number, then the associated host
variable is null. If it contains a zero or positive number, the value in the host variable is
not null.

In the SELECTand FETCHstatements the indicator variable can be an output host variable
and indicate that a value in the associated host variable is null or a column value is
truncated. Host variable names are prefixed with a colon (:) when embedded in an SQL
statement.

:PartNumber
:PartName

94 Chapter2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

:PartNamelnd

When host variables are used in an application outside of an embedded SQL statement,
the host variable name is not prefixed by a colon.

Multiple-Row Manipulations

Programmatic SELECT® and INSERTs can operate only on a row at a time unless you use a
cursor or the BULKoption of the SELECT, INSERT , or FETCHstatement.

A cursor is a pointer that you advance one row at a time. The BULKoption is used to
manipulate multiple rows with a single execution of the SELECT, INSERT , or FETCH
statements. When you do bulk manipulations, input and output host variables must be
arrays.

Using Multiple Connections and Transactions with
Timeouts

A maximum of 32 simultaneous database environment connections can be established by
means of an application program or ISQL. When accessing more than one
DBEnvironment, there is no need to release one before connecting to another. Performance

is greatly improved using this method rather than connecting to and releasing each
DBEnvironment sequentially.

This multi-connect functionality is available in either of two modes. Single-transaction
mode (the default) is standards compliant and allows one transaction at a time to be active
across the currently connected set of DBEnvironments. Multi-transaction mode can be set
to allow multiple, simultaneous transactions across the currently connected set of
DBEnvironments.

Both local and remote DBENvironments are accessible via multi-connect functionality.
Remote connections require the installation of ALLBASE/NET on the client and on each
related server.

The following sections discuss how to use multi-connect features:

= Connecting to DBEnvironments

e Setting the Current Connection

e Setting Timeout Values

= Setting the Transaction Mode

= Disconnecting from DBEnvironments

The sample DBEnvironment, PartsDBE, and three hypothetical DBEnvironments,
SalesDBE, AccountingDBE, and BankDBE are used to provide examples in this section.

The ALLBASE/SQL Advanced Application Programming Guide contains further
application programming information regarding multi-connect functionality.)

Chapter 2 95

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

Connecting to DBEnvironments

With multi-connect functionality, you can specify a connection name each time you connect
to a DBEnvironment by means of one of the following statements:

= CONNECT

= START DBE

= START DBE NEW

= START DBE NEWLOG

For example, in ISQL, the following CONNECS$tatement establishes a connection to
PartsDBE and assigns a connection name for this connection:

isql=> CONNECT TO 'PartsDBE' AS 'Partsl’;

In an application program, you can use either a string or, as in the following example, a
host variable:

CONNECT TO 'PartsDBE' AS :Parts1

The connection name is used when setting the current connection, as described in the next
section. It must be unique within an application and be assigned by means of either a
character host variable or a string literal.

Which of the above statements you choose for assigning the connection name depends on
the needs of your application. See Chapter 10, “SQL Statements A - D,” and Chapters 11
and 12 for the complete syntax of each statement.

Setting the Current Connection

Within an application or ISQL, the current connection is set by the most recent statement
that connects to or sets the connection to a DBEnvironment. In order for a multi-connect
transaction to execute, the current connection must be set to the DBEnvironment in which
the transaction will execute.

To change the current connection within a set of connected DBEnvironments, use a SET
CONNECTIONtatement to specify the applicable connection name, as in the following
example for ISQL:

isql=> SET CONNECTION 'Partsl’;

In an application program, you can use either a string literal or, as in the following
example, a host variable:

SET CONNECTION :Partsl

Remember, any SQL statement issued applies to the current connection.

NOTE Following a RELEASEor DISCONNECT CURRENdommand, there is no current
connection until a SET CONNECTIONommand is used to set the current
connection to another existing connection, or a new connection is established
by using the CONNECT, START DBE, START DBE NEWSTART DBE NEW LOG
commands.

96 Chapter2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

Setting Timeout Values

Be sure to set a timeout value when using multiple connections to avoid undetected
deadlocks and undetected wait conditions. An undetected deadlock is possible when
multi-transaction mode is used in conjunction with more than one DBEnvironment with
multiple applications accessing the same DBEnvironments at the same time. An
undetected wait condition is possible when multi-transaction mode is used with multiple
connections to the same DBENvironment within a single ISQL session or application.

A timeout value can be set with any of the following:

= START DBE

= START DBE NEW

= START DBE NEWLOG

= SQLULtI ALTDBE

= SET USER TIMEOUT

= SET SESSION USER TIMEOUT

= SET TRANSACTION USER TIMEOUT

The first four methods provide a means of setting timeout values at the DBEnvironment
level. The SET USER TIMEOUT statement provides a way of setting transaction, session, or
application specific timeout values. The range of possible values is zero (no wait) to the
specified maximum in the DBECon file for a given DBEnvironment.

For a multi-connect application operating in multi-transaction mode, it is essential to
use the SET USER TIMEOUStatement to avoid an undetectable deadlock or wait condition.
For information regarding transaction modes, see the following section, “Setting the
Transaction Mode.”

Chapter 2 97

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

The following general example shows how to set user timeout values:

1. Put multi-transaction mode in effect.
SET MULTITRANSACTION ON

2. Connect to the PartsDBE DBEnNvironment.
CONNECT TO 'PartsDBE' AS 'Parts1’

3. Set the timeout value for the PartsDBE connection to an appropriate number of
seconds. In this case, the application will wait five minutes for system resources when
accessing the PartsDBE DBEnvironment.

SET USER TIMEOUT 300 SECONDS
4. Connect to the SalesDBE DBEnvironment.
CONNECT TO 'SalesDBE' AS 'Sales1'

5. Set the timeout value for the SalesDBE connection to an appropriate number of
seconds. In this case, your application will wait 30 seconds for system resources when
accessing the SalesDBE DBEnvironment.

SET USER TIMEOUT 30 SECONDS
6. Set the current connection to Partsl.
SET CONNECTION 'Parts1’

7. Begin a transaction for PartsDBE. If this transaction waits for system resources more
than five minutes, it will time out and return an error message.

BEGIN WORK RC
SELECT PartNumber, PartName, SalesPrice

FROM PurchDB.Parts
WHERE PartNumber BETWEEN 20000 AND 21000

If DBERR 2825 is returned, the transaction has timed out, and your application must
take appropriate action.

8. Set the current connection to Salesl.
SET CONNECTION 'Sales1’

9. Begin a transaction for SalesDBE. If this transaction waits for system resources more
than 30 seconds, it will timeout and return an error message to the application.

BEGIN WORK RC

BULK SELECT PartNumber, Sales
FROM Owner.Sales
WHERE PartNumber ='1123-P-20"
AND SaleDate BETWEEN '1991-01-01' AND '1991-06-30'

98 Chapter2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

If DBERR 2825 is returned, the transaction has timed out, and you must take
appropriate action.

Further discussion of timeout functionality is provided in the ALLBASE/SQL Advanced
Application Programming Guide.

Setting the Transaction Mode

The SET MULTITRANSACTIONstatement allows you to switch between single-transaction
mode and multi-transaction mode. Single-transaction mode implies sequential execution of
transactions across a set of DBEnvironment connections. When your application requires
multiple, simultaneous transactions, you must choose multi-transaction mode.

WARNING When using multi-transaction mode, be sure the current timeout
value for all connections is set to a value other than NONE (infinity).
This eliminates the possibility of an infinite wait if an undetectable
deadlock or wait condition occurs.

Using Single-Transaction Mode

If your application contains queries for two or more databases and you want to
sequentially execute a single transaction against each database, you can use
single-transaction mode. This mode is the default and is standards compliant. The
following example illustrates the use of single-transaction mode in ISQL.:

1. Put single-transaction mode in effect.
isql=> SET MULTITRANSACTION OFF;
2. Connect to two DBEnvironments.

isql=> CONNECT TO 'PartsDBE' AS 'Partsl’;
isql=> CONNECT TO 'SalesDBE' AS 'Sales1";

3. Set the current connection to Partsl.
isql=> SET CONNECTION 'Parts1’;
4. Begin a transaction for PartsDBE.
isqgl=> BEGIN WORK RC;
isql=> SELECT PartNumber, PartName, SalesPrice

> FROM PurchDB.Parts
> WHERE PartNumber BETWEEN 20000 AND 21000;

Chapter 2 99

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

5. End the PartsDBE transaction.
isql=> COMMIT WORK,;
6. Set the current connection to Salesl.
isql=> SET CONNECTION 'Sales1";
7. Begin a transaction for SalesDBE.
isql=> BEGIN WORK RC;
isql=> SELECT PartNumber, Sales

> FROM Owner.Sales
> WHERE PartNumber ='1123-P-20";

8. End the SalesDBE transaction.
isql=> COMMIT WORK;

Using Multi-Transaction Mode with Multiple DBEnvironments

The SET MULTITRANSACTION ONstatement enables multiple implied or explicit BEGIN
WORKtatements across the set of currently connected database environments, with a
maximum of one active transaction per database connection. While in multi-transaction
mode, an application can hold resources in more than one DBEnvironment at a time.

Suppose your application is querying one DBEnvironment and inserting the query result
into another DBENvironment. You decide to use bulk processing with multi-transaction
functionality. The DBEnvironments could be on different systems (using ALLBASE/NET)
or on the same system, as in the following example using host variables:

1. Put multi-transaction mode in effect.
SET MULTITRANSACTION ON
DECLARE PartsCursor
CURSOR FOR
SELECT OrderNumber, VendorNumber, OrderDate

FROM PurchDB.Orders
WHERE OrderDate > Yesterday

2. Connect to two DBENvironments and set an appropriate timeout value for each.

CONNECT TO 'PartsDBE' AS 'Parts1'
SET USER TIMEOUT 180 SECONDS

CONNECT TO 'Part2DBE' AS 'Parts2'
SET USER TIMEOUT 30 SECONDS

3. Set the current connection to Partsl.
SET CONNECTION 'Parts1'

100 Chapter2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

4. Begin a transaction for PartsDBE.
BEGIN WORK RC
OPEN PartsCursor
BULK FETCH PartsCursor
INTO :PartsArray, :Startindex, :NumberOfRows
5. If there are qualifying rows, set the current connection to Parts2.
SET CONNECTION 'Parts2’
6. Begin a transaction for Parts2DBE.
BEGIN WORK RC
At this point, there are two active transactions.

BULK INSERT
INTO PurchDB2.Orders2
VALUES (:PartsArray, :Startindex, :NumberOfRows)

7. Test the sqglcode field of the sqlca. If it equals -2825, a timeout has occurred, and the
transaction was rolled back. Take appropriate action.

8. End the transaction.
COMMIT WORK
There is now one open transaction holding resources in PartsDBE.
9. Set the current connection to Partsl.
SET CONNECTION 'Parts1'

10.1f there are more rows to fetch, loop back to execute the FETCHstatement again.
Otherwise, end the fetch transaction.

COMMIT WORK

Note that in multi-transaction mode, the SET MULTITRANSACTION OFFstatement is valid
only if no more than one transaction is active. In addition, if an active transaction exists, it
must have been initiated in the current connection, otherwise the SET MULTITRANSACTION
OFFstatement returns an error (DBERR 10087).

Using Multi-Transaction Mode with One DBEnvironment

Even when your application connects to just one DBEnvironment, you might require
multiple, simultaneous transactions to be active. This technique involves connecting to one
DBEnNvironment multiple times and specifying a unique connection name each time. In
this case, you issue a SET CONNECTIONtatement for the appropriate connection name
before beginning each transaction. Note that just one transaction can be active per
connection.

For example, suppose you want to keep a record of each time access to a particular table is

Chapter 2 101

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

attempted. From a menu, the user chooses to view account information and specifies an
account number. Before giving this information, the application logs the fact that the user
is requesting it. The following pseudocode example illustrates how you might code two
simultaneous transactions, each one accessing BankDBE using host variables:

1. Put multi-transaction mode in effect.
SET MULTITRANSACTION ON
DECLARE BankCursor

CURSOR FOR
SELECT TransactionType,
DollarAmount,
BankNumber

FROM Accounts
WHERE AccountNumber = :AccountNumber

2. Connect two times to BankDBE. Be sure to specify an appropriate timeout value for
each connection.

CONNECT TO 'BankDBE' AS 'Bank2'
SET USER TIMEOUT 30 SECONDS
CONNECT TO 'BankDBE' AS 'Bankl'
SET USER TIMEOUT 30 SECONDS
The user enters an account number.
3. Begin a transaction for the Bankl1 connection.
BEGIN WORK RC

4. Execute the following security audit subroutine:
Set the current connection to Bank2.
SET CONNECTION 'Bank2'
Begin a second transaction for BankDBE.
BEGIN WORK RC

A security audit trail record is written whether or not the query in the first transaction
completes.

INSERT INTO BankSecurityAudit
VALUES (:UserID, :AccountNumber, CURRENT_DATETIME)

Test the sqlcode field of the sqglca. If it equals -2825, a timeout has occurred, and the
transaction was rolled back. Take appropriate action.

End the transaction.
COMMIT WORK

102 Chapter2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

Set the current connection to Bank1.
SET CONNECTION 'Bank1'

5. Return from the subroutine to complete the open transaction:

OPEN BankCursor

BULK FETCH BankCursor
INTO :BankArray, :Startindex, :NumberOfRows

Disconnecting from DBEnvironments

The DISCONNECTFtatement provides a means of closing one or all active connections within
an application. An active connection is a connection established within the application that
has not been released, stopped, or disconnected.

Your application might require that all connections be terminated when the application
completes. In some cases, it might be desirable to terminate a specific connection at
another point in the application.

In the following example, three database connections are established, and one is
terminated immediately after a transaction completes:

1. Put multi-transaction mode in effect.
SET MULTITRANSACTION ON

2. Connect three times and set a timeout value for each connection. In this case, the
DBEnvironment names and the connection names are specified as host variables.

CONNECT TO 'PartsDBE' AS 'Parts1’
SET USER TIMEOUT 60 SECONDS

CONNECT TO 'SalesDBE' AS 'Sales1'
SET USER TIMEOUT 60 SECONDS

CONNECT TO 'AccountingDBE' AS 'Accountingl’
SET USER TIMEOUT 60 SECONDS

SET CONNECTION 'Partsl'
3. Begin a transaction for PartsDBE.
BEGIN WORK RC

Chapter 2 103

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts

4. End the transaction that was initiated for the Partsl connection and terminate the
connection.

COMMIT WORK
DISCONNECT 'Parts1'

5. Set the current connection to 'Salesl'.
SET CONNECTION 'Sales1'

6. Begin transaction for SalesDBE.
BEGIN WORK RC

7. Set the current connection to Accountingl.
SET CONNECTION 'Accountingl’

8. Begin transaction for Accountingl.
BEGIN WORK RC

9. End both open transactions and disconnect the two active connections. Note that the
COMMIT WORK statement is issued for the current connection's transaction.

COMMIT WORK

SET CONNECTION 'Salesl'
COMMIT WORK

DISCONNECT ALL

Note that following the execution of a DISCONNECT CURRENStatement, no current
connection exists. To establish a current connection following a DISCONNECT CURRENT
statement, you must either establish a connection or set the connection.

104 Chapter2

Using ALLBASE/SQL
Administering a Database

Administering a Database

Activities that protect and maintain a DBEnvironment and its databases are collectively
referred to as database administration. Several of the SQL statements are used in the
following database administration activities:

= Security management

= Restructuring

= Space management

= Logging

= Recovery

< DBEnvironment management

= DBEnvironment statistics maintenance

Refer to the ALLBASE/SQL Database Administration Guide for full details on these and
other matters of database administration. That manual provides full information on
SQLULtil, which is the primary tool for DBEnvironment reconfiguration and backup.

Understanding the System Catalog
The system catalog is a collection of tables and views that contain data about the following:

= Tables and views in a DBEnvironment

= Any indexes, hash structures, constraints, and rules defined for tables
= DBEFiles and DBEFileSets in the DBEnvironment

= Specific authorities granted to each user

< Programs that can access data in the DBEnvironment

= Current DBEnvironment statistics

= Temporary space for sorts

= Procedures

ALLBASE/SQL uses the system catalog to maintain data integrity and to optimize data
access. The system views are primarily a tool for the DBA. Initially, only the DBA can
access these views. Other users need to be granted SELECT authority by the DBA to
access them. Users without SELECTauthority can retrieve descriptions of database objects
they own from the CATALOGriews. For information on system and catalog views, refer to
chapter “System Catalog” in the ALLBASE/SQL Database Administration Guide.

When a DBEnvironment is first configured, the information in the system catalog
describes the system tables and views themselves. As database objects are defined, their

Chapter 2 105

Using ALLBASE/SQL
Understanding the System Catalog

definitions are stored in the system catalog. As database activities occur, most of the
information in the catalog is updated automatically, so the system catalog provides an
up-to-date source of information on a DBEnvironment.

Immediately following an UPDATE STATISTICSstatement, the views in the system catalog,
summarized in Table 2-2, are a source of up-to-date information on a DBEnvironment and
the structure and use of its databases. Refer to the ALLBASE/SQL Database
Administration Guide for additional information on the system catalog.

Table 2-2. System Views

View Name Purpose

SYSTEM.ACCOUNT Identifies the 1/O usage of current database sessions.

SYSTEM.CALL Identifies current internal calls.

SYSTEM.CHECKDEF Contains the search condition defined for each table check
constraint. Contains the column name for each column check
constraint.

SYSTEM.COLAUTH Identifies users and groups and their column update and
reference authorities.

SYSTEM.COLDEFAULT Describes the default value of each column defined with a
non-NULL default.

SYSTEM.COLUMN Contains the definition of each column in each table and view.

SYSTEM.CONSTRAINT Contains information on integrity constraints.

SYSTEM.CONSTRAINTCOL | Contains information on the columns within unique and
referential constraints.

SYSTEM.CONSTRAINTINDEX Describes each unique and referential constraint index.

SYSTEM.COUNTER Describes the status of internal system counters.

SYSTEM.DBEFILE Describes the characteristics of each DBEFile.

SYSTEM.DBEFILESET Describes the characteristics of each DBEFileset.

SYSTEM.GROUP Describes each authorization group.

SYSTEM.HASH Describes each hash structure.

SYSTEM.IMAGEKEY Describes each Master and Detail Dataset key associated with
TurbolMAGE databases attached to the DBE.

SYSTEM.INDEX Describes each index.

SYSTEM.INSTALLAUTH Identifies users and authorization groups that have been granted

INSTALL authority.
SYSTEM.MODAUTH Identifies users and groups and the programs they can run.

SYSTEM.PARAMDEFAULT Describes the default value of each parameter defined with a
non-NULL default.

SYSTEM.PARAMETER Describes each parameter of each procedure.

106 Chapter2

Table 2-2. System Views

Using ALLBASE/SQL
Understanding the System Catalog

View Name

Purpose

SYSTEM.PARTITION
SYSTEM.PLAN
SYSTEM.PROCAUTH
SYSTEM.PROCEDURE
SYSTEM.PROCEDUREDEF
SYSTEM.PROCRESULT
SYSTEM.RULE
SYSTEM.RULECOLUMN
SYSTEM.RULEDE

SYSTEM.SECTION
SYSTEM.SETOPTINFO
SYSTEM.SPACEAUTH

SYSTEM.SPACEDEFAULT

SYSTEM.SPECAUTH
SYSTEM.TABAUTH

SYSTEM.TABLE

SYSTEM.TEMPSPACE

SYSTEM.TPINDEX

SYSTEM.TRANSACTION
SYSTEM.USER
SYSTEM.VIEWDEF

Contains partition information.

Stores the result of one GENPLANor each session.

Identifies users and groups and the procedures they can execute.
Describes each procedure.

Contains the definition of each procedure.

Describes procedure result columns.

Describes each rule.

Describes columns an update rule checks for.

Contains the referencing, WHEREand EXECUTE PROCEDURE
clause of each rule.

Describes stored modules and views.
Contains SETOPTsettings for optimizing specific stored sections.

Identifies users and groups and what DBEFileSets they can use
when creating tables, or stored sections.

Identifies the default DBEFileSet to use for a new table or stored
section.

Identifies users and groups who have special authorities.

Identifies users and groups and table/view operations they can
perform.

Contains a description of each table and view in the
DBEnvironment, including size, owner, and associated
DBEFileSet.

Defines the TempSpace locations.

Describes third-party indexes used in TurbolMAGE databases
attached to the DBE.

Identifies transactions.
Identifies users currently using the database.

Contains the SELECTstatement that created each view defined in
the system.

Chapter 2

107

Using ALLBASE/SQL
Understanding the System Catalog

108 Chapter2

SQL Queries
3 SQL Queries

This chapter describes SQL queries, through which you access the data in database tables.
The following sections are presented:

e Using the SELECTStatement

e Simple Queries

e Complex Queries

= Using GENPLANo Display the Access Plan
= Updatability of Queries

The other kinds of data manipulation, using the INSERT, UPDATE and DELETEstatements,
were presented in the chapter “Using ALLBASE/SQL.”

Chapter 3 109

SQL Queries
Using the SELECT Statement

Using the SELECT Statement

Use the SELECT statement to compose queries. The SELECTstatement consists of the
following components:

1.

N o o~ wDd

Select list

INTO clause
FROMlause
WHERIEElause
GROUP BYclause
HAVINGclause
ORDER BYclause

The select list and FROMlause are required; all other components of this statement are
optional. The following example does not contain an INTO clause. Note the reference
numbers identifying the above components:

1
I
I
I I

I |
SELECT PartNumber, COUNT(VendorNumber)

FROM PurchDB.SupplyPrice --3
WHERE DeliveryDays < 25 -4
GROUP BY PartNumber --5
HAVING COUNT(VendorNumber) > 2 ---6
ORDER BY PartNumber -7

The result is presented in the form of a table, called a query result. The result table
(shown next) for this example has two columns: part numbers and a count of vendors who
supply each part. The query result has rows only for parts that can be delivered in fewer
than 25 days by more than two suppliers. The rows are ordered in ascending order by
PartNumber.

+
PARTNUMBER |(EXPR)
+

1123-P-01 | 4
1133-P-01 | 3
1243-MU-01 | 3
1323-D-01 | 3
1353-D-01 | 3
1433-M-01 | 3

110 Chapter3

SQL Queries
Using the SELECT Statement

The select list identifies the columns you want in the query result. In the above example,
the (EXPR) column contains the vendor count specified as COUN{VendorNumber) in the
select list. Computations of this kind are called aggregate functions, which are defined
in the “Expressions” chapter. The count function counts rows, in this case rows that satisfy
the conditions set up in the SELECTstatement clauses.

This example contains no INTO clause because host variables are not being used. The INTO
clause is used in application programs to identify host variables for storing the query
result. For more information on host variables, refer to the appropriate ALLBASE/SQL
application programming guide.

The FROMlause identifies tables and views from which data is to be retrieved, in this case,
PurchDB.SupplyPrice.

The WHERE clause specifies a search condition for screening rows. Search conditions are
comparisons and other operations you can have ALLBASE/SQL perform in order to screen
rows for your query result. The “Search Conditions” chapter defines the ALLBASE/SQL
search conditions. In this case, the search condition states that rows in the query result
must contain information for parts that can be delivered in fewer than 25 days.

The GROUP BY clause tells ALLBASE/SQL how to group rows before performing an
aggregate function in the select list. The rows that satisfy the WHERElause are grouped. In
this example, the rows are grouped by PartNumber. Then ALLBASE/SQL counts the
number of vendors that supply each part. The result is a vendor count for each part
number.

The HAVINGclause screens the groups. In the above example, data for only groups having a
vendor count greater than two becomes part of the query result.

The ORDER BY¥lause sorts the query result rows in order by specified column, in this case,
PartNumber.

Chapter 3 111

SQL Queries
Simple Queries

Simple Queries

A simple query contains a single SELECTstatement and typically has a simple comparison
predicate in the WHERElause. The SELECTstatement can be used to retrieve data from
single tables or from multiple tables. To retrieve data from multiple tables, you join the
tables on a common column value. In the following example, ALLBASE/SQL joins rows
from the PurchDB.SupplyPrice and PurchDB.Parts tables that have the same
PartNumber, as specified in the WHERElause:

SELECT PartName, VendorNumber
FROM PurchDB.SupplyPrice, PurchDB.Parts
WHERE PurchDB.SupplyPrice.PartNumber =
PurchDB.Parts.PartNumber

The query result is as follows:
|

PARTNAME [VENDORNUMBER
|

Central Processor 9002

Central Processor 9003

|

|
Central Processor | 9007
Central Processor | 9008

The following statement, using the explicit JOIN syntax, produces the same query result as
the statement above.

SELECT PartName, VendorNumber
FROM PurchDB.SupplyPrice
JOIN PurchDB.Parts
ON PurchDB.SupplyPrice.PartNumber =
PurchDB.Parts.PartNumber

The same query result is also obtained using the following statement:

SELECT PartName, VendorNumber
FROM PurchDB.SupplyPrice

JOIN PurchDB.Parts
USING (PartNumber)

The following NATURAL JOIN syntax would also produce the same result:

SELECT PartName, VendorNumber
FROM PurchDB.SupplyPrice
NATURAL JOIN PurchDB.Parts

In the four examples above, if a SELECT * is used instead of explicitly naming the
displayed columns in the select list, the query result shows some differences. For the first
two examples, the PartNumber column is displayed twice, once for each of the tables from
which it is derived. For the last two examples, where the USING(ColumnList) clause or the
NATURAL JOIN are used, the common columns are coalesced into a single column in the
query result.

112 Chapter3

SQL Queries
Simple Queries

ALLBASE/SQL creates a row for the query result whenever a part number in table
PurchDB.Parts matches a part number in table PurchDB.SupplyPrice, for example:

PurchDB.Parts:
PARTNUMBER PARTNAME SALESPRICE

1123-P-01 Central processor 500.00

PurchDB.SupplyPrice:

PARTNUMBER VENDORNUMBER ... DISCOUNTQTY
1123-P-01 9002 1

1123-P-01 9003 5

1123-P-01 9007 3

1123-P-01 9008 5

Any row containing a null part number is excluded from the join, as are rows that have a
part number value in one table, but not the other.

You can also join a table to itself. This type of join is useful when you want to compare data
in a table with other data in the same table. In the following example, table
PurchDB.Parts is joined to itself to determine which parts have the same sales price as
part 1133-P-01:

SELECT g.PartNumber, q.SalesPrice
FROM PurchDB.Parts p,
PurchDB.Parts q
WHERE p.SalesPrice = g.SalesPrice
AND p.PartNumber ='1133-P-01"'

The same query result is obtained from the following explicit join syntax:

SELECT g.PartNumber, q.SalesPrice
FROM Purchdb.Parts p
JOIN Purchdb.Parts q

ON p.SalesPrice = g.SalesPrice
AND p.PartNumber ='1133-P-01'

To obtain the query result, ALLBASE/SQL joins one copy of the table with another copy of
the table, as follows, using the join condition specified in the WHERElause or the ON
SearchCondition3 clause:

= You name each copy of the table in the FROM clause by using a correlation name. In
this example, the correlation names are p and g. You use the correlation names to
gualify column names in the select list and other clauses in the query.

= The join condition in this example specifies that for each sales price, the query result
should contain a row only when the sales price matches that of part 1133-P-01.

Chapter 3 113

SQL Queries
Simple Queries

ALLBASE/SQL joins a row in g.PurchDB.Parts to a row in p.PurchDB.Parts having a
part number of 1133-P-01 whenever the SalesPrice value in g.PurchDB.Parts matches
that for 1133-P-01.

The query result for this self-join appears as follows:

PARTNUMBER |[SALESPRICE
|
1133-P-01 | 200.00
1323-D-01 | 200.00
1333-D-01 | 200.00
1523-K-01 | 200.00

For a two or more table join, if you do not use a join predicate in the ONSearchCondition3
clause or the WHEREIlause, or if there are no common columns with which to join the tables
in a natural join, the result of the join is the Cartesian product. In the simplest case, for
a two table join, the Cartesian product is the set of rows which contains every possible
combination of each row in the first table concatenated with each row in the second table.

As an example, consider the simple Parts and Colors tables:

Parts Colors

PartNumber PartName

1 Widgit NULL Red
NULL Thing 2 NULL
3 NULL 3

The following query generates the Cartesian product:
SELECT p.PartNumber, PartName, c.PartNumber, Color FROM Parts p, Colors ¢
The Cartesian product is shown in the query result:

SELECT p.PartNumber, PartName, c.PartNumber, Color FROM Parts p, Colors ¢
+ + +

PartNumber Color

Green

PARTNUMBER |PARTNAME |[PARTNUMBER |COLOR
+ + +
1|Widgit | NULL|Red
1 |Widgit | 2|NULL
1 |Widgit | 3|Green
NULL [Thing | NULL|Red
NULL [Thing | 2|NULL
NULL |Thing | 3|Green
3 |NULL | NULL|Red
3 |NULL | 2|NULL
3|NULL | 3|Green

The same algorithm is used to form the Cartesian product for a three or more table join.
Thus, it can be said that the Cartesian product of a set of n tables is the table consisting of
all possible rows r, such that r is the concatenation of a row from the first table, a row from
the second table,..., and a row from the nth table.

As you can see, the Cartesian product for even a small two table join is much larger than
the source tables. For a three or more table join of several large tables, the Cartesian
product can be so large as to cause you to run out of memory and generate an error.
Therefore it is important to be sure that you include the appropriate join predicate in your
gueries and to be sure that you specify columns common to the tables being joined.

114 Chapter3

SQL Queries
Simple Queries

In the example above, NULLs are included in the tables to show the difference between the
behavior of NULLs in the production of the Cartesian product and the behavior of NULLs
when a common column is specified in the WHEREIlause join predicate.

Consider the following query:

SELECT p.PartNumber, PartName, c.PartNumber, Color
FROM Parts p, Colors ¢
WHERE p.PartNumber = c.PartNumber

The query result for the query is as follows:

SELECT p.PartNumber, PartName, c.PartNumber, Color FROM Parts p, Colors c....
+ + +
PARTNUMBER |PARTNAME |PARTNUMBER |COLOR

3 |NULL | 3|Green

The only rows selected for the query result are those rows for which the join predicate
(p.PartNumber = c.PartNumber) evaluates to true. Because NULL has an undetermined
value, for the cases where the values of the predicate are NULL = NULL , the value of the
predicate is undetermined, and the row is not selected.

However, for the Cartesian product shown in the prior example, due to the absence of a
join predicate, rows with NULLs in the common column are selected because the operation
is the simple concatenation of the rows, regardless of value.

Chapter 3 115

SQL Queries
Complex Queries

Complex Queries

In addition to the simple queries shown in the previous section, you can create complex
gueries, which may contain more than one SELECTstatement. At the highest level, a query
is a SELECTstatement, which consists of a query expression followed by an optional ORDER
BY clause. At the next lower level, you can combine different query blocks into a single
query expression with the UNIONoperator. Lower still, inside each query block is an
optional search condition, which can contain predicates that incorporate subqueries. A
subquery is always a single query block (SELECT) that can contain other subqueries but
cannot contain a UNION A query expression can contain a maximum of 16 query blocks
from all sources, including UNION subqueries, and the outer query block.

Figure 3-1. shows the range of possibilities for complex queries.

Figure 3-1. Range of Complex Query Types

SELECT Command

QueryExpression

SearchCondition

QueryBiock
SELECT Selectlist
FROM TablelList
WHERE | SearchCondition |e4— See Below
GROUP BY ColumnList
HAVING SearchCondition

UNION [ALL }
QueryBlock
SELECT Selectl ist
FROM TableList Repeatable Unit
WHERE [SearchCondition] with UNION
GROUP BY ColumnlList
HAVING SearchCondition

ORDER BY column names/numbers direction

[NOT]} {73} ot 1 [---]
P e e————
—_———

expression operator quantifier operand
= <> ALL SubQuery
< >
<= >= ANY Valuelist
[NOT] IN
[NOT] EXISTS SOME Expression
[NOT] BETWEEN
{NOT] LIKE ‘Pattern’
IS NOT NULL

:HostVariable

116

Chapter3

SQL Queries
Complex Queries

You can create a complex query by using the following:

< UNIONoperator, which allows you to take the union of all rows returned by several
guery blocks in one SELECTstatement.

= Subqueries (also known as nested queries), which allow you to embed a query block
within the search condition of an outer SELECTstatement.

= Special predicates, such as ANY, ALL, SOME, EXISTS , and IN, which allow you to
compare the value of an expression with the value of special structures and subqueries.

The next sections describe each type of complex query with examples.

UNION Queries

A SELECTstatement can consist of several query blocks connected by UNIONor UNION ALL
statements. Each individual SELECTstatement returns a query result which is a set of
rows selected from a specified table or tables. The union of these query results is presented
as a table that consists of all rows appearing in one or more of the original query results.

If only the UNIONstatement is used, all duplicate rows are removed from the final set of
rows. In this case, the maximum size of a tuple in the query result is given by the following
formula:

(SelectListitems +1)*2 + (SumlListLengths) <= 4000

where:

SelectListitems is the number of items in the select list.
SumListLengths is the sum of the lengths of all the columns in the select list.

At compile time, SumKeyLengths is computed assuming columns of NULLand VARCHAR
contain no data. At run time, the actual data lengths are assumed.

If the UNION ALL operator is used, duplicates are not removed. Candidates for duplicate
removal are evaluated by comparing entire tuples, not just a single field. Only if two or
more rows are entirely alike are the duplicates removed. In the case of the UNION ALL
operator, the maximum size of a tuple in the query result is 3996 bytes, as it is for a
non-UNIONquery expression. You cannot use LONGcolumns in a UNIONstatement.

Suppose you wanted to find out the part number for all parts that require 30 days or more
for delivery, or are supplied by the vendor whose number is 9002. The following query
delivers this information using the UNIONform of the SELECTstatement:

SELECT PartNumber
FROM PurchDB.SupplyPrice
WHERE DeliveryDays >= 30

UNION
SELECT PartNumber

FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9002

Chapter 3 117

SQL Queries

Complex Queries

ORDER BY PartNumber

1123-P-01
1133-P-01
1143-P-01
1153-P-01

1223-MU-01
1233-MU-01

1323-D-01
1333-D-01
1343-D-01
1523-K-01
1623-TD-01
1823-PT-01

Note that no rows are duplicated. When the UNIONstatement is not qualified by the ALL
statement, all duplicate rows are removed from the query result. Notice that the ORDER BY
clause must be at the end of the SELECTstatement. It cannot be included in the separate
guery expressions that make up the overall statement. Only the final query result can be

ordered.

If the UNION ALLstatement is used in the previous query, the result can contain duplicate
rows. The following example flags duplicate rows with two types of arrows that are
described below:

1123-P-01
1123-P-01
1123-P-01
1133-P-01
1133-P-01
1143-P-01
1143-P-01
1153-P-01
1153-P-01

P
<+

<+

P

<+

1223-MU-01

1233-MU-01 <----

1323-D-01
1333-D-01
1343-D-01
1523-K-01

1623-TD-01

1823-PT-01

In the above example, rows are duplicated for the following:

= More than one vendor supplies some parts (these duplicates are indicated by <----)

= Vendor 9002 supplies some parts that take 30 or more days to deliver (these duplicates

are indicated by <---+)

118

Chapter3

SQL Queries
Complex Queries

Note that you could get the same information in other ways. For example, you could use
two separate queries. Alternatively, you could use two predicates in the search condition
joined by the OR operator as follows:

SELECT PartNumber
FROM PurchDB.Supplyprice
WHERE DeliveryDays >= 30 OR
VendorNumber = 9002
ORDER BY PartNumber

This query still contains duplicate rows where more than one vendor supplies a given part;
but no duplicates are caused by vendor 9002 supplying some parts, and that some of these
take 30 or more days to deliver. The duplicates could be eliminated by using the SELECT
DISTINCT instead of SELECTstatement.

Using Character Constants with UNION

If you want to see which SELECTstatement in the UNIONstatement contributed each row to
the query result, you can include character constants in your SELECTstatements. A second
column is then generated that shows the originating query block for each row, as in this
example:

SELECT PartNumber, 'deliverydays >= 30'
FROM PurchDB.SupplyPrice
WHERE DeliveryDays >= 30

UNION ALL
SELECT PartNumber, 'supplied by 9002 '
FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9002

ORDER BY PartNumber

+
PARTNUMBER |(CONST)

+
1123-P-01 |deliverydays >= 30
1123-P-01 |deliverydays >= 30 <----
1123-P-01 |supplied by 9002
1133-P-01 |supplied by 9002
1133-P-01 |deliverydays >= 30
1143-P-01 |deliverydays >= 30
1143-P-01 |deliverydays >= 30 <----
1153-P-01 |deliverydays >= 30
1153-P-01 |supplied by 9002
1223-MU-01 |deliverydays >= 30
1233-MU-01 |deliverydays >= 30
1323-D-01 |deliverydays >= 30
1333-D-01 |deliverydays >= 30
1343-D-01 |deliverydays >= 30
1523-K-01 |deliverydays >= 30
1623-TD-01 |deliverydays >= 30
1823-PT-01 |supplied by 9002
1923-PA-01 |supplied by 9002

Chapter 3 119

SQL Queries
Complex Queries

The indicated duplicate rows would have been removed if the example contained the UNION
statement instead of UNION ALL.

Subqueries

A subquery, also known as a nested query, is a query block that is completely embedded in
a predicate. A subquery may appear within the search condition which is a part of the
WHEREr HAVINGclause of a SELECT, INSERT, UPDATEor DELETEstatement. It is like any
other query expression, except that it cannot contain a UNIONoperator. A subquery may be
used only in the following types of predicates:

= Comparison predicate
EXISTS predicate
IN predicate

Quantified predicate

Subqueries can be used to arrive at a single value that lets you determine the selection
criteria for the outer query block. In the following simple example, the subquery (in
parentheses) is evaluated to determine a single value used in selecting the rows for the
outer query:

SELECT *
FROM PurchDB.SupplyPrice
WHERE PartNumber = (SELECT PartNumber
FROM PurchDB.Parts
WHERE PartName = 'Cache Memory Unit')

Subqueries are most frequently found within special predicates, which are described fully
in the next section. Additional examples of subqueries can be found there.

Special Predicates
The three types of special predicate are listed here:

= The quantified predicate (ALL, ANY , or SOME, used to compare the value of an
expression with some or all of the values of an operand.

< The IN predicate, used to check for inclusion of an expression in a set of values.
e The EXISTS predicate, used to check for the existence of a value in an operand.

With all these types, subqueries may be used; for ALL, ANY, SOME , and IN predicate,
additional forms allow the use of a value list in place of a subquery. For each type of special
predicate the examples in the next sections show both subquery and non-subquery forms
of the predicate whenever both possibilities exist.

Quantified Predicate

A quantified predicate compares a value with a number of other values that are either
contained in a value list or derived from a subquery. The quantified predicate has the
following general form:

Expression ComparisonOperator Quantifier {ValueListSubQuery }

120 Chapter3

SQL Queries
Complex Queries

The comparison operators shown here are allowable:
= <> < > <= >=
The quantifier is one of these three keywords:
ALL ANY SOME
The value list is of this form:
(vall1, valz, .., Valn)

Using the ANY or SOME Quantifier with a Value List

With the ANYor SOMEjuantifier (ANYand SOMEare synonymous), the predicate is true if
any of the values in the value list or subquery relate to the expression as indicated by the
comparison operator.

Suppose you have a list of the part numbers for parts you have been buying from vendor
9011. You would like to start obtaining those parts from other vendors. The following
example shows how you would find the part number and vendor number for all parts
supplied by vendor 9011 that are also supplied by some other vendor:

SELECT PartNumber, VendorNumber
FROM PurchDB.SupplyPrice
WHERE PartNumber = ANY
('1343-D-01', '1623-TD-01', '1723-AD-01', '1733-AD-01")
AND NOT VendorNumber = 9011

+

PARTNUMBER |[VENDORNUMBER
+

1343-D-01 | 9001

1623-TD-01 | 9015

1723-AD-01 | 9004

1723-AD-01 | 9012

1723-AD-01 | 9015

1733-AD-01 | 9004

1733-AD-01 | 9012

The quantifier ANYis used to determine whether PurchDB.SupplyPrice contains any of the
part numbers in the value list. If so, the query returns the part number and vendor
number of vendors supplying that part. The final predicate eliminates all instances where
the part is supplied by vendor 9011. Note that SOMEould be used in place of ANY, because
SOMEand ANYare synonyms.

Chapter 3 121

SQL Queries
Complex Queries

Using ANY or SOME with a Subquery

You can also use the subquery form of the quantified predicate. If you wanted to distribute
some of the business you have been giving vendor 9004, you might want to find vendor
numbers for each vendor supplying at least one part supplied by vendor 9004. The
following query returns this information:

SELECT DISTINCT VendorNumber
FROM PurchDB.SupplyPrice
WHERE PartNumber = ANY (SELECT PartNumber
FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9004)

The subguery obtains the part numbers for all parts supplied by vendor 9004. The
guantifier ANY is then used to determine if PartNumber is the same as any of these parts.
If so, the vendor number supplying that part is returned in the query result.

Some queries may require you to use ANY and SOME constructs in a manner that is not
intuitive. Consider the following query:

SELECT T1.SalesPrice
FROM T1
WHERE T1.PartNumber <> ANY (SELECT T2.PartNumber
FROM T2)

The inexperienced SQL user might think that this means, “Select the sales price of parts
from table T1 whose numbers are not equal to any part numbers in table T2.” However,
the actual meaning is, “Select the sales price of parts from T1 such that the part number
from T1 is not equal to at least one part number in T2.” This query returns the sales
price of all the parts in T1 if T2 has more than one part.

A less ambiguous form using EXISTS is as follows:

SELECT T1.SalesPrice
FROM T1
WHERE EXISTS (SELECT T2.PartNumber
FROM T2
WHERE T2.PartNumber <> T1.PartNumber)

Using the ALL Quantifier

With the ALL quantifier, the predicate is true only if all of the values in the value list or
subquery relate to the expression as indicated by the comparison operator.

Assume you have been buying parts from vendor 9010. To get a discount from this vendor,
you have been required to purchase parts in larger quantities than you would like. To

122 Chapter3

SQL Queries
Complex Queries

avoid large stockpiles of these parts, you want to find vendors whose discount is not
dependent on the purchase of such large quantities. The following query uses two
subqueries and an ALL quantifier to retrieve the information you want:

SELECT VendorNumber, PartNumber, DiscountQty
FROM PurchDB.SupplyPrice
WHERE DiscountQty < ALL (SELECT DiscountQty
FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9010)
AND PartNumber IN (SELECT PartNumber
FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9010)

+ +
VENDORNUMBER|PARTNUMBER |DISCOUNTQTY
+ +
9006[1423-M-01 | 1
9007|1433-M-01 | 15

The first subquery obtains the number of parts needed to qualify for a discount for each
part supplied by vendor 9010. Using the quantifier ALL, rows are selected only when the
quantity needed for a discount is less than that needed for any part supplied by 9010. The
second subqguery limits the selection to only those part numbers supplied by vendor 9010.
Thus, the query result shows every part supplied by vendor 9010 which can be obtained
from another vendor in smaller quantities with a discount.

IN Predicate

An IN predicate compares a value with a list of values or a number of values derived by the
use of a subquery. The IN predicate has the following general form:

Expression [NOT] IN {ValueList SubQuery '}

The ValueList and SubQuery forms of the IN predicate are described separately in the
following sections.

Note that IN is the same as = ANY.

Chapter 3 123

SQL Queries
Complex Queries

Using the IN Predicate with a Value List

If you wanted to obtain the numbers of all vendors who supplied a given list of parts, the
following query could be used:

SELECT DISTINCT VendorNumber
FROM PurchDB.SupplyPrice
WHERE PartNumber
IN (1143-P-01','1323-D-01', '1333-D-01', '1723-AD-01',
'1733-AD-01)

Using the IN Predicate with a Subquery

If you wanted a list of all the vendors who supply the same parts that vendor 9004
supplies, the following query could be used:

SELECT DISTINCT VendorNumber
FROM PurchDB.SupplyPrice
WHERE PartNumber IN (SELECT PartNumber
FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9004)

The subguery determines the part number of every part supplied by vendor 9004. The
outer query selects every vendor who supplies one or more of those parts. DISTINCT
removes duplicates from the final query result, as many vendors supply more than one
such part.

EXISTS Predicate

The EXISTS predicate, also known as the existential predicate, tests for the existence of a
row satisfying some condition. It has the following general format:
EXISTS Subquery

EXISTS is true only if the query result of the subquery is not empty; that is, a row or rows
are returned as a result of the subquery. If the query result is empty, the EXISTS predicate

124 Chapter3

SQL Queries
Complex Queries

is false.

In the following example, suppose you need to determine the names of all vendors who
currently supply parts:

SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE EXISTS (SELECT *
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorNumber = v.VendorNumber)

VENDORNAME

Remington Disk Drives
Dove Computers

Space Management Systems
Coupled Systems
Underwood Inc.
Pro-Litho Inc.

Eve Computers

Jujitsu Microelectronics
Latin Technology
KellyCo Inc.

Morgan Electronics
Seminational Co.
Seaside Microelectronics
Educated Boards Inc.
Proulx Systems Inc.

In this example, v and sp are correlation names, which enable ALLBASE/SQL to
distinguish the two VendorNumber columns in the predicate without requiring you to
repeat each table name in full.

You can also use the NOT EXISTS form of the existential predicate. If you wanted to find
those vendors who are not currently supplying you with parts you could use a query of the
form shown here:

SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT *
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorNumber = v.VendorNumber)

VENDORNAME

Covered Cable Co.
SemiTech Systems
Chocolate Chips

Chapter 3 125

SQL Queries
Complex Queries

Correlated Versus Noncorrelated Subqueries

In many cases, it is possible to execute the subquery just once, and obtain a result which is
passed to the outer query for its use. Here is an example:

SELECT *
FROM PurchDB.SupplyPrice
WHERE PartNumber = (SELECT PartNumber
FROM PurchDB.Parts
WHERE PartName = '‘Cache Memory Unit’)

This kind of subquery is a noncorrelated subquery.

In other cases, however, it is necessary to evaluate a subquery once for every row in the
outer query, as in the following:

SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT *
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorNumber = v.VendorNumber)

The predicate in the subquery references the column value v.VendorNumber, which is
defined by the outer query block. When this type of relationship exists between a column
value in the subgquery and a column value in an outer query block, the query is called a
correlated subquery.

Recognizing correlated subqgueries is important when performance is a priority. Correlated
subqueries require the optimizer to use an outer loop join algorithm rather than a
sort-merge join. Because a sort-merge join is orders of magnitude faster than an outer loop
join, correlated subqueries pay a performance penalty. In addition, when the ANY, SOME,
ALL, or IN predicate makes use of subqgueries, the queries are converted into correlated
subqueries using the EXISTS predicate. Therefore, if at all possible, queries using ANY,
SOME, ALL, IN , or the correlated form of the EXISTS predicate should be done as joins of
two or more tables rather than by using subqueries if performance is an issue. In fact, it is
possible to state a query as a join as well as in a form using subqueries; non-correlated
subqueries are faster than sort-merge joins. Sort-merge joins are faster than correlated
subqueries which use an outer loop join.

Outer Joins

An inner join returns only tuples for which matching values are found between the
common columns in the joined tables. A natural inner join specifies that each pair of
common columns is coalesced into a single column in the query result. The term join has
become synonymous with the term natural inner join because that type of join is used so
frequently.

To include in the query result those tuples from one table for which there is no match in
the common columns of the other table you use an outer join. The term natural, when
applied to an outer join, has the same meaning as with an inner join. Common columns are
coalesced into a single column in the query result. No duplicate columns are returned.

126 Chapter3

SQL Queries
Complex Queries

Outer Joins Using Explicit JOIN syntax

Outer joins may be constructed using the explicit JOIN syntax of the SELECTstatement
(see the “SELECT section of the “SQL Statements” chapter). In a two table outer join, the
first table listed in the FROMlause of the SELECTstatement is considered the left hand
table and the second is considered the right hand table.

The set of rows in the result may be viewed as the union of the set of rows returned by an
inner join (the inner part of the join) and the set of rows from one table for which no match
is found in the corresponding table (the outer part of the join).

If the unmatched rows from both tables being joined are preserved, the join is a
symmetric outer join. If the rows are preserved from only the left hand table, the join is
a left asymmetric outer join. (The word asymmetric is usually omitted.) If the rows are
preserved from only the right hand table, the join is a right outer join. The current
syntax will allow you to specify either a left outer join or a right outer join, but not a
symmetric outer join. A technique for creating a symmetric outer join using the UNION
operator is described later in the section, “Symmetric Outer Joins Using the UNION
Operator.”

A left outer join obtains the rows from both tables for which there is a matching value in
the common column or columns (the inner part) and the rows from the left hand table for
which there is no match in the right hand table (the outer part). Each unmatched row from
the left hand table is extended with the columns coming from the right hand table. Each
column in that extension has a null value.

A right outer join obtains the rows from both tables for which there is a matching value in
the common column or columns, and the rows from the right hand table for which there is
no match in the left hand table. The unmatched rows from the right hand table are
extended with the columns coming from the left hand table, with null column values
returned in that extension for every result row which has no match in the left hand table.

For example, the following right outer join is between the SupplyPrice and the Vendors
tables. For all vendors who supply parts, it returns the Part Number, Vendor Name and
Vendor City. For all vendors who do not supply parts, it returns just the Vendor Name and
Vendor City.

SELECT PartNumber, VendorName, VendorCity
FROM Purchdb.SupplyPrice sp
RIGHT JOIN PurchdB.Vendors v
ON sp.VendorNumber = v.VendorNumber
ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...

PARTNUMBER |VENDORNAME [VENDORCITY
+ +

|Chocolate Chips |Lac du Choc <--Unmatched
[SemiTech Systems |San Jose <--rows from
|Kinki Cable Co. |Bakersfield <--Vendors table

1943-FD-01 |Eve Computers |Snake River

1933-FD-01 |Remington DiskDrives |Concord

1933-FD-01 |Educated Boards Inc. |Phoenix

1933-FD-01 |Latin Technology |San Jose

1933-FD-01 |Space Management Systems |Santa Clara

1933-FD-01 |Eve Computers |Snake River

1923-PA-01 [Jujitsu Microelectronics |Bethesda

Chapter 3 127

SQL Queries
Complex Queries

Number of rows selected is 16
U[p], dlown], I[eft], r[ight], tfop], b[ottom], pr[int] <n>, or e[nd] > e

When you use the ONclause of the JOIN syntax, it must contain, at a minimum, the
predicate which specifies the join condition. Other predicates may be placed within the
SELECTstatement, but their location is critical as the following examples show.

Additional predicates may be placed in the ONclause. These predicates limit the rows
participating in the inner join associated with the ONclause. All rows excluded by such
predicates participate in the outer part of the associated join. The following query returns
(in the inner part of the join) Part Numbers for all vendors who supply parts and are
located in California (italics). It also returns, without the Part Number (in the outer part
of the join) all vendors who do not supply parts (BOLD), and all vendors who do supply
parts, but are not located in California.

SELECT PartNumber, VendorName, VendorCity
FROM Purchdb.SupplyPrice sp
RIGHT JOIN PurchdB.Vendors v
ON sp.VendorNumber = v.VendorNumber
AND VendorState = 'CA'
ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...

PARTNUMBER [VENDORNAME [VENDORCITY
+ +
Underwood Inc. |Atlantic City
Remington Disk Drives |Concord
Coupled Systems |Puget Sound
Kinki Cable Co. |Bakersfield
Jujitsu Microelectronics |Bethesda
Dove Computers |Littleton
SemiTech Systems |San Jose
KellyCo Inc. |Crabtree
Educated Boards Inc. |Phoenix
Chocolate Chips |Lac du Choc
Morgan Electronics |Braintree
Eve Computers |Snake River
1933-FD-01 Latin Technology | San Jose
1933-FD-01 Space Management Systems | Santa Clara

First 16 rows have been selected.

U[p], d[own], I[eft], r{ight], t{op], blottom], pr{int] <n>, or e[nd] > e
In the above example, the rows participating in the inner join are further restricted by
adding to the ONclause, ANDVendorState = 'CA'. All vendors that are not in California are
placed in the outer part of the join.

If you move the limiting predicate from the ONclause to the WHERElause, the query
returns a different result. In the following query, the inner part of the join still contains all
vendors who supply parts and are located in California. However, in the outer part of the
join, only those vendors who do not supply parts and are in California are included.

128 Chapter3

SQL Queries
Complex Queries

SELECT PartNumber, VendorName, VendorCity
FROM Purchdb.SupplyPrice sp
RIGHT JOIN PurchdB.Vendors v
ON sp.VendorNumber = v.VendorNumber
WHERE VendorState = 'CA'
ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...

PARTNUMBER |VENDORNAME [VENDORCITY
+ +
|SemiTech Systems |San Jose
|Kinki Cable Co. |Bakersfield
1933-FD-01 |Latin Technology |San Jose
1933-FD-01 |Space Management Systems |Santa Clara

First 16 rows have been selected.

Ulp], djown], l[eft], rlight], tfop], b[ottom], pr[int] <n>, or e[nd] > e
In the above example, the WHEREIlause is applied to all the rows returned, regardless of
whether they are in the inner or outer part of the join. Thus no rows are returned unless
the vendor is located in California.

If you want the inner part of the query to contain all vendors who do supply parts and are
located in California while the outer part contains all vendors who do not supply parts,
regardless of location, use the query shown below.

SELECT PartNumber, VendorName, VendorCity
FROM Purchdb.SupplyPrice sp
RIGHT JOIN PurchdB.Vendors v
ON sp.VendorNumber = v.VendorNumber
WHERE VendorState = 'CA'
OR VendorState <> "'CA' AND PartNumber IS NULL
ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp
RIGHT...

+ +
PARTNUMBER |[VENDORNAME [VENDORCITY
+ +
|SemiTech Systems |San Jose
|Chocolate Chips |Lac du Choc
|[Kinki Cable Co. |Bakersfield
1933-FD-01 |[Latin Technology |San Jose
1933-FD-01 |Space Management Systems |Santa Clara
1923-PA-01 |Seminational Co. [City of Industry
1833-PT-01 |Seminational Co. |City of Industry
1833-PT-01 |Seaside Microelectronics |Oceanside
1823-PT-01 |Seaside Microelectronics |Oceanside

First 16 rows have been selected.
U[p], d[own], I[eft], r[ight], tfop], b[ottom], pr[int] <n>, or e[nd] > e

If all common columns between the tables being joined are to be used for the join, the

Chapter 3 129

SQL Queries
Complex Queries

keyword NATURALmMay be used so long as the specification of the ONclause join predicate is
omitted. This technique may be used when joining more than two tables, as in the query
shown below:

SELECT PartName, DeliveryDays, VendorName
FROM PurchDB.Parts
NATURAL RIGHT JOIN PurchDB.SupplyPrice
NATURAL RIGHT JOIN PurchDB.Vendors
ORDER BY PartName DESC

SELECT PartName, DeliveryDays, VendorName FROM PurchDB.Parts NATURAL RIGHT...

+ +
PARTNAME |DELIVERYDAYS|VENDORNAME
+ +
| |SemiTech Systems
| |Kinki Cable Co.
| |Chocolate Chips
Winchester Drive | 20|Remington Disk Drives
Winchester Drive | 30|Morgan Electronics
Video Processor | 20|Latin Technology
Video Processor | 30]Jujitsu Microelectronics
Video Processor | 15|Eve Computers

First 16 rows have been selected.
Ulp], dlown], l[eft], rlight], tjop], b[ottom], pr{int] <n>, or e[nd] > e

Outer Joins Using the UNION Operator
An outer join can also be created by using the UNION operator.

Suppose you want to create a list of vendors who either supply some part with a unit price
less than $100 or else do not supply any parts at all. To do this, merge two separate queries
with a UNION ALL statement, as in the following examples.

The first query shown here selects the names of vendors who do not supply parts:

SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT *
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorNumber = v.VendorNumber)

Notice that a second query block is embedded within the first query expression. It creates a
temporary table containing the names of all vendors who do supply parts. Then note the
special predicate EXISTS, which is negated in this case. The outer SELECTstatement
allows us to identify the name of each vendor in the Vendors table. Each VendorName is
compared against the list of vendors who do supply parts. If the VendorName from the
outer SELECTstatement is not found in the temporary table created by the subquery, the
outer VendorName is returned to the query result, providing us a list of all the Vendors
who donot supply parts.

The second query shown here defines the vendors who supply at least one part with a unit
price under $100:

130 Chapter3

SQL Queries
Complex Queries

SELECT DISTINCT v.VendorName

FROM PurchDB.Vendors v, PurchDB.SupplyPrice sp
WHERE v.VendorNumber = sp.VendorNumber

AND sp.UnitPrice < 100.00

The next example shows this query joined to the previous one by the UNION ALLstatement.
It also shows the use of character constants to indicate which rows result from which
query block.

SELECT DISTINCT v.VendorName, 'supplies parts under $100'
FROM PurchDB.Vendors v, PurchDB.SupplyPrice sp

WHERE v.VendorNumber = sp.VendorNumber
AND sp.UnitPrice < 100.00

UNION ALL

SELECT v.VendorName, 'none supplied'
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT *
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorNumber = v.VendorNumber)

+ +
VENDORNAME [(CONST) |

+ +
Dove Computers |supplies parts under $100|
Educated Boards Inc. [supplies parts under $100|
Jujitsu Microelectronics |supplies parts under $100|
Proulx Systems Inc. |supplies parts under $100|
Seaside Microelectronics |supplies parts under $100|
Seminational Co. |supplies parts under $100|
Underwood Inc. [supplies parts under $100|
Covered Cable Co. |[none supplied |
SemiTech Systems [none supplied |
Chocolate Chips |[none supplied |

Symmetric Outer Join Using the UNION Operator

Since the syntax does not support a symmetric outer join, you might try to simulate a
symmetric outer join using the left outer join syntax in combination with the right outer
join syntax. Intuitively, the following query might seem correct:

SELECT PartName, PartNumber, VendorName, VendorCity
FROM Purchdb.Parts
NATURAL LEFT JOIN Purchdb.SupplyPrice
NATURAL RIGHT JOIN Purchdb.Vendors
ORDER BY PartName, VendorName

This three table outer join does a left outer join between the Parts and the SupplyPrice
tables. The result of that join is then used as the left hand table in a right outer join with
the Vendors table.

It would seem as though the result first displays all parts supplied by a vendor, then all
parts for which there is no supplier, followed by all vendors who do not supply parts.

Chapter 3 131

SQL Queries
Complex Queries

But, the action of the query is subtle. The natural left join preserves the parts from the
Parts table that is not supplied by any vendor. This supplies the left hand component for
the simulated symmetric outer join. However, although the natural right join preserves
the three vendors from the vendors table who do not supply parts (the right hand
component for the simulated symmetric outer join), it eliminates the unmatched parts
from the Parts table. This happens because the natural right join only preserves
unmatched rows from the right hand table, eliminating the row from the Parts table.

NOTE If you test the next query on the sample database, you must first use the
following ISQL INSERT statement to add a row with no vendor to the Parts
table.

INSERT INTO PurchDB.Parts
(PartNumber, PartName)
VALUES ('XXXX-D-LO', 'test part’);

To preserve all the unmatched rows from both sides, thus generating a full symmetric
outer join, you must use the following syntax:

SELECT PartName, PartNumber, VendorName
FROM PurchDB.Parts
NATURAL LEFT JOIN PurchDB.SupplyPrice
NATURAL LEFT JOIN PurchDB.Vendors
UNION
SELECT PartName, PartNumber, VendorName
FROM PurchDB.Parts
NATURAL RIGHT JOIN PurchDB.SupplyPrice
NATURAL RIGHT JOIN PurchDB.Vendors
UNION
SELECT PartName, PartNumber, VendorName
FROM PurchDB.Parts
NATURAL RIGHT JOIN PurchDB.SupplyPrice
NATURAL LEFT JOIN PurchDB.Vendors
ORDER BY PartName DESC, PartNumber;

The result from the natural left join...natural left join preserves the unmatched part from
Parts. The natural right join...natural right join preserves the unmatched vendors from
Vendors. The natural right join...natural left join would preserve all unmatched rows from
SupplyPrice if there were any (in this example there are none). The union operation
combines the three results, preserving the unmatched rows from all joins. There are three
complete sets of rows that satisfy the inner join, but the union operation eliminates the
duplicate rows unless UNION ALL is specified.

132 Chapter3

SQL Queries
Complex Queries

The result of the above query follows:

SELECT PartName, PartNumber, VendorName FROM PurchDB.Parts NATURAL LEFT...
+ +

PARTNAME |PARTNUMBER [VENDORNAME
| |Kinki Cable Co.
| |SemiTech Systems
| |Chocolate Chips
[XXXX-D-LO|
Winchester Drive |1343-D-01 |Remington Disk Drives
Winchester Drive |1343-D-01 |Morgan Electronics
Video Processor [1143-P-01 |Eve Computers
Video Processor [1143-P-01 |Coupled Systems

Chapter 3 133

SQL Queries
Using GENPLAN to Display the Access Plan

Using GENPLAN to Display the Access Plan

When a statement is executed in ISQL or is preprocessed in an application program, the
optimizer attempts to generate the most efficient path to the desired data. Taking into
account the available indexes, the operations that must be executed, and the clauses in the
predicates that may increase the selectivity of the statement, the optimizer decides what
indexes to use and the proper order of the needed operations. The result of this evaluation
process is an access plan produced by the optimizer.

In most cases, the optimizer chooses the best plan. But, there are times when you may
want to display the access plan chosen by the optimizer. You may then evaluate that plan
in light of your specific knowledge of the database and decide if the optimizer has
generated the optimum access plan for your situation.

If you want to override the access plan chosen by the optimizer, issue the SETOPT
statement.

The statements used to generate and display the access plan are the GENPLANtatement
and a SELECTon the pseudotable SYSTEM.PLAN.

Generating a Plan

Suppose you want to generate the access plan for the query shown below.
isql=> GENPLAN FOR

SELECT p.PartName, p.PartNumber, v.VendorName,
s.UnitPrice, i.QtyOnHand

FROM PurchDb.Parts p, PurchDB.Inventory i,
PurchDB.SupplyPrice s, PurchDB.Vendors v
WHERE p.PartNumber = i.PartNumber

AND s.PartNumber = p.PartNumber

AND s.VendorNumber = v.VendorNumber

> AND p.PartNumber ='1123-P-01";

VVVYVYVVYV

The access plan will then be placed in the system pseudotable, SYSTEM.PLAN, but will
not be displayed until you do a SELECTfrom SYSTEM.PLAN. You can also generate the
access plan for a query that is stored in the database as a stored section. For example:

isgl=> GENPLAN FOR MODULE SECTION MyModule(10);

Displaying a Query Access Plan

To display the access plan generated by the optimizer, showing the columns in the order most useful
to you, execute the following statement:

isqi=> SELECT Operation, TableName, IndexName, QueryBLock, Step, Level
> FROM System.Plan;

134 Chapter3

SQL Queries
Using GENPLAN to Display the Access Plan

SELECT Operation, TableName, IndexName, QueryBlock, Step, Level FROM System.Plan

OPERATION [TABLENAME |INDEXNAME |QUERYBLOCK [STEP |LEVEL

+ + + + |
index scan [INVENTORY |INVPARTNUMINDEX | 1 1 4
index scan |[PARTS [PARTNUMINDEX | 1 2| 4
merge join | | | 1 3| 3
serial scan [SUPPLYPRICE | | 1 4 3
nestedloop join | | | 1 5| 2
index scan [VENDORS |VENDORNUMINDEX | 1 6| 2
nestedlopp join | | | 1 7| 1

Number of rows selected is 7
Ulp], dlown], l[eft], rlight], t[op], b[ottom], pr[int] <n>, or e[nd] >r

Interpreting a Display

The information from the columns in SYSTEM.PLAN helps you to understand the access
plan generated by the optimizer. The columns are discussed in the order most useful to
you.

OPERATION shows each operation being executed to obtain the data. Because your
greatest concern is usually whether indexes are being used effectively, you
should look at this column first. For each index scan operation, indexes are
being used to access the data.

If there is no limiting predicate in the WHERE clause of the statement, or
if the predicate will cause the selection of a large percentage of the rows
from the table, a serial scan will be chosen instead of an index scan.

When a join is specified, you can look at the join chosen to see if it is the
most appropriate type of join, considering the specific data in your
database.

For more information, see the “Understanding Data Access Paths” section
of Chapter 2, “Using ALLBASE/SQL..”

TABLENAME shows the table upon which an operation is being executed. Thus, you can
see the tables for which indexes are being used, and the tables which are
participating in various joins.

INDEXNAME shows which specific index is being used to access data in a particular
table. This may be useful if multiple indexes exist for a given table.

QUERYBLOCK shows the block in which a given operation is taking place. A simple
statement will have only one query block. More complex statements will be
broken into additional blocks to simplify processing.

STEP shows the order in which operations are executed within a given
gueryblock. From this information you can determine the order of
operations.

LEVEL shows the hierarchy of the operations so you can easily graph the

operations as an execution tree. This is normally necessary only when
your HP Service Representative is evaluating a query.

Chapter 3 135

SQL Queries
Updatability of Queries

Updatability of Queries

INSERT, UPDATE and DELETEoperations may be performed through views or as qualified
by search conditions provided the views or search conditions are based on updatable
gueries. UPDATE WHERE CURRENIhd DELETE WHERE CURRENJperations may be
performed through cursors provided the cursors are based on updatable queries.

Queries that underlie views and cursors are called updatable queries when they conform
to all of the following updatability criteria:

< No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT
statement; and no aggregate is specified in the outermost select list.

< The FROM clause specifies exactly one table, either directly or through a view. If the
FROM clause specifies a view, the view must be based on an updatable query.

= For INSERT and UPDATEthrough views, the select list in the view definition must not
contain any arithmetic expressions. It must contain only column names.

e For UPDATE WHERE CURRENiIhd DELETE WHERE CURRENdperating on cursors, the
cursor declaration must not include an ORDER BY clause, and the query expression
must not contain subqueries, the UNION or UNION ALL statement, or any
nonupdatable views.

= The target table of an INSERT, UPDATEor DELETEoperation is the base table to which
the changes are actually being made.

= For noncursor INSERT, UPDATE, or DELETEoperations, the view definition must not
include any subqueries which contain the target table in their FROM clause; and if a
search condition is given, it must not include any subqueries which contain the target
table in their FROM clause.

If a query is updatable by the previous rules, then the underlying table is an updatable
table. Otherwise it is considered a read-only table and is locked accordingly. This means
that in cursor operations, SIX, IX, and X locks are not used unless the query that underlies
the cursor matches the updatability criteria and was declared with columns for UPDATE.
In noncursor view operations, SIX, 1X, and X locks are not obtained unless the table
underlying the view is updatable. Refer to Chapter 5, “Concurrency Control through
Locks and Isolation Levels,” for a complete explanation of SIX, IX, and X locks.

136 Chapter3

Constraints, Procedures, and Rules
Using Integrity Constraints

4 Constraints, Procedures, and Rules

In addition to the basic tables and indexes in a DBEnvironment, ALLBASE/SQL lets you
create database objects known as constraints, procedures, and rules, which provide for a
high degree of data consistency and integrity inside the DBEnvironment without the need
for extensive application programming. Constraints define conditions on the rows of a
table; procedures define sequences of SQL statements that can be stored in the
DBEnvironment and applied as a group either through rules or through execution by
specific users; and rules let you define complex relationships among tables by tying specific
procedures to particular kinds of data manipulation on tables. Together, these tools let you
store many of your organization's business rules in the DBEnvironment itself, reducing
the need for application code.

This chapter presents the following topics:
= Using Integrity Constraints
= Using Procedures

= Using Rules

Using Integrity Constraints

Using integrity constraints helps to ensure that a database contains only valid data.
Integrity constraints provide a way to check data within the database system rather than
by coding elaborate validation checks within application programs. An integrity constraint
is either a unique constraint, a referential constraint, or a check constraint. All of these
constraints are described in this section.

When a table is created, integrity constraints can be defined at the column level or at the
table level. A constraint can be placed on an individual column (at the column or table
level) or on a combination of columns (at the table level).

Unique Constraints

A unique constraint requires that no two rows in a table contain the same value in a given
column or list of columns. You can create a unique constraint at either the table level or
the column level. Unigue constraints can be defined as either UNIQUE or PRIMARY KEY.
The two types of unique constraints differ in that if a PRIMARY KEY is placed on a
column or column list, the column name(s) can be omitted from the referential constraint
syntax in the definition of the referencing table. A given column upon which a unique or
primary constraint has been defined need not be referenced by a referential constraint; but
a referential constraint can only refer to a column upon which a unique or primary key
constraint has been defined. Referential constraints are discussed below.

Additionally, PRIMARY KEY can be specified only once per table. Duplicate unique

Chapter 4 137

Constraints, Procedures, and Rules
Using Integrity Constraints

constraints are not allowed. Neither UNIQUE nor PRIMARY KEY columns can contain
null values--they must be defined as NOT NULL.

The following syntax is used to define a unique constraint on an individual column or
column list at the table level:

{UNIQUE PRIMARY KEY} (ColumnName[,...]) [CONSTRAINT ConstraintlD]

ConstraintID is the name of the constraint. It is not necessary to name the constraint. If
it is not named, ALLBASE/SQL names it SQLCON_uniqueid , where uniqueid is a
unique string. The constraint names are maintained in the system catalog table
SYSTEM.CONSTRAINT.

A column list cannot contain a column more than once. In the example below, a constraint
is placed on a column at the table level:

CREATE PUBLIC TABLE RecDB.Clubs
(ClubName CHAR(15) NOT NULL,
UNIQUE (ClubName) CONSTRAINT ClubConstrnt)
IN RecFS;

The syntax for defining a unique constraint at the column level is part of the column
definition. NOT NULL and either UNIQUE or PRIMARY KEY are included along with the
other column parameters. In the example below, one column is defined with a unique
constraint:
CREATE PUBLIC TABLE RecDB.Clubs
(ClubName CHAR(15) NOT NULL UNIQUE CONSTRAINT ClubConstrnt)
IN RecFsS;
A table defined with a PRIMARY KEY followed by a column list is shown in the section
“Examples of Integrity Constraints.”

Referential Constraints

A referential constraint requires that the value in a column or columns of the referencing
table, must either be null or match the value of a column or columns of a unique constraint
in the referenced table. To establish a referential constraint, a unique or primary key
constraint must first be defined on the referenced table's column or column list and then a
referential constraint must be defined on the referencing table's column or column list.

The Referenced Table

The referenced table must contain a unique constraint created with either a UNIQUE or
PRIMARY KEY clause on a column or column list:

CREATE PUBLIC TABLE RecDB.Clubs
(ClubName CHAR(15) NOT NULL
PRIMARY KEY CONSTRAINT Clubs PK, -- column level constraint
ClubPhone SMALLINT,
Activity CHAR(18))
IN RecFsS;

The referenced table must be created before the referencing table unless the referenced
and referencing tables are created within a CREATE SCHEMAatement or if both the tables
are created in the same transaction, the SET REFERENTIAL CONSTRAINTS DEFERRED
statement has been executed and is still in effect.

138 Chapter4

Constraints, Procedures, and Rules
Using Integrity Constraints

The Referencing Table

A referential constraint is placed on columns which are dependent on other columns (in
the referenced table). You can create a referential constraint at either the table level or the
column level. Referencing columns need not be NOT NULL.

The following syntax is used to define a referential constraint at the table level in the
CREATE TABLEstatement for a referencing table:

FOREIGN KEY(FKColumnNamel,...])
REFERENCERefTableName [(RefColumnName [,...])] [CONSTRAINT ConstraintiD]

FOREIGN KEY identifies a referencing column or column list. REFERENCES identifies
the referenced table and referenced column list. The order and number of referencing
columns in the FOREIGN KEY clause must be the same as that of the referenced columns
in the REFERENCES clause. The referenced table cannot be a view.

The syntax for defining a referential constraint at the column level for a referencing
column is shown here:

REFERENCERefTableName [(RefColumnName)] [CONSTRAINT ConstraintiD]
Only one RefColumnName is possible.

Note in the following example that the table's column definitions and table level
constraints can be in any order within the parentheses and are separated from each other
with commas:

CREATE PUBLIC TABLE RecDB.Members
(MemberName CHAR(20) NOT NULL, column definition
Club CHAR(15) NOT NULL,
MemberPhone SMALLINT,

FOREIGN KEY (Club) table level
REFERENCES Clubs (ClubName)) referential constraint
IN RecFS;

If the REFERENCES clause does not specify a RefColumnName, then the table definition
referenced must contain a unique constraint that specifies PRIMARY KEY. The primary
key column list is the implicit RefColumnName list. It must have the appropriate number of
columns.

The owner of the table containing referencing columns must have the REFERENCES
authority on referenced columns, have OWNER authority on the referenced table, or have
DBA authority, for the duration of the referential constraint.

Check Constraints

A check constraint specifies a condition which must be upheld for an insert or update to be
successfully performed on a table or view. A table check constraint must not be false for
any row of the table on which it is defined. A view check constraint must be true for the
condition in the SELECTstatement that defines the view.

A table check constraint is defined in the CREATE TABLEor ALTER TABLE statement with
the following syntax:

CHECKSearchCondition) [CONSTRAINT ConstraintiD]

Chapter 4 139

Constraints, Procedures, and Rules
Using Integrity Constraints

If a check constraint is added to an existing table, data already in the table is verified to
ensure that the check constraint is satisfied. A constraint error occurs if the constraint is
not satisfied; the ALTER TABLE statement adding the constraint fails.

The check is also performed when the INSERT or UPDATEstatement is executed. A DELETE
statement never causes a check constraint error.

The check search condition must not contain a subquery, aggregate function, TID function,
local variable, procedure parameter, dynamic parameter, current function, USER, or host
variable. The search condition expression also cannot contain a LONG column unless it is
within a long column function. When adding a new column, the columns specified in the
search condition must be defined in the same CREATE TABLBr ALTER TABLE ADD COLUMN
statement. For the ALTER TABLE ADD COLUNMbNtements, the check constraint can only be
specified for the column being added. When adding a constraint, columns specified in the
check constraint search condition must already exist in the table.

The search condition is a boolean expression which must not be false for a table check
constraint to be satisfied. If any value specified in the search condition expression is
NULL, the result of the expression may be the boolean unknown value rather than true or
false. The check constraint is satisfied if the result is true or unknown.

For example, consider the following check constraint:
CHECK (NumParts > 5)

If NumParts is 5, the result is false and the check is not satisfied. If NumParts is 10, the
result is true and the check constraint for this row is satisfied. If NumParts is NULL, the
result is unknown and the check constraint is also satisfied for this row.

A table check constraint can be defined at a column level or a table level. A check
constraint defined on a column is specified before the comma that ends the column
definition as shown below. A table constraint can be placed anywhere-- before, after, or
among the column descriptions. These rules apply for columns defined with either the
CREATE TABLEor ALTER TABLE statements.

For example, a column level check constraint on the Date column is defined as follows:

CREATE PUBLIC TABLE RecDB.Events
(SponsorClub CHAR(15),
Event CHAR(30),
Date DATE DEFAULT CURRENT_DATE No comma here

(CHECK (Date >='1990-01-01"),
Constraint Check_No_0Old_Events),

Time TIME,
Coordinator CHAR(20),
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members (MemberName, Club)
CONSTRAINT Events_FK)

IN RecFS;

140 Chapter4

Constraints, Procedures, and Rules
Using Integrity Constraints

However, the same constraint defined at the table level is defined as follows:

CREATE PUBLIC TABLE RecDB.Events
CHECK (Date >='1990-01-01" Check Constraint
CONSTRAINT Check_No_Old_Events
(SponsorClub CHAR(15),
Event CHAR(30),
Date DATE DEFAULT CURRENT_DATE,
Time TIME,
Coordinator CHAR(20),
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members (MemberName, Club)
CONSTRAINT Events_FK)
IN RecFS;

This table level constraint could also be defined after the Date or Time column, or at any
point in the parenthesized list. There is one difference between table and column level
check constraints: a column level check constraint must reference only the column on
which it is defined.

A check constraint that references more than one column must be defined at the table
level. For example, the constraint CHECK (Date >='1990-01-01' AND Time > '00:00.000')
must be defined at the table level because both the Date and Time columns are specified in
the check constraint.

A view check constraint is defined with the CREATE VIEWstatement using the following
syntax at the end of the view definition:

WITH CHECK OPTION [CONSTRAINT ConstraintiD]

The conditions of the SELECTstatement defining the view become the view check
constraint search conditions when the WITH CHECK OPTION clause is specified. A view
can have only one WITH CHECK OPTION. This check constraint checks all of the
conditions which are included in the SELECTstatement. These SELECTstatement
conditions serve two purposes. First, they originally define the view. They also define the
conditions of the check constraint that is applied when the underlying base table is
modified through the view. When a table is modified through a view, the view check
constraint is checked along with any table constraints. The view check constraint must be
true (not unknown) to ensure that all changes made through a view can still be displayed.
All underlying views are also checked, whether or not they are defined with check options.
Unique and referential constraints cannot be defined on views.

See Chapter 10, “SQL Statements A - D,” for the check constraint syntax, within the
syntax of CREATE TABLE, ALTER TABLE , or CREATE VIEWstatements.

Examples of Integrity Constraints

The schema example in this section shows the constraints among three tables: Clubs,
Members, and Events. The tables are created as PUBLIC so as to be accessible to any user

or program that can start a DBE session.
Constraints are placed on the tables to ensure that:

1. Events are coordinated by club members who are listed in the Members table

Chapter 4 141

Constraints, Procedures, and Rules
Using Integrity Constraints

2. Clubs sponsoring the events are listed in the Clubs table
3. Events cannot be scheduled earlier than the current date.

CREATE PUBLIC TABLE RecDB.Clubs
(ClubName CHAR(15) NOT NULL
PRIMARY KEY CONSTRAINT Clubs_PK,
ClubPhone SMALLINT,

Activity CHAR(18))
IN RecFS;

CREATE PUBLIC TABLE RecDB.Members
(MemberName CHAR(20) NOT NULL,
Club CHAR(15) NOT NULL,
MemberPhone SMALLINT,
PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
FOREIGN KEY (Club) REFERENCES RecDB.Clubs
CONSTRAINT Members_FK)
IN RecFS;

CREATE PUBLIC TABLE RecDB.Events
(Event CHAR(30),
Coordinator CHAR(20),
SponsorClub CHAR(15),
Date DATE DEFAULT CURRENT_DATE,
CHECK (Date >="1990-01-01"),
Time TIME,
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members
CONSTRAINT Events_FK)
IN RecFS;

Note that updating the Members table before the Clubs table could cause a referential
constraint error when error checking is at statement level. The RecDB.Members.Club
column references the RecDB.Clubs.ClubName column which is not yet updated. However,
if you deferred referential checking to the end of the transaction, no error would occur. A
value could then be inserted into the RecDB.Clubs.ClubName column that would resolve
the reference. When a COMMIT WORKtatement is executed, no constraint errors will exist.

The illustration in Figure 4-1. shows the referential constraints based on this sample
schema. The arrows point to the columns with unique constraints.

Figure 4-1. Referential Constraints in a Set of Tables

Clubs Table Members Table Events Table
ClubName - MemberName Event
Members_FK }\
ClubPhone T~ Club Events_EK\ |: Coordinator
Activity MemberPhone SponsorClub
Date
Time
LG200199_033

142 Chapter4

Constraints, Procedures, and Rules
Using Integrity Constraints

The Events table contains information about events. The combination of values in the
Coordinator and SponsorClub columns of the Events table must be either be null or match
the combination of values in the MemberName and Club columns of the Members table, as
shown by the Events_FK constraint.

The Members table contains the names of members and clubs. A member can be in more
than one club. For every Coordinator/SponsorClub pair of values exists a corresponding
MemberName/Club match.

The Clubs table contains information about clubs. For every club entry in the Members
table, a corresponding entry must exist in the Clubs table, as shown by the Members_FK
constraint.

Inserting Rows in Tables Having Constraints

There are two ways you can insert data in tables having constraints. You can insert values
in referenced columns before inserting values in referencing columns, or you can defer
constraint error checking in a transaction until all constraints referring to each other have
been resolved.

With the first method, using the tables defined in the previous example, the Clubs data
should be loaded first, then the Members data, because the MemberName column is
dependent on the ClubName column. The Events table should be loaded last as the
Coordinator and SponsorClub columns are dependent on the MemberName and Club
columns of the Members Table.

If the Clubs, Members, and Events tables were empty and you attempted to insert the
values in the order shown below, you would receive the following corresponding results:

Order | Table Values Result

1 Members | 'John Ewing', 'Energetics’, 6925 Violates Members_FK because
‘Energetics’ club does not exist in
the ClubName column of the

Clubs table

2 Members | 'John Ewing’', NULL, 6925 Violates NOT NULL on
Members_PK columns

3 Clubs ‘Energetics', 1111, 'aerobics' Valid

4 Clubs ‘Windjammers', 2222, 'sailing' Valid

5 Clubs ‘Energetics’, 3333, lo-impact’ Violates Clubs_PK because

'‘Energetics' is already in the
ClubName column of the Clubs
table (entries must be unique in a
primary key column)

6 Members | 'John Ewing', 'Energetics', 6925 Valid
7 Events ‘Energetics’, '‘advanced stretching’, Valid
'1986-12-04', '15:30:00', 'Martha
Mitchell’

Chapter 4 143

Constraints, Procedures, and Rules
Using Integrity Constraints

Order | Table Values Result

8 Members | 'Martha Mitchell', 'Energetics', 1605 Valid

9 Events 'Energetics', 'advanced stretching’, Violates check constraint which
'1986-12-04', '15:30:00', ‘Martha states that an event's date must
Mitchell’ be later or the same as January 1,

1990

10 Events ‘Energetics', ‘advanced stretching’, Valid
'1990-01-01','15:30:00','Martha
Mitchell’

Values cannot be inserted into Members or Events without the references being satisfied.
To insert rows, either NULLs must be inserted and then the tuples updated after the
referenced rows are inserted, or the referenced rows must be inserted first. Note that a
NULL cannot be inserted into the Members_FK column Club because that column also
participates in Members_PK -- and therefore was declared NOT NULL.

With the second method, you can also perform these inserts in one transaction, deferring
constraint checking to the end of the transaction. While you are inserting data, constraint
error violations are not reported because they will be resolved by the time the COMMIT
WORKtatement is executed. Use a SET CONSTRAINTSstatement after a BEGIN WORK
statement to defer constraint checking, as follows:

BEGIN WORK

SET REFERENTIAL CONSTRAINTS DEFERRED
Modify all tables that refer to each other.
COMMIT WORK

You can issue the SET CONSTRAINTSstatement to defer several types of operation at one
time. Refer to Chapter 12 , “SQL Statements S - Z,” for the syntax of the SET CONSTRAINTS
statement.

How Constraints are Enforced

Constraints are controlled and checked by ALLBASE/SQL once they are defined. Once a
constraint is placed on a column, ALLBASE/SQL performs the necessary checks each time
a value is inserted, altered, or deleted. By default, integrity constraints are enforced on a
statement level basis. That is, if an integrity constraint is not satisfied after the execution
of an INSERT, UPDATE, or DELETEstatement, then the statement has no effect on the
database and an error message is generated.

You can, however, use the SET CONSTRAINTS DEFERREBtatement to defer constraint
enforcement until either the end of a transaction or a SET CONSTRAINTS IMMEDIATE
statement is encountered. Deferred constraint enforcement avoids concern over the order
of inserting or updating when a foreign key and primary key exist in the same table or
different tables. The table can be modified without constraint violations being reported
until either the end of a transaction or SET CONSTRAINTS IMMEDIATEstatement is
encountered. While a constraint check is deferred, you are responsible for ensuring that
data placed in the database is free of constraint errors.

144 Chapter4

Constraints, Procedures, and Rules
Using Procedures

In addition, you can temporarily use the SET DML ATOMICITY statement to set the DML
error checking level to row level. However, you must handle partially processed statements
yourself, as statements that get errors will not undo their partial execution.

Constraint error checking is part of general error checking but you can override the
checking level by setting constraint checking to deferred. However, when you set
constraint checking back to IMMEDIATE, the level of constraint checking returns to the
current level specified by the most recent SET DML ATOMICITY statement.

Refer to Chapter 12 , “SQL Statements S - Z,” for detailed information on the SET DML
ATOMICITY and SET CONSTRAINTSstatements.

Using Procedures

An ALLBASE/SQL procedure consists of control flow and status statements together with
SQL statements that are stored as sections in the system catalog for later execution at the
user's request or through the firing of a rule. You can create a procedure through ISQL or
through an application program; and you can execute the procedure through ISQL,
through an application program, or through rules that are created separately. For more
information about rules, refer to the section “Using Rules,” later in this chapter.

Procedures offer the following features:

= They reduce communication between applications and the DBEnvironment, thereby
improving performance.

= They provide additional security by controlling exactly which operations users can
perform on database objects.

= Along with rules, they enable you to store business rules in the database itself rather
than coding them in application programs.

= They let you protect application programs from changes in the database schema.

Often, procedures are built to accommodate a set of rules defined on particular tables.
Although you can use procedures without rules, rules always operate in conjunction with
procedures. When you create a rule, the referenced procedure must already exist. So you
must create procedures first, then rules.

The following sections describe the use of procedures:

= Understanding Procedures

e Creating Procedures

= Executing Procedures

= Procedures and Transaction Management
= Using SQL Statements in Procedures

e Queries inside Procedures

= Using a Procedure Cursor in ISQL

Chapter 4 145

Constraints, Procedures, and Rules
Using Procedures

= Error Handling in Procedures
= Using RAISE ERROR in Procedures

< Recommended Coding Practices for Procedures

Understanding Procedures

Procedures (defined either in 1ISQL or through applications) can include many of the
operations available inside application programs. Within a procedure, you can use local
variables, issue most SQL statements, create looping and control structures, test error
conditions, print messages, and return data or status information to the caller. You can
pass data to and from a procedure through parameters. You create a procedure with the
CREATE PROCEDUREatement and execute it using an EXECUTE PROCEDURIEatement.
When it is no longer needed, you remove a procedure from the DBEnvironment with the
DROP PROCEDURiatement. You cannot execute a procedure from within another
procedure; however, a procedure can contain a statement that fires a rule that executes
another procedure. This is called chaining of rules. Refer to “Using Rules,” below.

To create a procedure, you must have RESOURCE or DBA authority. In order to invoke a
procedure, you need EXECUTE or OWNER authority for the procedure or DBA authority.
If the procedure is invoked through a rule, the rule owner needs EXECUTE or OWNER
authority for the procedure or DBA authority.

Creating Procedures

The following is a very simple example of procedure creation:

CREATE PROCEDURE ManufDB.FailureList
(Operator CHAR(20) NOT NULL,
FailureTime DATETIME NOT NULL,
BatchStamp DATETIME NOT NULL) AS
BEGIN
INSERT INTO ManufDB.TestMonitor
VALUES (:Operator, :FailureTime,
:BatchStamp);
END;

This example shows the definition of a procedure named FailureList owned by user
ManufDB. This procedure enters a row into the ManufDB.TestMonitor table when a
failure occurs during testing.

Three input parameters are declared with names and data types assigned--Operator,
FailureTime, and BatchStamp. At run time, these parameters accept actual values into the
procedure from the caller. The procedure body starts with the BEGIN keyword and
concludes with the END keyword. The procedure body consists of a single INSERT
statement that uses the parameters just as you would use host variables in an embedded
SQL program. The effect of a call to the procedure is to create a new row in a table named
ManufDB.TestMonitor containing a record of the current date and time along with the
name of the operator, and the batch stamp (unique identifier) of the batch of parts that
failed during testing.

146 Chapter4

Constraints, Procedures, and Rules
Using Procedures

Executing Procedures

You execute the procedure using an EXECUTE PROCEDUREatement. The EXECUTE
PROCEDUR&atement can be issued directly in ISQL or in an application program, or the
EXECUTE PROCEDURIiause can appear inside a CREATE RULEstatement. The following
shows an invocation of a procedure in an ISQL session:

isql=> EXECUTE PROCEDURE

> ManufDB.FailureList (USER, CURRENT_DATETIME,
> '1984-06-14 11:13:15.437");

isql=>

The following shows an invocation of the same procedure within an application program:

EXECUTE PROCEDURE
:ReturnCode = ManufDB.FailureList (:Operator,
CURRENT_DATETIME, :BatchStamp)

This example shows the use of a return status and host variables, which cannot be
employed in ISQL or with rules. For more information about using host variables and
return status with procedures, refer to the ALLBASE/SQL Advanced Application
Programming Guide chapter “Using Procedures in Application Programs.”

The next example shows an invocation of the ManufDB.FailureList procedure through a
CREATE RULEstatement:

isql=> CREATE RULE AFTER INSERT TO ManufDB.TestData

> WHERE PassQty < TestQty

> EXECUTE PROCEDURE

> ManufDB.FailureList(USER, CURRENT_DATETIME, BATCHSTAMP);

isql=>
In this case, the invocation of the procedure takes place when an INSERT operation is
performed on ManufDB.TestData for a batch of parts in which there were some failures.
When executing the procedure from within a rule, you can refer to the names of columns in
the table on which the rule is triggered. More information about invoking procedures from
rules appears in the section “Techniques for Using Procedures with Rules,” later in this
chapter.

Procedures and Transaction Management

A procedure that is not executed from within a rule can execute any of the following
transaction management statements:

BEGIN WORK
COMMIT WORK
ROLLBACK WORK
ROLLBACK WORK TO SAVEPOINT
SAVEPOINT

Since there are no restrictions on the use of these statements, you must ensure that
transactions begin and end in appropriate ways. One recommended practice is to code
procedures that are atomic, that is, completely contained in a transaction which the
procedure ends with either a COMMITor a ROLLBACKas its final statement. An alternative
recommended practice is to code procedures without any transaction management
statements at all. Note that when you issue the EXECUTE PROCEDUREatement in an

Chapter 4 147

Constraints, Procedures, and Rules
Using Procedures

application, and if a transaction is not already in progress, a transaction is begun. If a
transaction is already in progress at the time EXECUTE PROCEDURE issued, and the
procedure issues either a COMMITor a ROLLBACKstatement to end the transaction, the
entire transaction, including the portion in the application, is affected.

In all cases, it is important to document procedures carefully. Refer to the section
“Recommended Coding Practices for Procedures” later in this chapter.

When a procedure is executed from within a rule, all the transaction management
statements are disallowed and result in an error.

Using SQL Statements in Procedures

Within a procedure, you can use most of the SQL statements that are allowed in embedded
SQL application programs, including COMMIT WORK, ROLLBACK WCiK ROLLBACK WORK
TO SAVEPOINT. The following (including dynamic SQL statements) are not allowed in
procedures:

ADVANCE

BEGIN DECLARE SECTION
BULK statements

CLOSE USING

COMMIT WORK RELEASE
CONNECT
CREATE PROCEDURE (including inside CREATE SCHEMA)

DECLARE CURSOR for EXECUTE PROCEDURE

DESCRIBE
DISCONNECT

END DECLARE SECTION
EXECUTE

EXECUTE IMMEDIATE
EXECUTE PROCEDURE
GENPLAN

INCLUDE

OPEN USING

PREPARE

RELEASE

ROLLBACK WORK RELEASE
SET CONNECTION

SET DML ATOMICITY
SET MULTITRANSACTION
SET SESSION

SET TRANSACTION
SQLEXPLAIN

START DBE

STOP DBE

148 Chapter4

Constraints, Procedures, and Rules
Using Procedures

In procedures that are invoked by execution of rules, the following statements result in an
error:

BEGIN WORK
COMMIT WORK
ROLLBACK WORK
ROLLBACK WORK TO SAVEPOINT
SAVEPOINT

Another set of statements is provided for use only within procedures:

Assignment (=)
BEGIN...END
DECLARE Variable
GOTO
IF...THEN...ELSEIF...ELSE...ENDIF
Labeled Statements
PRINT
RETURN
WHILE...DO...ENDWHILE

Inside procedures, statements are terminated with a semicolon (;).

You can define parameters for passing information into and out of a procedure. In
addition, procedures let you store data in local variables, which are declared inside the
procedure with the DECLAREVariable statement.

Specifying Parameters

A parameter represents a value that is passed between a procedure and an invoking
application or rule. You define formal parameters with the CREATE PROCEDUREatement.

When executing a procedure directly, you pass input parameter values in the EXECUTE
PROCEDURS&tatement, and output parameter values are returned when the procedure
terminates. However, when using a procedure cursor, input parameter values must be set
before opening the cursor, and output parameter values are returned when the CLOSE
statement executes.

Within the body of the procedure, a parameter name is prefixed with a colon (;).

You can specify up to 1023 parameters of any SQL data type except the LONG data types.
Default values and nullability may be defined just as in a CREATE TABLEstatement. If a
language is specified for a parameter defined as a CHAR or VARCHAR type, it must be
either the language of the DBEnvironment or else NATIVE 3000. The following shows a
procedure with a single parameter:

CREATE PROCEDURE Process10 (PartNumber CHAR(16)) AS
BEGIN

END;

Chapter 4 149

Constraints, Procedures, and Rules
Using Procedures

If you wish to return values to a calling application program, specify the parameter for
OUTPUT in both the CREATE PROCEDURRd EXECUTE PROCEDUREtements. If no input
value is required for a parameter, specify OUTPUT ONLY. Note that no OUTPUT option is
allowed in the EXECUTE PROCEDURfatement in ISQL nor in the EXECUTE PROCEDURE
clause of the CREATE RULEstatement.

Using Local Variables in Procedures

A local variable holds a data value within a procedure. Local variable declarations must
appear at the beginning of the main body of the procedure using the DECLAREtatement,
and they must specify a data type and size. Optionally, the DECLAREtatement can include
nullability, language, and a default value. The following are typical examples:

DECLARE LastName CHAR(40);
DECLARE SalesPrice DECIMAL(6,2);
DECLARE LowPrice, HighPrice DECIMAL(6,2) NOT NULL;
DECLARE LocationCode INTEGER NOT NULL,;
DECLARE Quantity INTEGER DEFAULT 0;

Types and sizes are the same as for column definitions, except that you cannot specify a
LONG local variable. You can declare several variables in the same DECLAREtatement by
separating them with a comma provided they share the same data type, size, nullability,
native language, and default value. Within the body of the procedure, a local variable
name is prefixed with a colon (:). A local variable name cannot duplicate a parameter
name.

Local variables function in procedures much as host variables function in application
programs, but the two are not interchangeable. That is, you cannot use host variables from
the application within the body of the procedure definition nor can you use local variables
in the application. Since the application's host variables cannot be directly accessed from
within the procedure, you must use local variables or parameters in the INTO clause of
any FETCH, REFETCH or SELECTstatement within a procedure. Then, if necessary, you
transfer data to a calling application through output parameters. If multiple rows must be
returned to the calling application, a SELECTstatement with no INTO clause should be
used in conjunction with a procedure cursor. Further information regarding procedure
cursors is found in the “Using Procedures in Application Programs” chapter of the
ALLBASE/SQL Advanced Application Programming Guide and in this manual under
related syntax statements (ADVANCE, CLOSE, CREATE PROCEDURE, DECLARE CURSOR,
DESCRIBE, EXECUTE PROCEDURE, FETCH, OPEN.

In contrast to host variables, local variables do not use indicator variables to handle NULL
values. A local variable itself contains the null indicator, if the variable is nullable.
Declaring a local variable to be NOT NULL makes it work like a host variable that is used
without an indicator variable.

150 Chapter4

Constraints, Procedures, and Rules
Using Procedures

Using Built-in Variables in Procedures

The following built-in variables can be used in error handling:
Table 4-1. Built-in Variables in Procedures

Variable Data Type Description

::sglcode INTEGER DBERR number returned after the execution of an SQL
statement, O if no errors.

::sqlerrd2 INTEGER Number of rows processed in an SQL statement.

::sglwarn0 CHAR(1) Set to “W” if an SQL warning was detected.

::sglwarnl CHAR(1) Set to “W” if a character string value was truncated when being
stored in a variable or parameter.

::sglwarn2 CHAR(1) Set to “W” if a null value was eliminated from the argument set of
an aggregate function.

::sglwarn6é CHAR(1) Set to “W” if the current transaction was rolled back.

iractivexact | CHAR(1) Indicates whether a transaction is in progress (“Y”) or not (“N”).

For information about transactions, see “Managing Transactions”
in the chapter “Using ALLBASE/SQL.”

The built-in variables are read-only, and are not available outside of procedures. The first
six of these have the same meaning that they have as fields in the SQLCA in application
programs. They are always prefixed by a double colon to differentiate them from any local
variables or parameters.

Note that in procedures, sqlerrd2 returns the number of rows processed for all host
languages. However, in application programs, sqlerrd3 is used in COBOL, Fortran, and
Pascal, while sqglerrd2 is used in C.

For procedures returning multiple row result set(s), note that the built-in variables in the
procedure do not reflect the status of any FETCHor ADVANCEtatements issued by the
application to manipulate a procedure cursor. After issuing such a statement, the
application should examine the appropriate fields of the SQLCA to determine status and
handle any errors.

Queries inside Procedures

Within a procedure, you can declare parameters or local variables to process either single
row or multiple row query results. Multiple row query results within a procedure must be
processed one row at a time, by means of a select cursor. A select cursor is a pointer
indicating the current row in a set of rows retrieved by a SELECTstatement. Bulk
processing is not available for a select cursor within a procedure.

Multiple row query results for queries within a procedure can be processed by means of a
procedure cursor declared in a calling application. A procedure cursor is a pointer used
to indicate the current row in a set of rows retrieved by a set of SELECTstatements within
a procedure. When you issue an EXECUTE PROCEDURiEatement in ISQL, and the

procedure contains queries with no INTO clause, ISQL uses a procedure cursor to process

Chapter 4 151

Constraints, Procedures, and Rules
Using Procedures

the query results. Further information regarding procedure cursors is found in the “Using
Procedures in Application Programs” chapter of the ALLBASE/SQL Advanced
Application Programming Guide and in this manual in the following section, “Using a
Procedure Cursor in ISQL,” and under related syntax statements (ADVANCE, CLOSE,
CREATE PROCEDURE, DECLARE CURSOR, DESCRIBE, EXECUTE, EXECUTE IMMEDIATE
EXECUTE PROCEDURE, FETCH, OPEN

The following sections discuss the use of a simple select, a select cursor, and an 1SQL
procedure cursor.

Using a Simple SELECT

A simple SELECTstatement with an INTO clause returns only a single row. If more than
one row gualifies for the query result, only the first row is put into the parameter or local
variable specified in the INTO clause, and a warning is issued. Example:

CREATE PROCEDURE PurchDB.DiscountPart(PartNumber CHAR(16))
AS BEGIN
DECLARE SalesPrice DECIMAL(6,2);

SELECT SalesPrice INTO :SalesPrice
FROM PurchDB.Parts
WHERE PartNumber = :PartNumber;

IF ::sglcode = 0 THEN
IF :SalesPrice > 100. THEN
:SalesPrice = :SalesPrice*.80;
INSERT INTO PurchDB.Discounts
VALUES (:PartNumber, :SalesPrice);
ENDIF;
ENDIF;
END;

The procedure inserts a row into the PurchDB.Discounts table containing the part number
and 80% of the sales price if the current price of a given part is over $100. The parameter
PartNumber supplies a value for the predicate in the SELECTstatement and later supplies
a value for the VALUES clause in the INSERT statement. The local variable :SalesPrice is
used for the single-row result of the query on the Parts table, and it is also used in the
expression in the VALUES clause of the INSERT statement. The procedure tests if the
built-in variable ::sqlcode = 0 to ensure that the SELECTwas successful before inserting
data into the PurchDB.Discounts table.

Using a Select Cursor

If your procedure must process a set of rows one at a time, you can use a cursor to loop
through the set and perform desired operations, as in the following:

CREATE PROCEDURE PurchDB.DiscountAll(Percentage DECIMAL(4,2))
AS BEGIN

DECLARE SalesPrice DECIMAL(6,2);

DECLARE C1 CURSOR FOR SELECT SalesPrice FROM PurchDB.Parts
FOR UPDATE OF SalesPrice;

OPEN C1;

WHILE ::sqglcode =0 DO
FETCH C1 INTO :SalesPrice;

152 Chapter4

Constraints, Procedures, and Rules
Using Procedures

IF ::sglcode = 0 THEN
IF :SalesPrice < 1000. THEN
UPDATE PurchDB.Parts
SET SalesPrice = :SalesPrice*:Percentage
WHERE CURRENT OF C1;
ELSEIF :SalesPrice >= 1000. THEN
UPDATE PurchDB.Parts
SET SalesPrice = :SalesPrice*(:Percentage - .05)
WHERE CURRENT OF C1;
ENDIF;
ENDIF;
ENDWHILE;
IF ::sglcode = 100 THEN
PRINT 'Success';
CLOSE C1,
RETURN;
ELSE
PRINT 'Error in Fetch or Update’;
CLOSE C1,;
RETURN;
ENDIF;
END;

This procedure discounts the prices of all part numbers by a specified percentage if the
current sales price is less than $1000, and it discounts prices by five percentage points for
part numbers whose current price is greater than or equal to $1000. The procedure
displays a message indicating success or failure.

The use of select cursors for multiple row query results is presented in great detail in the
ALLBASE/SQL application programming guides. Refer to the chapter “Processing with
Cursors” in the guide for the programming language you use.

Using a Procedure Cursor in ISQL

When you issue an EXECUTE PROCEDUREtement in ISQL for a procedure containing one
or more SELECTstatements with no INTO clause, ISQL uses a procedure cursor to display
the query results.

For example, create a procedure as follows:

CREATE PROCEDURE PurchDB.PartNo2 AS
BEGIN
SELECT *
FROM PurchDB.Parts
WHERE PartNumber LIKE '11%'";

SELECT PartNumber, BinNumber, QtyOnHand
FROM PurchDB.Inventory
WHERE PartNumber LIKE '11%";
END;

Chapter 4 153

Constraints, Procedures, and Rules
Using Procedures

When you execute the procedure, the following is displayed:

execute procedure purchdb.partno2;

+ +
PARTNUMBER |PARTNAME |[SALESPRICE
+ +
1123-P-01 |Central Processor | 500.00
1133-P-01 |Communication Processor | 200.00
1143-P-01 |Video Processor | 180.00
1153-P-01 |Graphics Processor | 220.00

Number of rows selected is 4
U[p], dlown], I[eft], r[ight], t{op], b[ottom], pr[int] <n>, e[nd] or n[ext] >
Entering n[ext] moves you from one SELECTstatement to the next. You would see the
following:

execute procedure purchdb.partno2;

+ +

PARTNUMBER |BINNUMBER|QTYONHAND

+ +
1123-P-01 | 4003 5
1133-P-01 | 4007 11
1143-P-01 | 4016 8
1153-P-01 | 4027] 5

Number of rows selected is 4
Ulp], d[own], I[eft], rlight], t[op], b[ottom], pr[int] <n>, e[nd] or n[ext] >

Entering n[ext] when the last result set is displayed produces a message like the following:

End of procedure result sets.
Procedure return status is 0.
isgl=>
Note that although you can move back and forward through the current result set, you
cannot move back to redisplay a previous result set.

Error Handling in Procedures Not Invoked by Rules

You must provide explicit mechanisms for error handling inside procedures. The
techniques you use for this depend on whether or not the procedure is invoked by the firing
of a rule. This section describes error handling within a procedure that is not invoked by a
rule. For information about error handling in procedures invoked by rules, see the section
“Error Handling in Procedures Invoked by Rules,” below. For information about error
handling in an application that invokes a procedure, see the section “Using Procedures in
Application Programs” in the ALLBASE/SQL Advanced Application Programming Guide.

By default, when an error occurs in an SQL statement in a procedure, the effects of the
SQL statement are undone, but the procedure continues on to the next statement. If you
want errors in SQL statements to cause an immediate error return from the procedure,
use the WHENEVERatement with the STOP option.

154 Chapter4

Constraints, Procedures, and Rules
Using Procedures

The syntax for the WHENEVER as follows:

WHENEVER (SQLERROR
SQLWARNING
NOT FOUNDHSTOP
CONTINUE
GOTO [:] Label
GO TO[:] Label }

The STOP option causes the current transaction to be rolled back, and the procedure's
execution is terminated. If an error occurs in evaluating the condition in an IF or WHILE
statement, or in evaluating the expression in a parameter or variable assignment
statement, the execution of the procedure terminates, and control is returned to the caller
with SQLCODE set to the last error encountered inside the procedure.

Within the procedure, the entire message buffer is not available. That is, SQLEXPLAIN
cannot be used. The built-in variable ::sgicode holds only the error code from the first
message in the message buffer (guaranteed to be the most severe error).

In procedures, as elsewhere in ALLBASE/SQL, the message buffer is cleared out only
before executing an SQL statement. That is, execution of the following do not cause the
message buffer to be reset:

= Assignment

- GOTO

- IF

e PRINT

e RETURN

- WHILE

The argument of any PRINT statement is passed back to the caller in the message buffer.
When the message buffer is reset, PRINT statements are not removed.

Runtime errors are accompanied by a generic error message indicating, by number, which
procedure statement caused the error. All SQL statements in a procedure and all non-SQL
statements except variable declarations, ENDIF, ELSE, ENDWHILE, END , and THEN are
numbered consecutively from the beginning of the procedure. The following is an example
of a sequence of errors returned when an EXECUTE PROCEDUREatement fails:

Integer divide by zero. (DBERR 2601)

Error occurred executing procedure PURCHDB.DISCOUNT statement 2.(DBERR 2235)
Error occurred during evaluation of the condition in an IF or WHILE
statement or the expression in a parameter or variable assignment.
Procedure execution terminated. (DBERR 2238)

Using RAISE ERROR in Procedures

You can use the RAISE ERRORtatement to generate an error within a procedure and make
a message available to users, as in the following example:

RAISE ERROR 7500 MESSAGE 'Error Condition’;
RETURN 1,

The RAISE ERRORstatement causes the message to be stored in the message buffer, and

Chapter 4 155

Constraints, Procedures, and Rules
Using Procedures

the RETURNtatement causes an immediate return from the procedure following the error.
Following the return from a procedure, an application program can retrieve the messages
from raised errors by using the SQLEXPLAINstatement. Since SQLCODE is 0 in this case
(because the procedure executed correctly; it was an SQL statement within it that received
the error), you should execute SQLEXPLAINin a loop that tests SQLWARN]O0], as follows:

while (sglwarn[0]=="W")
EXEC SQL SQLEXPLAIN :SQLMessage;

However, SQLEXPLAINcannot be used within the procedure itself. You should document the
cause of all errors generated by the RAISE ERRORstatement in a procedure so that the
procedure caller can understand the error condition.

NOTE The behavior of errors, including RAISE ERROR in procedures called by rules
differs somewhat from that described here. Refer to “Using RAISE ERROR in
Procedures Invoked by Rules” for more information.

Recommended Coding Practices for Procedures

The use of procedures can have indirect consequences that the procedure writer and the
procedure caller may not anticipate. Problems are most likely to arise in the areas of
transaction management, cursor management, error handling, and DBEnvironment
settings. In order to minimize difficulty, good communication between the procedure writer
and the caller of the procedure is essential. Thus procedures should be carefully
documented as to what is expected from the calling application, and applications should be
carefully documented as to what they expect a called procedure to do and not to do.

Within a procedure, you can use 1ISQL comments or comment notation for the
programming language of an application that invokes a procedure. See the
ALLBASE/ISQL Reference Manual or the appropriate ALLBASE/SQL application
programming guide for information about comments.

The following practices are suggested to ensure that a procedure is always called under the
same conditions and with the same expectations:

= If the procedure might execute a COMMITor ROLLBACKthe application should issue a
COMMITor ROLLBACHKbefore calling the procedure. Any cursors opened in the
application with the KEEP cursor option and subsequently committed should be closed
and committed before the application calls the procedure.

= Documentation of the calling application should clearly state the following:

— Whether the procedure will be called with a transaction open.
— Whether the procedure is expected to have COMMITor ROLLBACKkstatements.
— Whether the procedure is expected to be atomic.

The following practices are suggested to ensure that a procedure will always execute as
expected:

= Procedure execution should not span transaction boundaries. Either the procedure
should be treated as an atomic transaction, that is, it should always issue a COMMITor

156 Chapter4

Constraints, Procedures, and Rules
Using Rules

ROLLBACKstatement upon completion of work and before termination; or it should be
entirely contained within a transaction, that is, it should not contain any COMMITor
ROLLBACKkKstatements.

If the procedure executes any COMMITor ROLLBACKstatements, it should be treated as
a transaction. This means that the last statement accessing the DBEnvironment within
the procedure should be a COMMIT WORKr a ROLLBACK WORKktatement.

If the procedure uses any cursors, they should be closed before termination. If the
procedure opens any cursors with the KEEP option, and subsequently executes any
COMMITstatements, the cursors should be closed and committed before termination.

A procedure should not change the application's environment without restoring it upon
termination. The application's environment includes settings for isolation level,
constraint checking, timeout values, and rule firing.

Documentation of the procedure should clearly state the following:

— Whether or not a transaction should already exist at the time of procedure execution.
— Whether any COMMITor ROLLBACKstatements will be executed by the procedure.

— Whether the procedure modifies any environment settings.

— What types of errors are handled by the procedure and how they are handled.

— Meanings of all possible return status values.

— Meaning of any errors returned by RAISE ERRORstatements.

Using Rules

Rules allow you to tie procedures to data manipulation statements. Rules are more flexible
than simple integrity constraints, enabling you to incorporate complex business rules into
the structure of a DBEnvironment with minimal application programming. The following
sections describe the use of rules:

Understanding Rules

Creating Rules

Techniques for Using Procedures with Rules

Error Handling in Procedures Invoked by Rules

Using RAISE ERRORIn Procedures Invoked by Rules
Enabling and Disabling Rules

Special Considerations for Procedures Invoked by Rules

Differences between Rules and Integrity Constraints

Chapter 4 157

Constraints, Procedures, and Rules
Using Rules

Understanding Rules

Rules allow you to define generalized constraints by invoking procedures whenever
specified operations are performed on a table. The rule fires, that is, invokes a procedure,
each time the specified operation (such as INSERT, UPDATE, or DELETH is performed and
the rule's search condition is satisfied.

Rules tie procedures to particular kinds of data manipulation statements on a table. This
permits data processing to be carried out by the DBEnvironment itself. The effect is less
application coding and more efficient use of resources. This is especially important for
networked systems.

Rules will fire under the following conditions:

= The rule's statement types must include the statement type of the current statement.
Statement types are INSERT, DELETE , and UPDATE (You can have more than one
statement type per rule.)

= If the rule's statement type includes UPDATE and if the StatementType clause
includes a list of columns in the table, and if the current statement is an update, it must
be on at least one of the listed columns of that table.

< The rule's search condition must evaluate to TRUE for the current row of the current
statement.

A rule fires once for each row operated on by the current statement that satisfies the rule's
search condition.

Creating Rules

A rule is defined in a CREATE RULEstatement, which identifies a table, types of data
manipulation statements, a firing condition, and a procedure to be executed whenever the
condition evaluates to TRUE and the data manipulation statement is of the right type.

The following is a simple example of a rule tied to deletions from the Parts table:

CREATE RULE PurchDB.RemovePart

AFTER DELETE FROM PurchDB.Parts

WHERE SUBSTRING(PartNumber,1,4) < > 'XXXX'

EXECUTE PROCEDURE PurchDB.ListDeletes (OLD.PartNumber);

The table on which the rule is defined is PurchDB.Parts. The statement type required to
trigger the procedure is the DELETEoperation. The search condition that must be satisfied
in addition to the statement type of DELETEis that the first four characters in PartNumber
must not be “XXXX.” The procedure to be executed is PurchDB.ListDeletes, shown in the
following:

CREATE PROCEDURE PurchDB.ListDeletes (PartNumber CHAR(16) NOT NULL) AS
BEGIN

INSERT INTO PurchDB.Deletions

VALUES (:PartNumber, CURRENT_DATETIME);
END;

When a row containing a part number that does not start with XXXXis deleted from the
Parts table, its number is inserted along with the current date and time, in the
PurchDB.Deletions table.

158 Chapter4

Constraints, Procedures, and Rules
Using Rules

Techniques for Using Procedures with Rules

One common use of the rule-and-procedure combination is to enforce integrity within a
DBEnNvironment. This can be done in different ways, depending on your needs. The
following sections contrast two approaches to integrity enforcement:

e Using Rule Chaining

= Using a Single Procedure

Using a Chained Set of Procedures and Rules

The following example uses a chained set of procedures and rules to remove all references
to a part number once it has been deleted from the database. In this case a rule fires a
procedure, which causes another delete, which causes another rule to invoke an additional
procedure, and so on.

CREATE PROCEDURE PurchDB.RemovePart (PartNum CHAR(16) NOT NULL)
AS BEGIN

DELETE FROM PurchDB.Inventory WHERE PartNumber = :PartNum;

DELETE FROM PurchDB.SupplyPrice WHERE PartNumber = :PartNum;
END;

CREATE RULE PurchDB.RemovePart
AFTER DELETE FROM PurchDB.Parts
EXECUTE PROCEDURE PurchDB.RemovePart (OLD.PartNumber);

CREATE PROCEDURE PurchDB.RemoveVendPart (VendPartNum CHAR(16) NOT NULL)
AS BEGIN
DELETE FROM PurchDB.Orderltems WHERE VendPartNumber = :VendPartNum;
DELETE FROM ManufDB.SupplyBatches WHERE VendPartNumber = :VendPartNum;
END;

CREATE RULE PurchDB.RemoveVendPart
AFTER DELETE FROM PurchDB.SupplyPrice
EXECUTE PROCEDURE PurchDB.RemoveVendPart (OLD.VendPartNumber);

CREATE PROCEDURE ManufDB.RemoveBatchStamp (BatchStamp DATETIME NOT NULL)
AS BEGIN

DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
END;

CREATE RULE ManufDB.RemoveBatchStamp
AFTER DELETE FROM ManufDB.SupplyBatches
EXECUTE PROCEDURE ManufDB.RemoveBatchStamp (OLD.BatchStamp);

Chapter 4 159

Constraints, Procedures, and Rules
Using Rules

Executing the Chained Set of Procedures and Rules

Whenever a user performs a DELETEoperation on PurchDB.Parts, the procedures and rules
are executed on each row of each table for the identified part number in the following
order:

Delete from Parts table.

Fire rule RemovePart .

Invoke procedure RemovePart .
Delete from Inventory table.
Delete from SupplyPrice table.
Fire rule RemoveVendPart .

Invoke procedure RemoveVendPart .
Delete from Orderltems table.

© © N o g s~ w DN

Delete from SupplyBatches table.
10.Fire rule RemoveBatchStamp .
11.Delete from TestData table.

Using a Single Procedure with Cursors

The following example uses a single rule and one procedure to remove all references to a
part number once it has been deleted from the database. In this case, a single procedure
RemovePart determines which rows need to be deleted in the other tables once a part
number is deleted from the Parts table. Since this method only uses one rule and one
procedure, it would be effective only when a DELETEis done from the Parts table. Deletions
of part numbers from other tables would not trigger any rules at all.

The single procedure uses two cursors to scan the PurchDB.SupplyPrice and
ManufDB.SupplyBatches tables for entries that correspond to a deleted part number. The
procedure then performs deletions of qualifying rows in PurchDB.Orderltems and
ManufDB.TestData.

CREATE PROCEDURE PurchDB.RemovePart(PartNum CHAR(16) NOT NULL)
AS BEGIN
DECLARE VendPartNum CHAR(16) NOT NULL;
DECLARE BatchStamp DATETIME NOT NULL;
DECLARE SupplyCursor CURSOR FOR
SELECT VendPartNumber FROM PurchDB.SupplyPrice
WHERE PartNumber = :PartNum;
DECLARE BatchCursor CURSOR FOR
SELECT BatchStamp FROM ManufDB.SupplyBatches
WHERE VendPartNumber = :VendPartNum;

DELETE FROM PurchDB.Inventory WHERE PartNumber = :PartNum;

160 Chapter4

Constraints, Procedures, and Rules
Using Rules

Open the first cursor:

OPEN SupplyCursor;
FETCH SupplyCursor INTO :VendPartNum;

WHILE ::sqlerrd2 = 1 DO
DELETE FROM PurchDB.Orderltems WHERE VendPartNumber = :VendPartNum;

Open the second cursor:

OPEN BatchCursor;
FETCH BatchCursor INTO :BatchStamp;

WHILE ::sqlerrd2 = 1 DO
DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
FETCH BatchCursor INTO :BatchStamp;

ENDWHILE;

CLOSE BatchCursor;

DELETE FROM ManufDB.SupplyBatches WHERE VendPartNumber = :VendPartNum;
FETCH SupplyCursor INTO :VendPartNum;
ENDWHILE;
CLOSE SupplyCursor;
DELETE FROM PurchDB.SupplyPrice WHERE PartNumber = :PartNum;
END;

The single rule that invokes the above procedure is as follows:

CREATE RULE PurchDB.RemovePart
AFTER DELETE FROM PurchDB.Parts
EXECUTE PROCEDURE PurchDB.RemovePart (OLD.PartNumber);

Error Handling in Procedures Invoked by Rules

When invoked by a rule, a procedure is executed inside the execution of a data
manipulation statement. Therefore, if the procedure encounters an error, the effect of the
procedure and the effect of the data manipulation statement as a whole are undone.
Statements that may fire rules always execute with statement atomicity, regardless of the
current general error checking level set by the SET DML ATOMICITY statement.

Inside procedures invoked by rules, SQL errors have the usual effect of issuing messages,
halting execution of the current statement, rolling back a transaction, or ending a
connection. In addition, even if the error does not result in rolling back a transaction or
losing a connection, it results in the undoing of the effects of all procedures invoked in a
chain by the current statement, and it results in the undoing of the effects of all rules
triggered by the current statement. Thus the entire execution of the statement is undone.

Using RAISE ERROR in Procedures Invoked by Rules

Within a procedure which is triggered by a rule, the RAISE ERRORtatement can be used to
generate an error, which causes an immediate return and undoes the statement that
triggered the rule. The text of the RAISE ERRORnessage can provide useful information to
the user such as the procedure name, the exact reason for the error, the location in the

Chapter 4 161

Constraints, Procedures, and Rules
Using Rules

procedure, or the name of the rule that invoked the procedure (if the procedure is only fired
by one rule).

Suppose the following rule executes whenever a user attempts to delete a row in the
Vendors table:

CREATE RULE PurchDB.CheckVendor
AFTER DELETE FROM PurchDB.Vendors
EXECUTE PROCEDURE PurchDB.DelVendor (OLD.VendorNumber);

The procedure PurchDB.DelVendor checks for the existence of the use of a vendor number
elsewhere in the database, and if it finds that the number is being used, it rolls back the
delete on the Vendors table. The procedure is coded as follows:

CREATE PROCEDURE PurchDB.DelVendor (VendorNumber INTEGER NOT NULL) AS
BEGIN
DECLARE rows INTEGER NOT NULL,;

SELECT COUNT(*) INTO :rows FROM PurchDB.Orders

WHERE VendorNumber = :VendorNumber;
IF :rows <> 0 THEN

RAISE ERROR 1 MESSAGE 'Vendor number exists in the "Orders" table.";
ENDIF;

SELECT COUNT(*) INTO :rows FROM PurchDB.SupplyPrice
WHERE VendorNumber = :VendorNumber;
IF :rows <> 0 THEN

RAISE ERROR 1 MESSAGE 'Vendor number exists in "SupplyPrice" table.";
ENDIF;
END;

PurchDB.DelVendor checks for the existence of the use of a vendor number in two tables:
PurchDB.Orders and PurchDB.SupplyPrice. If it retrieves any rows containing the vendor
number, it returns an error code and a string of text to the caller by means of the RAISE
ERRORtatement.

The following shows the effect of the rule and procedure when you attempt to delete a row
from the Vendors table in ISQL.:

isgl=> DELETE FROM purchdb.vendors WHERE vendornumber = 9006;
Vendor number exists in the "Orders" table.

Error occurred executing procedure PURCHDB.DELVENDOR statement 3.
(DBERR 2235)

INSERT/UPDATE/DELETE statement had no effect due to execution errors.
(DBERR 2292)

Number of rows processed is 0

isql=>

The DELETEstatement triggers the rule, which executes the procedure

PurchDB.DelVendor. If the vendor number that is to be deleted is not found in either of the
two tables, sqglcode is 0, and no messages are displayed.

When a procedure is called through the use of a rule, the procedure exits as soon as an
error occurs. This can be either an ordinary SQL error (but not a warning), or a
user-defined error produced with the RAISE ERRORstatement. After an error return, the
statement that fired the rule is undone, and the operation of all other rules fired by the

162 Chapter4

Constraints, Procedures, and Rules
Using Rules

statement is also undone.

In application programs, you use SQLEXPLAINto retrieve the messages generated by RAISE
ERRORNnd other SQL statements.

Enabling and Disabling Rules

Rule processing takes place by default in the DBEnvironment. However, the DBA can use
the following statement to disable the operation of rules in the current session:

isql=> disable rules;

This statement, which is useful in debugging, should be employed only with great care,
since it can affect the integrity of the database, if rules are being used to control data
integrity. To restore the operation of rules in the session, use the following statement:

isql=> enable rules;

Rules are not fired retroactively when the ENABLE RULESstatement is issued after the
DISABLE RULES statement has been issued.

Special Considerations for Procedures Invoked by Rules

Procedures operate somewhat differently when invoked by rules than when invoked
directly by a user. The differences are most pronounced in several areas:

< Transaction handling.

= Effects of rule chaining.

= Invalidation of sections.

= Changing session attributes.

= Performance considerations.

Transaction Handling in Rules

Since rules are fired by data manipulation statements that are already being executed, a
transaction is always active when a rule invokes a procedure. Therefore, BEGIN WORKand
BEGIN ARCHIVEstatements will result in errors in a procedure invoked by a rule. The error
will cause the rule to fail and the user's statement to be undone.

COMMIT WORK, COMMIT ARCHIVE, ROLLBACK WORK, ROLLBACK ARCHIVE, SAVERDINT
ROLLBACK TO SAVEPOINsEatements will generate errors when encountered in procedures
triggered by rules. The error causes the user's statement and all subsequent rule-driven
statements to be undone. If you wish to include COMMIT WORK, COMMIT ARCHIVE,
ROLLBACK WORK, ROLLBACK ARCHIVE, SAVEPOINT or ROLLBACK TO SAVEPOINT
statements in the procedure, because the procedure will be executed by users directly as
well as by rules, you should include these statements within a condition that will only be
true for non-rule invocation. To do this, add a flag parameter to the procedure. Have users
invoking the procedure pass in a fixed value (such as 0), and have rules invoking the
procedure pass in a different value (such as 1).

Chapter 4 163

Constraints, Procedures, and Rules
Using Rules

Then the procedure can be coded with IF statements like the following:

if :Flag = 0 then
commit work;
endif;

The flag check ensures that the rule will not execute statements that would cause it to
generate an error when the procedure is invoked by a rule, while user calls can commit or
roll back changes automatically.

Effects of Rule Chaining

Procedures invoked by rules can include data manipulation statements that invoke rules
that trigger the execution of other procedures. Excessive chaining of rules in this fashion
uses additional system resources. When the chain length exceeds 20, an error occurs,
which causes the user's statement to be undone. To avoid problems, be sure to trace the
dependencies of statements within procedures invoked by rules so as to:

< avoid an endless loop of rule chaining.
< avoid exceeding a rule depth greater than the maximum of 20.
= control and maintain the rule system with minimal complexity.

To assist in tracing, the DBA can use the SET PRINTRULES ON statement to display the
names of rules being fired.

The rule developer should also determine if multiple rules will apply to the same data
manipulation statement. An analysis of the rule type and WHERE conditions can be done
to see whether any rules overlap in statement type on a given table, and whether their
conditions are mutually exclusive or not. The rules are checked for each row an INSERT,
DELETE or UPDATEstatement affects. If multiple rules can affect a single row, the order of
their execution is not guaranteed to be fixed if the section is ever revalidated. To avoid
potential problems, it is best to ensure that rules affecting the same statement have
mutually exclusive WHERE conditions or that the order of execution of the procedures
they invoke is unimportant.

Invalidation of Sections

Procedures can include data definition statements that affect the execution of procedures
and rules by invalidating sections. Use care when issuing the following statements inside
procedures:

< DROP PROCEDUREFK a rule depends on the procedure, all sections checking that rule
will be invalidated by the DROP PROCEDUR&atement, and will fail to be revalidated.

< CREATE RULEand DROP RULE Because rule enforcement is checked during the
lifetime of the rule, CREATE RULEand DROP RULEshould be used with care. If a rule
that is currently among those checked for a statement is dropped within a procedure
invoked by a rule on behalf of that statement, the statement will be invalidated while it
is still being executed. In this situation, execution will halt, an error will occur, and the
statement will be undone.

= Any data definition. Within a procedure invoked by a rule, if any DDL is performed
which invalidates a statement currently being executed (either the user's statement, or

164 Chapter4

Constraints, Procedures, and Rules
Using Rules

a statement within an invoked procedure which chained another rule), an error will
occur, and the user's statement will be undone.

Changing Session Attributes

Procedures should avoid the following statements, which change the attributes of
transactions or sessions:

= SET CONSTRAINTS
= DISABLE RULES

= ENABLE RULES

= SET PRINTRULES

= SET USER TIMEOUT

If you include one of these statements in a procedure invoked by a rule, consider its effect
carefully. If any of these statements is executed by a procedure invoked by a rule, and it
causes the setting of the attribute to change, then the user's statement will execute partly
in the original mode and partly in the altered mode. In the event of rule chaining,
attributes might change several times. If a statement that invokes a procedure is undone,
any settings modified by the procedure are restored to their values prior to the issuing of
the statement.

The SET CONSTRAINTStatement will change the application of check constraints as of the
next statement in the procedure, and this change will affect the remainder of the set of
rows defined by the triggering statement. The SET CONSTRAINTSstatement will change
the application of unique and referential constraints as of the user's next statement--that
is, the statement following the one that invoked the procedure through a rule.

The DISABLE RULES statement will have no effect on the firing of the rules on their
respective current rows. It will only affect rows not yet checked and rules not yet fired.
DISABLE RULES can be used to ensure that the rule depth of 20 is not exceeded, if the chain
of rule dependencies is understood well enough for the appropriate placement of this
statement.

SET PRINTRULES ONand SET PRINTRULES OFF affect the printing of rule names of rules
not yet fired, or of rows not yet checked.

Performance Considerations

The placement of conditions on execution of statements within the firing of a rule should
be examined carefully. Firing conditions placed in the WHERE clause can avoid the
overhead of loading and invoking the procedure, since the WHERE condition is checked
before the procedure is invoked. Thus, it might be better to develop several rules with
separate conditions and procedures with well-defined actions rather than a single rule
with no condition and a single procedure that makes checks before deciding what steps to
carry out. To determine the best design for your needs, weigh the overhead of frequent
loading and executing of a procedure against the overhead of maintaining several
procedures and rules.

Chapter 4 165

Constraints, Procedures, and Rules
Using Rules

Differences between Rules and Integrity Constraints

Rules are similar to integrity constraints in that when a rule is created, all existing
INSERT, UPDATE and DELETEstatements will be affected by the rule (if the statement type
is appropriate to the rule). Rules are viewed as changes to the table definition, and so all
existing sections depending on the table are invalidated when a rule is created. When
these sections are next revalidated, the rule definition is picked up and compared to the
section; appropriate rules are then included in the revalidated section for checking at
statement execution time.

The following are some of the most important ways in which rules differ from integrity
constraints:

< Rules are entirely reactive. They are not fired at CREATE RULEtime against the
existing rows in the table. Moreover, after DISABLE RULES, no record is kept of rows
the rule would have fired on; so, when the ENABLE RULEStatement is next issued, the
rule is not fired retroactively. Integrity constraints, on the other hand, are always
checked when an ALTER TABLEstatement is issued with the ADD CONSTRAINTlause,
and when SET CONSTRAINTS IMMEDIATEIs executed.

< Rules only fire on the statement types they are defined to fire on, whereas integrity
constraints will be checked on all data change operations.

= Rules do not use index structures to enforce the constraints they define; some integrity
constraints build special indexes.

= The only side effect of the integrity constraint is an error, while a rule can have many
different side effects depending on the actions of the procedure it invokes.

< In addition to providing a general way of implementing constraints, rules can be used to
define more abstract tasks such as logging the changes made to a table or enforcing
stricter security measures developed by the database designer. Rules are most useful in
defining complex relationships that cannot be modeled with existing check, unique, or
referential constraints.

166 Chapter4

Concurrency Control through Locks and Isolation Levels

5 Concurrency Control through Locks
and Isolation Levels

Concurrency control is the process of regulating access to the same data by multiple
transactions operating in the same DBEnvironment. Without regulation, a database could
easily become inconsistent or corrupt. Consider what can happen if two or more concurrent
users access the same data without any concurrency control. For example, one user could
delete a row while another user is in the process of updating it. Or one user might update a
row, and a second user might make a decision based on the update, then the first user
might decide to roll back the update, at which point the second user's decision becomes
invalid. To avoid problems of this type, it is important to regulate the kinds of access to
database tables available to concurrent users.

This chapter describes the methods employed by ALLBASE/SQL to provide concurrency
control for multiuser DBEnvironments. A section is devoted to each of the following topics:

= Defining Transactions

= Understanding ALLBASE/SQL Data Access

= Use of Locking by Transactions

= Defining Isolation Levels between Transactions

= Details of Locking

e What Determines Lock Types

e Scope and Duration of Locks

= Examples of Obtaining and Releasing Locks

= Resolving Conflicts among Concurrent Transactions
= Monitoring Locking with SQLMON

The techniques of concurrency control described in this chapter are normally implemented
through application programs, though you can use some of them interactively as well.

Concurrency is a complex subject. If you are a new user of relational technology or of
ALLBASE/SQL, you should read the entire chapter before attempting to use any of the
special features described here.

Chapter 5 167

Concurrency Control through Locks and Isolation Levels
Defining Transactions

Defining Transactions

Concurrency control in ALLBASE/SQL operates at the level of the transaction, which
identifies an individual user's unit of work within a multiuser DBEnvironment. As
mentioned in a previous chapter, transactions are bounded by BEGIN WORKand COMMIT
WORKtatements. If you omit the BEGIN WORKstatement, ALLBASE/SQL issues one
automatically, using the RR (repeatable read) isolation level. ALLBASE/SQL keeps track
of which transactions are accessing which pages of data at a particular moment in time.
Transactions have unique 1D numbers which are listed in the SYSTEM.TRANSACTION
pseudotable in the system catalog.

Transactions can be seen as taking place over time, as in Figure 5-1.

Figure 5-1. Transactions over Time

Transaction 1

Transaction 2

Transaction 3

»

00:00 00:03 00:05 00:07 00:09 00:11

LG200199_030

In this example, transaction 2 begins before transaction 1 ends; therefore, transaction 1
and transaction 2 are concurrent transactions. Transaction 3 begins after transaction 1
has committed; therefore, transaction 1 and transaction 3 are not concurrent, since they do
not occupy the same time.

Concurrent transactions that need to access the same data pages may be in contention for
a particular table, page, or row at a particular moment. Suppose transaction 1 needs to
access an entire table as part of a reporting application. If transaction 2 needs to update
parts of that table, it may need to wait until transaction 1 is complete before the update
can proceed.

168 Chapter5

Concurrency Control through Locks and Isolation Levels
Understanding ALLBASE/SQL Data Access

Understanding ALLBASE/SQL Data Access

Concurrent access to data by multiple users is facilitated by the use of a shared data buffer
for all users of an ALLBASE/SQL DBEnvironment. Understanding how this buffer is used
can clarify many concurrency issues.

A DBEnNvironment running in multiuser mode is accessed by multiple processes, as shown
in Figure 5-2.

Figure 5-2. Multiuser DBEnvironment

User 1's
Process

User 2's
Process

Data Buffer (One per DBE)

ALLBASE/SQL: Index | Index | Index ALLBASE/SQL
Process Page | Page | Page Process
Index | Data | Data

Pages | Page | Page | Page
of
Data Index | Data
Page | Page
Rows Data Data Rows
of Page Page of
Data. Data
12K Tuple Buffer Shared Memory 12K Tuple Buffer

LG200199_032

A single data buffer services the needs of all users of the DBEnvironment. In addition,
each interactive user or application program has its own 12K tuple buffer associated with
it. The data buffer holds 4096-byte pages from the DBEFiles in which tables and indexes
are stored. All pages of data requested from tables in the DBEnvironment and all index
pages required for access to the data are read first into this shared data buffer. In the case
of queries, qualifying rows (tuples) are read from the data buffer into the tuple buffer, and
then they are transferred to the screen (in the case of ISQL) or to host variables or arrays
(in the case of an application program). All changes to existing data and index pages are
placed in the data buffer before being written to disk.

The use of the data buffer makes access to data efficient, because pages of data are only
read into the buffer when necessary. These data pages stay in the buffer until they are
swapped out when buffer space is needed for some other page. The use of the buffer also

Chapter 5 169

Concurrency Control through Locks and Isolation Levels
Understanding ALLBASE/SQL Data Access

promotes quick access to the same pages of data by different transactions, because a page
may not have to be read in from disk if it is already in the buffer.

When you issue a query, you request a specific set of rows and columns from different
tables in a database. The content of this set of rows and columns is the query result. For
every query, ALLBASE/SQL maintains a cursor, which is a pointer to a row in the query
result. A query result may be much larger than the size of available memory, so result rows
are read into your application's tuple buffer in blocks of up to 12K at a time. As your
application advances through a query result, the cursor position advances. When the
application has read the last row in the tuple buffer, a new set of rows is read in until the
end of the query result is reached.

NOTE In procedures or embedded SQL applications, you can explicitly declare and
open a cursor for each query result. In ISQL, you do not explicitly open
cursors; ALLBASE/SQL maintains the pointer position for you.

For unsorted queries, the tuple buffer is filled with rows of data taken from pages found in
the data buffer. Of course, the tuples in the query result are a subset of the content of each
data page. In other words, the data buffer contains everything on each data page, but the
tuple buffer contains only the columns and rows you have requested. As the cursor moves
through the tuple buffer containing the query result, additional rows must be fetched from
the data buffer. When data has been fetched from all qualifying pages in the data buffer,
additional data pages must be read into the data buffer from disk, and then additional
gualifying rows and columns must be read into the tuple buffer. In the case of sorting, the
sort output is stored in a temporary table in the SYSTEM DBEFileSet before being read
into the data buffer.

170 Chapter5

Concurrency Control through Locks and Isolation Levels
Use of Locking by Transactions

Use of Locking by Transactions

Transactions obtain locks to avoid the possible interference of one transaction with
another. This is important when you use PUBLIC or PUBLICROWables, which can be
accessed by many concurrent users of a DBEnvironment. Within the framework of a
transaction, the PUBLIC tables that contain the required data for the operation you are
performing are locked to regulate access to the data they contain. In addition, individual
pages in PUBLIC tables are locked as needed when they are read into the data buffer. In the
case of PUBLICROWables, individual rows are locked as needed before they are read into
the tuple buffer. In some cases, the use of a table lock may make the use of individual locks
on pages unnecessary. Locks are released on both tables and pages when the transaction
that acquired them issues a COMMIT WORKr ROLLBACK WOR&tatement, or when other
conditions are met (described further in the section on "Defining Isolation Levels").

Basics of Locking
The following are the two basic requirements of locking:

= Read operations on data pages must acquire share locks before data can be retrieved.
= Write operations on data pages must obtain exclusive locks before data is modified.
Lock types are described in more detail in a later section.

When a lock is obtained, the transaction ID (a number), the name of the object locked, and
the type of lock acquired are stored in a lock list in shared memory. When a user needs a
particular lock, a lock request is issued, and ALLBASE/SQL checks to see whether the
object is already locked by some other transaction. If the lock request cannot be granted,
the transaction waits until the other transaction releases the lock. If the request can be
granted, the new lock is placed in the lock list. (Compatibility of locks is described in a
later section.)

When one transaction is waiting for another transaction to release a lock, and the second

transaction is also waiting for the first to release a lock, the transactions are said to be in

deadlock. If a deadlock occurs, ALLBASE/SQL rolls back one transaction, and this allows
the others to obtain the needed lock and continue.

When a transaction ends through a COMMIT WORKr ROLLBACK WORS&tatement, locks are
released; that is, the entries are deleted from the lock list. If the transaction has obtained
several different locks, they are all released in a group.

When a transaction ends through an abnormal termination, locks are released by the
monitor.

Locks and Queries

During query processing on PUBLIC tables, the cursor is positioned on a row in the query
result; by extension, the cursor also points to the underlying data buffer page from which
the specific row was derived. Typically, the underlying page to which a cursor points is
locked to restrict access to it by other transactions. When a page in the data buffer is
locked, another transaction may only access that page in a compatible lock mode. For

Chapter 5 171

Concurrency Control through Locks and Isolation Levels
Use of Locking by Transactions

example, if someone else is updating a row of user data on page A of a PUBLIC table, your
transaction must wait until the update is committed before reading rows from page A into
your tuple buffer.

During query processing on PUBLICROWables, the underlying row to which a cursor points
is locked, and the page on which the row resides is also locked (with an intent lock,
explained in "Types of Locks", below). Other users can access the same row only in a
compatible lock mode, but they can access different rows on the same page in different lock
modes. For example, if someone else is updating a row of user data on page A, your
transaction must wait until the update is committed before it can read the same row.
However, you can read other rows from page A into your tuple buffer and update them.

Locks on System Catalog Pages

In addition to locks on user data, ALLBASE/SQL locks pages of data in the system catalog
for the duration of the transaction. Data pages in one or more system tables are locked
when any SQL statement is executed.

See the appendix, “Locks Held on the System Catalog By SQL Statements,” in the
ALLBASE/SQL Database Administration Guide for more information.

Locks on Index Pages

B-tree indexes on PRIVATE and PUBLICREADuser tables are never locked, because
concurrency control on the index is already achieved via the table level locks that are
always acquired on these tables. B-tree indexes on PUBLIC or PUBLICROWIser tables are
not locked for read operations, but they are locked with intention exclusive (1X) page locks
for write operations. B-tree indexes on PUBLIC and PUBLICROWables are locked with
exclusive (X) page locks only in the following cases:

< When an index row is inserted and the page must be compressed before the insertion.
Compression is an attempt to recover non-contiguous space that has become available
on an index page.

< When an insert is made and the page must be split into two new pages. Splitting occurs
when compression does not result in enough space for inserting the new index row. In
such a case, the data from the original page is moved to the two new pages, each of
which receives half of the key values from the original page. The new index key is
inserted on one of the new pages, and the original page is freed, that is, made available
for reuse. A total of three X locks are obtained during this operation: one on the original
page, and two on the newly allocated index pages.

< When a delete is made, and an index page becomes empty because the last key on the
page was deleted. In this case, ALLBASE/SQL frees the page, which requires an X page
lock.

Costs of Locking

The price paid for ensuring the integrity of the database through locking is a reduction in
throughput because of lock waits and deadlock and the CPU time used to obtain locks.
This price can be high. For example, one way to guarantee that two transactions do not
interfere with one another is to allow only one transaction access to a database table at a
time. This serialization of transactions avoids deadlocks, but it causes such a dramatic

172 Chapter5

Concurrency Control through Locks and Isolation Levels
Use of Locking by Transactions

reduction of throughput that it is obviously not desirable in most situations.

Another cost of locking is the use of shared memory resources. Each lock requires the use
of some runtime control block space. The more locks used by a transaction, the more
memory required for control blocks. This is especially important for PUBLICROWables,
which usually require more locks than PUBLIC tables.

To minimize the costs of locking on PUBLIC and PUBLICROWables, you should design each
transaction in such a way as to lock only as much data as necessary to keep out other
transactions that might conflict with your transaction's work. The following sections
explain the features of ALLBASE/SQL that you can use to accomplish this.

Chapter 5 173

Concurrency Control through Locks and Isolation Levels
Defining Isolation Levels between Transactions

Defining Isolation Levels between Transactions

Isolation level is the degree to which a transaction is separated from all other concurrent
transactions. Four levels are possible, shown here in order from most to least restrictive:

< Repeatable read (RR)--the default
= Cursor stability (CS)

= Read committed (RC)

< Read uncommitted (RU)

In general, you should choose the least restrictive possible isolation level for your needs in
order to achieve the most concurrency. You select an isolation level in the BEGIN WORK
statement, as in the following example:

isgl=> BEGIN WORK CS;

An isolation level can also be specified with either the SET TRANSACTIONor SET SESSION
statement.

Repeatable Read (RR)

By default, transactions have the Repeatable Read (RR) isolation level, which means
that within the transaction, you can access the same data as often as you wish with the
certainty that it has not been modified by other transactions. In other words, other
transactions are not allowed to modify any data pages that have been read by your
transaction until you issue a COMMIT WORKr ROLLBACK WOR&tatement. This is the most
restrictive level, allowing the least concurrency.

All the examples of transactions shown so far use the RR (repeatable read) isolation level.
At the RR level, all locks are held until the transaction ends with a COMMIT WORKr
ROLLBACK WORIKatement. This option causes each data row or page read to be locked with
a share lock, which forces any other user trying to update the data on the same row or page
to wait until the current transaction completes. However, other transactions may read the
data on the same row or page. For PUBLICROWables, if you update a row during a
transaction, the row receives an exclusive lock, which forces other transactions to wait for
both reading or writing that row until your transaction ends. For PUBLIC tables, if you
update a data page during a transaction, the page receives an exclusive lock, which forces
other transactions to wait for both reading or writing until your transaction ends.
Repeatable Read should be used if you must read the same data more than once in the
current transaction with assurance of seeing the same data on successive reads.

Cursor Stability (CS)

The Cursor Stability (CS) isolation level guarantees the stability of the data your cursor
points to. However, this isolation level permits other transactions to modify rows of data
you have already read, provided you have not updated them and provided they are not still
in the tuple buffer. CS also permits other transactions to update rows in the active set
which your transaction has not yet read into the tuple buffer. With cursor stability, if you
move your cursor and then try to reread data you read earlier in the transaction, that data

174 Chapter5

Concurrency Control through Locks and Isolation Levels
Defining Isolation Levels between Transactions

may have been modified by another transaction. At the CS level, share locks on data
(whether at the row or page level) are released as soon as the associated rows are no longer

in the tuple buffer. Exclusive locks are held until the transaction ends with a COMMIT WORK
or ROLLBACK WOR&tatement. The following describes what using CS means:

= No other transactions can modify the row on which the transaction has a cursor
positioned.

= Asshared lock is kept on the row or page that the cursor is currently pointing to. When
the cursor is advanced to the next page of data and nothing has been updated on the
previous page, the lock on that previous page is released.

= |If an update is done on a data page, the exclusive lock on that page is retained until the
transaction ends with a COMMIT WORKr ROLLBACK WORKktatement.

Use the CSisolation level for transactions in which you need to scan through large portions

of a database to locate rows that need to be updated immediately. CSlets you do this

without preventing other transactions from updating data pages that you have already
passed by without updating. CSguarantees that a row of data will not be changed between

the time you issue the FETCHstatement and the time you issue an UPDATE WHERE CURRENT
in the same transaction.

NOTE When you use CSfor a query that involves a sort operation, such as an ORDER
BY, DISTINCT, GROUP BY , or UNION or when a sort/merge join is used to
join tables for the query, the sort may use a temporary table for the query
result. In such cases, your cursor actually points to rows in this temporary
table, not to rows in the tuple buffer. Therefore, when sorting is involved, the
locks held on data pages or rows are released before you manipulate the
cursor. In other words, no locks are held at the cursor position for sorted scans
at the CSisolation level. If it is important to retain locks in this situation, use
the RRisolation level.

If you are updating a row based on the information in a sorted query result,
use a simple SELECTstatement to verify the continued existence of the data
before doing the update operation. In this case, it is good practice to include
the TID as part of the original SELECT and then to use the TID in the WHERE
clause of the SELECTthat verifies the data.

Read Committed (RC)

With Read Committed, you are sure of reading consistent data with a high degree of
concurrency. However, you are not guaranteed the ability to reread the data your cursor
points to, because other transactions can modify that data as soon as it has been read into
your application's tuple buffer. Also, you cannot read rows or pages from the data buffer
that have been modified by another transaction unless that other transaction has issued a
COMMIT WORKtatement. At the RC level, share locks on data are released as soon as the
data has been read into your buffer. Exclusive locks are held until the transaction ends
with a COMMIT WORKr ROLLBACK WORIstatement.

The following describes what using RC means:

Chapter 5 175

Concurrency Control through Locks and Isolation Levels
Defining Isolation Levels between Transactions

= You can retrieve only rows that have been committed by some transaction or modified
by your own transaction.

= Other transactions can write on the page on which the transaction has a cursor
positioned, because locks are released as soon as data is read.

< |If an update is done on a page, the lock is retained until the transaction ends with a
COMMIT WORKr ROLLBACK WOREtatement.

Use the RC isolation level for improved concurrency, especially in transactions which
include a long duration of time between fetches. When you must update following a FETCH
statement using the RCisolation level, use the REFETCHstatement first, which obtains and
holds locks on the current page, thus letting you verify the continued existence of the data
you are interested in.

Read Uncommitted (RU)

The Read Uncommitted (RU) isolation level lets you read anything that is in the data
buffer, whether or not it has been committed, in addition to pages read in from disk. For
example, someone else's transaction might perform an update on a page, which you can
then read; then the other transaction issues a ROLLBACK WORIatement which cancels the
update. Your transaction has thus seen transitory data which was not committed to the
database. At the RUIlevel, no share locks are obtained on user data. Exclusive locks
obtained during updates are held until the transaction ends with a COMMIT WORKr
ROLLBACK WORStatement.

The following describes what using RU means:

= The transaction does not obtain any locks on user data when reading, and therefore
may read uncommitted data.

= The transaction does not have to wait on locks on user data, so deadlocks are
considerably reduced. However, transactions may still have to wait for system catalog
locks to be released.

< If an update is done on a page, the transaction obtains an exclusive lock, which is
retained until the transaction ends with a COMMIT WORKr ROLLBACK WORK
statement.

RUis ideal for reporting and similar applications where the reading of uncommitted data is
not of major importance. If you must update following a FETCHstatement using the RU
isolation level, use the REFETCHstatement first, which obtains and holds the appropriate
locks, letting you verify that you are not updating a row based on uncommitted data.

176 Chapter5

Concurrency Control through Locks and Isolation Levels
Details of Locking

Details of Locking

To promote the greatest concurrency, ALLBASE/SQL supports a variety of granularities
and lock types. Granularity is the size of the object locked. Lock type is the severity of
locking provided. Compatibility refers to the ability of different transactions to hold locks
at the same time on the same object.

Lock Granularities

The use of different granularities of locking promotes a high level of concurrency. There
are three levels of granularity in ALLBASE/SQL.:

< Row (tuple) level
= Page level
= Table level

Although some system operations use row level locking internally, system operations
acquire page locks by default. User-created tables can be locked at the row, page, or table
level, depending on the table type. B-tree and constraint indexes are locked with weak
locks at the page level for update operations and are not locked at all on reads. Table, page,
and row level locking are illustrated in Figure 5-3. and Figure 5-4. Figure 5-3. portrays a
query that accesses two pages of a table.

Figure 5-3. Page Versus Table Level Locking

\é’: \ 44— Query

Query
$ &
§F §
~ 9
Table Table

Page Level Locking Table Level Locking

LG200199_032

With page level locking, pages containing data scanned for the query are locked. All other
pages can be locked by other transactions. With table level locking, the same query locks
the table as a whole, whether or not the individual pages are being used for a query. This
means that when a table has an exclusive lock on it, no other transaction can obtain any
locks on the table or any data page in it until the transaction holding the page lock
terminates.

Chapter 5 177

Concurrency Control through Locks and Isolation Levels
Details of Locking

Figure 5-4. also portrays a query that accesses two pages of a table.

Figure 5-4. Row Versus Page Level Locking

Locked K g

Locked Jw.| g‘\

Query > Query
Locked / ggt/

Table tocked Table

Row Level Locking Page Level Locking

LG200199_035

With row level locking, only the rows containing data scanned for the query are locked. All
other rows can be locked by other transactions. With page level locking, the same query
locks an entire page, even if the page contains row(s) not used by the query.

Table size can affect concurrency at the page level. For example, if a small table occupies
only one page, then the effect of a page level lock is the same as locking the entire table. In
the case of small tables where frequent access is needed by multiple transactions, row level
locking can provide the best concurrency. After issuing an UPDATE STATISTICS statement
on a table, you can query the SYSTEM.TABLEview to determine how many pages it
occupies.

Table level locking serializes access to the table, that is, forces transactions with
incompatible locks to operate on a table one at a time. This reduces deadlocks by keeping
other users from accessing the table until the transaction is committed or otherwise
terminated. A small table limits concurrency by its very nature since the probability is
high that many users will want to access the limited number of pages or rows. By locking a
small table at the table level, you can improve performance by reducing the work of
retrying deadlocked transactions. On larger tables, the price of table level locking is
higher, since the naturally higher concurrency of the large table is sacrificed to
serialization.

Page level locking improves concurrency by allowing multiple users to access different
pages in the same table concurrently. Row level locking maximizes concurrency by
allowing multiple users to access different rows in the same table at the same time, even
on the same page.

Because ALLBASE/SQL uses a buffer system in accessing data from database files, keep

178 Chapter5

Concurrency Control through Locks and Isolation Levels
Details of Locking

in mind that the system can actually acquire several page or row locks, one at a time,
before the data is exposed to the user. In effect, the user's transaction obtains and releases
locks on sets of pages or rows at a time as it moves through a query result. This is because
data from many pages and rows can be required to fill the 12K tuple buffer.

Types of Locks

Locks in ALLBASE/SQL can be classified into the following five types, listed from the
lowest to the highest level of severity:

< Intention Share (IS): Indicates an intention to read data at a lower level of
granularity. An IS lock on a PUBLIC table indicates an intention to read a page. An IS
lock on a PUBLICROWable together with an IS lock on a page indicates an intention to
read a row on that page. When a need to read data at a lower level is established,
ALLBASE/SQL internally requests an IS lock at the higher level. For example, after an
IS table lock has been granted on a PUBLIC table, requests are made for S locks on
particular pages. In the case of a PUBLICROWable, after IS locks have been granted on
both table and page, requests are made for S locks on particular rows.

= Intention Exclusive (IX): Indicates an intention to update or modify data at a lower

level of granularity. An IX lock on a PUBLIC table indicates an intention to modify data
on a page. An IX lock on a PUBLICROWable together with an IX lock on a page indicates
an intention to modify a row on that page. When a need to write data at a lower level is
established, ALLBASE/SQL internally requests an IX lock at the higher level. For
example, after an IX table lock has been granted on a PUBLIC table, requests are made
for X locks on particular pages. In the case of a PUBLICROWable, after 1X locks have
been granted on both table and page, requests are made for X locks on particular rows.

= Share (S): Permits reading by other transactions.

< Share and Intention Exclusive (SIX): Indicates a share lock at the current level and
an intention to update or modify data at a lower level of granularity. SIX locks are
placed on both tables, pages, and rows. When the need to write data at the page or row
level is established, and there is also a need to be able to read every page in the table
without its being modified by any other transaction, then ALLBASE/SQL internally
requests a SIX lock on the table. After an SIX lock has been granted on a PUBLIC table,
no additional locks are acquired when a page is read, but an X page lock is acquired
when a page is written. After an SIX lock has been granted on a PUBLICROWable, no
additional locks are acquired when a row is read, but an IX page lock and an X row lock
are acquired when a row is written.

= Exclusive (X): Prevents any access by other users. An exclusive lock is required
whenever data is inserted, deleted, or updated. Because no other user can read this
data before the transaction completes, the integrity of the database is not endangered if
the changes have to be rolled back, either at the user's request or on recovery after a
system failure.

Some of these locks are intention locks. Intention locks are obtained at a higher level of
granularity whenever a lock is obtained at a lower level. For example, when you obtain a
share lock (S) on a page, the table is normally locked with an intention share lock (IS). This
is done so that other transactions can quickly tell that a table is being read by someone
without the need to determine which specific pages are being read. Suppose another

Chapter 5 179

Concurrency Control through Locks and Isolation Levels
Details of Locking

transaction wishes to lock the table in exclusive mode. The IS lock on the table would
prevent the other transaction from locking the table in exclusive mode. Without the use of
higher granularity locks, ALLBASE/SQL would have to search all page or row locks to
determine whether the exclusive lock request could be granted.

Figure 5-5. shows the use of an intention lock at the table level and share locks on the page
level. The example assumes that an index is being used for data access.

Figure 5-5. Locks at Different Granularities

Page
Lock:
S |wd
T~ Quey SELECT *
p FROM PurchDB.Parts
L:glz // WHERE SalesPrice > 1000.;
S
Table Lock: IS
LG200199_029

Lock Compatibility

Table 5-1. shows the compatibility of different lock types. A Y (yes) at the intersection of a
row and column in the table indicates that two locks are compatible at the same level of
granularity; a blank space indicates that they are not compatible.

Table 5-1. Lock Compatibility Matrix

IS IX S SIX X
IS Y Y Y
IX Y
S Y Y
SIX Y
X

When two lock requests are compatible, both transactions are allowed to access the table,
page, or row concurrently, and the lock on this data object is promoted to or left at the lock
mode of higher severity. For example, if transaction 2 wishes to update a page that is
already being read by transaction 1, transaction 2 requests an IX lock on the table and an
X lock on the page. Transaction 1 has an IS lock on the table, which is compatible with the
requested 1X, so the lock on the table is promoted to IX. Then, transaction 2 obtains the X
lock on the page it needs to update only if transaction 1 is not already reading that same

180 Chapter5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types

page. Note that S and X locks on the same page are not compatible.

When locks are not compatible, the second access request must wait until the lock acquired
by the first access request is released.

Weak Locks

Intention exclusive locks are called weak locks when there is no other lock at a finer level
of granularity on the object being locked. This is the case for index pages, which are locked
IX when concurrent transactions are updating different rows on the same page. Weak
locks, also known as sublocks or concurrent locks, are used to prevent the deletion of an
index page by another concurrent transaction. ALLBASE/SQL uses strong locks (exclusive
locks) on index pages only for splitting, deleting, or compressing index pages.

What Determines Lock Types
ALLBASE/SQL locks one or more of the following three objects:

« Tables. Rows or pages of tables or entire tables are locked when you execute SQL
statements referencing them.

= PCRs. Pages of PCRs (indexes that support referential constraints) are locked when
ALLBASE/SQL updates a key value.

= Indexes. Pages of indexes are locked when ALLBASE/SQL updates an index.

= System tables. Rows or pages in one or more system tables are locked when you
execute any SQL statement. System tables are always locked at the RR level regardless
of the transaction isolation level, when they are accessed for execution of an SQL
statement. Refer to the appendix "Locks Held on the System Catalog by SQL
Statements” in the ALLBASE/SQL Database Administration Guide for complete
information.

As this summary indicates, locks on user data and indexes are obtained at the row level,
page level, or at the table level. Although some locking of system data is done at the row
level, system catalog indexes are always locked at the page level.

The locks that are applied to pages and tables are determined by a combination of the
following factors:

Chapter 5 181

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types

« Type of SQL statement.

< Locking structure implicit at CREATE TABLEtime.
e Use of the LOCK TABLE statement.

= Optimizer's choice of a scan type.

= Choice of isolation level.

= Updatability of cursors or views used to access data.

= Use of sorting.

Type of SQL Statement

Specific SQL statements imply particular kinds of data access. Statements such as SELECT
and FETCH which merely read data, request share locks. INSERT, DELETE, and UPDATEall
of which modify tables, request exclusive locks. In addition, the cursor manipulation
statements let you specify an intention to update certain rows of data. When you declare a
cursor in a program for updating certain columns, and you then open the cursor, share
update (SIX) locks may be obtained.

Data definition statements (CREATEand DROP, ADD and REMOVEalso request exclusive
locks, both for the objects being defined, and for the system catalog pages containing
descriptions of the objects. During data definition, locking of the system catalog can be
extensive. Refer to the appendix "Locks Held on the System Catalog by SQL Statements"
in the ALLBASE/SQL Database Administration Guide for a complete list of statements
and their effects on the system catalog.

When data manipulation or data definition statements update a table that has a B-tree or
constraint index defined on it, locks may also be placed on those index pages.

Locking Structure Implicit at CREATE TABLE Time

Table 5-2. shows the general locking structure used for a table depending on the type of
locking assigned when the table is created. For clarity, the table shows only the locks
obtained for index scans. (Scan type is described in a later section.)

Table 5-2. Locking Behavior Determined by CREATE TABLE Statement

Table Type Read Locks Write Locks

PRIVATE (default) Table Exclusive (X) Table Exclusive (X)

PUBLICREAD Table Share (S) Table Exclusive (X)

PUBLIC Table Intent Share (1S) Table Intent Exclusive (1X)
Page Share (S) Page Exclusive (X)

PUBLICROW Table Intent Share (I1S) Table Intent Exclusive (1X)
Page Intent Share (IS) Page Intent Exclusive (I1X)
Row Share (S) Row Exclusive (X)

182 Chapter5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types

PUBLICROV¥INd PUBLIC tables allow concurrent users to access the table for both reads and
writes but they increase the chances of deadlock, because concurrent transactions can be
waiting for each other to release locks. PUBLICROWables obtain locks at the row level,
which affords more concurrency than with PUBLIC tables, at the possible cost of obtaining
more locks. PUBLICREADtables allow only one transaction to write to a table, or they allow
multiple transactions to read the table; no readers can access the table while any writing
is going on. PRIVATE tables allow only one transaction to read from or write to a table at a
time.

If the locking structure of a table does not allow a transaction to access the table, the
transaction must wait. In a typical example, if one transaction is reading a PUBLICREAD
table, and a second transaction executes a statement to update that table, the second
transaction waits until the first transaction executes a COMMIT WORKr ROLLBACK WORK
statement.

The implicit locking structure of a table can be changed by using the ALTER TABLE
statement.

Use of the LOCK TABLE Statement

The LOCK TABLEstatement is another determinant of lock types. With this statement,
ALLBASE/SQL explicitly locks a table as a whole, making most page or row locking
unnecessary. You can lock tables in SHAREmMode, EXCLUSIVEmode, or in SHARE UPDATE
mode. With SHARHocking (S locks), other transactions may read pages in the table you
have locked but not update them. With EXCLUSIVEIlocking (X locks), no other transaction
may access the locked table until your transaction commits. With share update locking
(SIX locks), other transactions may read pages that are not being updated. However, no
other transaction can obtain an exclusive lock until your transaction ends with a COMMIT
WORMKr ROLLBACK WORS&tatement.

You can upgrade the implicit locking mode of a table to a more severe level by using the
LOCK TABLEstatement. Thus, you can lock a PUBLIC, PUBLICROW or PUBLICREADtable in
EXCLUSIVEmode. However, you cannot downgrade the implicit locking mode. If you
attempt to lock a PRIVATE table in SHAREmMode, the LOCK TABLE statement has no effect.

Use the LOCK TABLE statement to reduce the following:

= The overhead of obtaining and maintaining locks

= The potential for deadlock

Choice of a Scan Type

Another factor that determines the kind of locking in a data access transaction is the type
of scan used to process a query. There are four types of scan:

e Serial scan

Index scan

Hash scan

TID scan

A sequential scan (also known as a serial scan) is one in which ALLBASE/SQL begins at

Chapter 5 183

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types

the first page of a table and reads each page, looking for rows that qualify for the query
result, until it arrives at the end of the table. An index scan looks up the page locations of
those rows that qualify for the query result in an index which you have separately created.
A hash scan accesses an individual row by calculating the row's primary page location
from a value supplied in the query's predicate. A TID scan obtains a specific row by
obtaining its page number from the TID (tuple ID) directly. A hash scan accesses an
individual row by calculating the row's primary page location from a value supplied by the
guery's predicate.

When a sequential scan is used to access a table, the data is being read at the table level.
Depending on the isolation level of a transaction (described in the next section), a
sequential scan either locks the whole table or else locks each page of a table in share mode
(each row, in the case of a PUBLICROWable) in turn until it finds the row it is seeking.

When an index scan is used to access a table, the data is being read at the page level if the
table is PUBLIC or at the row level if the table is PUBLICROWAnN index scan has to read
index pages, but no locks are acquired; a transaction only needs to lock the data page or
row pointed to by the index. Thus, an index scan that retrieves only a few rows from a
large PUBLIC table will obtain locks on fewer data pages than a sequential scan on the
same table. (Index pages are locked with X locks only when an index is updated.) A TID
scan locks only the page or row pointed to by the TID. A hash scan locks only the data page
containing the hash key, possibly with some overflow pages. Hashing is not possible with
PUBLICROWables.

By default, the choice of a plan of access to the data is made by the ALLBASE/SQL
optimizer. You can override the access plan chosen by the optimizer with the SETOPT
statement.

As a rule of thumb, you can assume that the optimizer chooses a sequential scan when the
guery needs to read a large proportion of the pages in a table. Similarly, the optimizer
often chooses an existing index when a small number of rows (or only a single row) is to be
retrieved, and the index was created on the columns referred to in the WHERElause of the
guery. When you use a TID function, you can assume the optimizer will choose a TID scan.
To display the access plan chosen by the optimizer, use the SQL GENPLANstatement,
specifying the query of interest. Then perform a query on the SYSTEM.PLANview in the
system catalog to display the optimizer’s choices. For more information, refer to the section
“Using GENPLAN to Display the Access Plan” in Chapter 3, “SQL Queries.”

NOTE If you are reading a large table, and if you do not expect it to be updated by
anyone while your transaction is running, you can avoid excessive overhead
in shared memory from locks obtained on each page by using the LOCK TABLE
statement in SHAREmMode. This makes it unnecessary for ALLBASE/SQL to
lock individual pages or rows.

Choice of Isolation Level

One more factor that determines the kinds of locks obtained on data objects is the isolation
level of the transaction. A higher degree of isolation means less concurrency in operations
involving PUBLIC and PUBLICROWables. You can select the isolation level used in your

transactions to maximize concurrency for the type of operation you are performing and to

184 Chapter5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types

minimize the chance of deadlocks.

The kind of lock obtained at different isolation levels depends on the other factors that
determine locks--scan type, kind of SQL statement, and implicit table type. A simplified
summary of locks obtained on PUBLIC tables and their indexes appears in Table 5-3.. Hash
and TID scans are omitted.

Table 5-3. Locks Obtained on PUBLIC Tables with Different Isolation Levels

Isolation Level and Read Operations Read for Update? Write Operations
Scan Type (SELECT, FETCH) (UPDATE, INSERT,
DELETE)
Table Page Table Page Table Page
RR Sequential S - SIX - SIX X
RR Index IS S IX SIX IX X
CS Sequential IS gb IX SIX IX X
CS Index IS S IX SIX X X
RC Sequential IS s IX SIX IX X
RC Index IS S IX SIX IX X
RU Sequential None None IX SIX IX X
RU Index None None IX SIX IX X

a. Opening a cursor that was declared FOR UPDATHRR and CS), or using REFETCH
(RC and RU).

b. Lock released at the end of the next read.

c. Lock released at the end of the current read.

Chapter 5 185

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types

A simplified summary of locks obtained on PUBLICROWables appears in Table 5-4. Hash
and TID scans are omitted.

Table 5-4. Locks Obtained on PUBLICROW Tables with Different Isolation
Levels

Isolation Level Read Operations Read for Update® Write Operations
and Scan Type (SELECT, FETCH) (UPDATE, INSERT,
DELETE)
Table Page Row | Table Page Row Table Page Row

RR Sequential S - - SIX - - SIX IX X
RR Index IS IS S IX IX SIX IX IX NG
CS Sequential IS 1s¢ Sc IX IXc SIXc IX IX X
CS Index IS ISc Sc IX IXc SIXc IX IX Xb
RC Sequential 1S 1sd Sd IX IXd SIX IX IX X
RC Index IS I1Sd Sd IX IX SIX IX IX Xb
RU Sequential | None None None IX IX SIX IX IX X
RU Index None None None IX IX SIX IX IX Xb

a. Opening a cursor that was declared FOR UPDATERR and CS), or using REFETCHRC
and RU).

b. Next higher key’s data row is locked for an insert or delete, and the next two higher
key's data rows are locked for an update.

c. Lock released at the end of the next read.

d. Lock released at the end of the current read.

NOTE ALLBASE/SQL locks system catalog pages at the RRisolation level when
they are accessed or modified on behalf of an SQL statement. Refer to the
appendix “Locks Held on the System Catalog by SQL Statements” in the
ALLBASE/SQL Database Administration Guide for a list of locks acquired
for each SQL statement.

Neighbor Locking

Neighbor locking is a way indexes are maintained. More than one object is locked within a
Publicrow. SQLMon is the best tool to get the kind of locks held on SQL objects.

During an index scan, “weak” (IS, 1X) locks are placed on index and data pages. A tuple
(page) lock will be placed on the qualifying tuple(s). In order to insure RR (Repeatable
Read), an additional tuple (page) lock is placed on the data tuple corresponding to the
higher key next to the qualifying key. During a RR/CS/RC index scan, the qualifying data
tuple are locked in S. During inserts and deletes, the higher key's tuple is locked in X for
uniqueness and to insure RR for readers. Of course, the updated tuple is locked in X also.
During an update where the key is updated, we end up with two higher key locks because

186 Chapter5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types

the update corresponds to an index delete followed by an index insert. What should you
lock if there is no higher? Lock an imaginary tuple which has the highest possible key.
Note that locks are placed at the tuple level for PUBLICROVYr at the page level for PUBLIC
tables.

Updatability of Cursors or Views

When a transaction uses cursors or views to access and manipulate data, the kinds of locks
obtained depend partly on whether the cursors or views are updatable according to the
rules presented under "Updatability of Queries" in Chapter 3, “SQL Queries.” Table 5-3.
shows the locks obtained on updatable views and on updatable cursors declared FOR
UPDATE; they are listed in the "Read for Update" column in the table. In general, SIX, IX,
and X locks will not be used unless the query that underlies the view or cursor is
updatable.

Use of Sorting

If a query involves a sort operation, locks are maintained only if the transaction is at the
RR isolation level. When there is an ORDER BYa GROUP BY, UNIONor DISTINCT clause in
a query, or if the optimizer decides to use the sort/merge join method for joins or nested
queries, the data in the tables is sorted and copied to a temporary table. The user's cursor
is really defined on this temporary table, which does not require any locking since it is
private to the user. Locks on the original tables underlying the view or cursor are retained
only if the transaction was started at the RR isolation level. Locks obtained at the CS or
RC level are released; locks are not obtained at all at the RU level.

Chapter 5 187

Concurrency Control through Locks and Isolation Levels
Scope and Duration of Locks

Scope and Duration of Locks

In general, the length of a transaction affects concurrency. Long transactions hold locks
longer, which increases the chances that another transaction is waiting for a lock. Short
transactions are "in and out" quickly, which means they are less likely to interfere with
other transactions.

The isolation level determines what kinds of locks are obtained in particular
circumstances, and also how long these locks are held. Great differences can be found
between isolation levels in the duration of locks. For example, a sequential scan that
obtains share locks at the RR level holds them while the entire table is read, making
updates impossible by others during that time. At the RU level, other users can update the
table throughout an entire scan by another reader. Figure 5-6. shows the relative scope
and duration of share locks obtained for a sequential scan by the RR, CS, and RC isolation
levels on PUBLIC and PUBLICROWables. RU is not shown, because it does not obtain any
share locks on user data.

Figure 5-6. Scope and Duration of Share Locks for Different Isolation Levels

Repeatable Read
o Y
Granularity: r N
Table
Read
CoerEitted
Page)
1 7/\§%
A& % .
Start End Start End
Fetch Fetch Fetch Fetch
Begin 1§) End
Transaction Y . Transaction
Cursor Stability
LG200199_028

188 Chapter5

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks

Examples of Obtaining and Releasing Locks

The following sections present a few scenarios that show how locks are obtained and
released within concurrent transactions.

Simple Example of Concurrency Control through Locking

The following scenario illustrates in a simple way how locks are obtained and released. It
is based on the sample DBEnvironment PartsDBE, which is fully described in Appendix C.
Try this example yourself on a system that has several terminals available in physical
proximity to one another, and observe the results:

= Four users each issue the following CONNECTEtatement (assume they are connecting
from a different group and account than the one containing PartsDBE):

isgl=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';
= User 1 issues the following query (transaction 1):

isql=> SELECT SALESPRICE FROM PurchDB.Parts
> WHERE PartNumber = '1123-P-01";

At this point, transaction 1 obtains a share lock on page A.
= User 2 issues the following UPDATE statement (transaction 2):

isql=> UPDATE PurchDB.Parts SET SalesPrice = 600.
> WHERE PartNumber ='1123-P-01";

Transaction 2, executing concurrently, needs an exclusive lock on page A. Transaction 2
waits.

= Users 3 and 4 each issue the following query, independently (transactions 3 and 4):
isql=> SELECT * FROM PurchDB.Parts;

Transactions 3 and 4, executing concurrently, each need a share lock on page A.
Transactions 3 and 4 wait, because of an upcoming exclusive lock request.

= User 1 issues the following statement:
isql=> COMMIT WORK;

< Transaction 1 terminates, so transaction 2 obtains its exclusive lock on page A.
Transactions 3 and 4 still wait.

= User 2 issues the following statement:
isql=> COMMIT WORK;
= Transaction 2 terminates, so transactions 3 and 4 both obtain share locks on page A.

This sequence is illustrated in Figure 5-7., Figure 5-8., and Figure 5-9..

Chapter 5 189

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks

Figure 5-7. Lock Requests 1: Waiting for Exclusive Lock

Transaction 1

Transaction 2

Transaction 3

-

Transaction 4

Tuple Bufter Tuple Buffer Tuple Buffer Tuple Bufter
Share Waiting for Waiting for Waiting for
Lock Exclusive Share Share
Obtained Lock Lock Lock
LG200199_023
Figure 5-8. Lock Requests 2: Waiting for Share Locks
Transaction 1 Transaction 2 Transaction 3 Transaction 4
— f———
Committed Tuple Buffer Tuple Buffer Tuple Buffer
Exclusive Waiting for Waiting for
Lock Share Share
Obtained Lock Lock

LG200199_024

190

Chapter5

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks

Figure 5-9. Lock Requests 3: Share Locks Granted

Transaction 1 Transaction 2 Transaction 3 Transaction 4
Start Time 00:01 Start Time 00:05 Start Time 00:10 Start Time 00:15
Tuple N TS ol ——
Buffers _}]'
| I
Commit Time Commit Time | |
00:06 00:12 | |
Share Lock| Share Lock |
Obtained | Obtained |
At 00:13| At 00:18]
| |
} |
| I
} |
4L][l |
Data |
Page
Buffers -TT T +4-+1-H-
LG200199_025

Sample Transactions Using Isolation Levels

The following sections show typical situations in which different isolation levels affect the
behavior of your transactions when using the sample DBEnvironment PartsDBE.

Example of Repeatable Read

The following scenario illustrates the operation of the RR isolation level:

1. Two users each issue the following CONNECTEtatement (assume they are connecting
from a different directory than the one containing PartsDBE):

isql=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct’;
2. User 1 then issues a query (transaction 1) as follows:
isql=> SELECT * FROM PurchDB.Vendors;

This implicitly issues a BEGIN WORkKstatement at the RR isolation level, and obtains a
share lock (S) on the Vendors table, because the scan is a sequential one, reading the
entire table. User 1 sees the query result in the ISQL browser, and exits the browser,
but does not issue a COMMIT WORKtatement.

3. User 2 then issues the following statement (which starts transaction 2 at the RR
isolation level):

isql=> UPDATE PurchDB.Vendors

Chapter 5 191

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks

> SET ContactName = 'Harry Jones'
> WHERE VendorNumber = 9001,

Transaction 2 now must wait for an IX lock on the Vendors table because an IX lock is
not compatible with the S lock already held by transaction 1. Transaction 2 also must
obtain an X lock on the page containing data for vendor 9001.

User 1 now issues the following statement:
isgl=> COMMIT WORK;

Transaction 2 can now complete the update, because transaction 1 no longer holds the S
lock on the Vendors table. This makes it possible for transaction 2 to obtain the 1X lock
on the Vendors table and the X lock on the page containing data for 9001.

Example of Cursor Stability

The following scenario illustrates the operation of the CS isolation level:

1.

Two users each issue the following CONNECT$tatement (assume they are connecting
from a different group and account than the one containing PartsDBE):

isql=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';
User 1 then sets the CSisolation level for transaction 1 and issues the following query:

isql=> BEGIN WORK CS;
isql=> SELECT * FROM PurchDB.Vendors;

User 1 sees the query result in the ISQL browser, but does not exit the browser.

. User 2 then issues the following statement (this statement implicitly starts transaction

2 at the RRisolation level):

isql=> UPDATE PurchDB.Vendors
> SET ContactName = 'Harry Jones'
> WHERE VendorNumber = 9001,

Transaction 2 now waits for an exclusive lock on a page in the Vendors table, because
transaction 1 still has a cursor positioned on that page.

User 1 now exits from the ISQL browser, but does not issue a COMMIT WORKatement.

5. Transaction 2 can now complete the update, because transaction 1's cursor is no longer

positioned on the page that transaction 2 wishes to update.

. Transaction 1 now attempts to issue the same query again, using a REDGstatement:

isql=> REDO;
SELECT * FROM PurchDB.Vendors;

Now transaction 1 waits, because transaction 2 has obtained an exclusive lock on the
table.

. Transaction 2 issues the following statement:

isql=> COMMIT WORK,;

The query result for transaction 1 now appears in the ISQL browser again, this time
with the changed row in the query result.

192 Chapter5

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks

Example of Read Committed

The following scenario illustrates the operation of the RC isolation level in concurrent
transactions in the sample DBEnvironment PartsDBE. Most of the details are the same as
for the CS example just presented:

1. Two users each issue the following CONNECTEtatement (assume they are connecting
from a different group and account than the one containing PartsDBE):

isgl=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';
2. User 1 then sets the RC isolation level for transaction 1 and issues the following query:

isql=> BEGIN WORK RC;
isql=> SELECT * FROM PurchDB.Vendors;

User 1 sees the query result in the ISQL browser, but does not exit the browser.

3. User 2 then issues the following statement (this statement implicitly starts transaction
2 at the RR isolation level):

isql=> UPDATE PurchDB.Vendors
> SET ContactName = 'Harry Jones'
> WHERE VendorNumber = 9001;

Transaction 2 is able to perform the update, because the locks on pages that were
obtained by transaction 1's cursor were released as soon as the data was placed in
transaction 1's tuple buffer. Notice the difference between RC and CS.

Example of Read Uncommitted

The following scenario illustrates the operation of the RU isolation level:

1. Two users each issue the following CONNECEtatement (assume they are connecting
from a different group and account than the one containing PartsDBE):

isgl=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';
2. User 1 issues the following update:

isql=> UPDATE PurchDB.Vendors SET ContactName = 'Rogers, Joan'
> WHERE VendorNumber = 9005;

3. User 2 then sets the RU isolation level for transaction 2 and issues a query:

isgl=> BEGIN WORK RU;
isql=> SELECT * FROM PurchDB.Vendors WHERE VendorNumber = 9005;

User 2 sees the desired row in the ISQL browser, where the contact name for vendor
9005 is Rogers, Joan , even though user 1 has not issued a COMMIT WORHatement. In
other words, user 2 has read uncommitted data.

Chapter 5 193

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions

Resolving Conflicts among Concurrent Transactions

Several kinds of conflict can occur between transactions that are contending for access to
the same data. The following three are typical cases:

=< One transaction has locked an object that another transaction needs and is in a wait
state.

= Two transactions each need an object the other transaction has locked in the same
DBEnvironment and are both in a wait state.

= Two transactions each need an object the other transaction has locked in another
DBEnvironment and are both in a wait state.

The first conflict results in a lock wait, which simply means that the second transaction
must wait until the first transaction releases the lock. The second conflict is known as
conventional deadlock, which is automatically resolved by ALLBASE/SQL. The third
conflict is an undetectable deadlock, which cannot be automatically resolved.

Lock Waits

When a transaction is waiting for a lock, the application pauses until the lock can be
acquired. When a transaction is in a wait state, some other transaction already has a lock
on the row, page, or table that is needed. When the transaction that is holding a lock on the
requested row, page, or table releases its lock through a COMMIT WORKr ROLLBACK WORK
statement, the waiting transaction can then acquire a new lock and proceed.

The amount of time an application waits for a lock depends on the timeout value. A
timeout value is the amount of time a user waits if a requested database resource is
unavailable. If an application times out while waiting for a lock, an error occurs and the
transaction is rolled back. See the SET USER TIMEOUStatement in the "SQL Statements”
chapter of this manual for more information.

The larger the number of lock waits, the slower the performance of the DBEnvironment as
a whole. You can observe the lock waits at any given moment in the DBEnvironment by
issuing the following query:

isql=> SELECT * FROM SYSTEM.CALL WHERE STATUS ="'WAITING ON LOCK

The use of isolation levels less severe than Repeatable Read can improve concurrency by
reducing lock waits. For example, reporting applications that do not depend on perfect
consistency can use the Read Uncommitted level, while applications that scan an entire
table to update just a few rows can use Read Committed with REFETChHr Read
Uncommitted with REFETCHor the greatest concurrency. Applications that intend to
update a larger number of rows can use Cursor Stability.

You can set the amount of time a transaction will wait for a lock by using the SET USER
TIMEOUTstatement, or by setting a default timeout value using the ALTDBEcommand in
SQLULtil. If no timeout value is set as a default, the transaction will wait until the resource
is released. Consult your database administrator about default timeout values.

194 Chapter5

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions

Deadlocks

The second kind of conflict is known as a deadlock between two transactions. This happens
when two transactions both need data or indexes that the other already has locked.
Deadlocks involving system catalog pages are also possible. ALLBASE/SQL detects and
resolves deadlocks when they occur. If different priority numbers are assigned to the
transactions in the BEGIN WORBtatement, the transaction with the larger priority number
is rolled back. If no priorities are assigned, the more recent transaction is rolled back.

ALLBASE/SQL resolves deadlocks between two transactions at a time. Therefore, if more
than two transactions are deadlocked at one time, the transaction aborted may not be the
transaction with the largest priority number or the newest transaction among all
transactions deadlocked.

By default, the action taken to resolve a deadlock is to roll back one of the transactions.
However, it is also possible to set the deadlock action for a transaction to roll back the
current command instead of the entire transaction by using the SET SESSION or SET
TRANSACTIONtatements.

Table Type and Deadlock

Specific table types are likely to incur particular types of deadlock. Two transactions can
deadlock on the same PUBLIC or PUBLICROWable when the transactions attempt to access
the same page or row. The larger the table, the less likely it is that two transactions will
need to access the same page or row, so deadlock is reduced. If the table is small, there is
less chance of deadlock when it is defined PUBLICROWather than PUBLIC.

The following scenario illustrates the development of a deadlock involving two fairly large
PUBLIC tables with indexes in the sample DBEnvironment PartsDBE. Assume that both
transactions are at the RR isolation level.

Transaction 1: UPDATE PurchDB.Parts SET Obtains IX lock on table,
SalesPrice = 1.2*SalesPrice; X on each page.

Transaction 2: SELECT * FROM PurchDB.SupplyPrice; Obtains S lock on table.

Transaction 1: UPDATE PurchDB.SupplyPrice SET Waits for 1X on table
UnitPrice = 1.2*UnitPrice;

Transaction 2: SELECT * FROM PurchDB.Parts; Deadlock.

This sequence results in a deadlock which causes ALLBASE/SQL to choose a transaction
to roll back. In the example, since no priorities are assigned, ALLBASE/SQL rolls back
both of user 2's queries and displays an error message. User 1's second update then
completes. Figure 5-10. shows the deadlock condition that results from the previous
example.

Chapter 5 195

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions

Figure 5-10. Deadlock

Transactions SupplyPrice
Parts Table - Table

Obtain X
N2 111 | UPDATE Pans

o |12 | SELECT FROM Obtain S

Locked X) SupplyPrice Locked S
by T1 5 [77] UPDATE Wait for X by T2
) SupplyPrice -

Deadlock
. Deadiock [T SELECT FROM

on Wait) Parts
for S

LG200199_034

The use of PRIVATE tables ensures there will be no deadlock on the same table, because
access to the table is serialized. However, deadlock across two or more tables is common
with PUBLICREADand PRIVATE tables that are accessed by different transactions in
different order. The following example shows a deadlock involving a PRIVATE table:

Transaction 1: SELECT * FROM TABLEA; Obtains X lock on table.
Transaction 2: SELECT * FROM TABLEB; Obtains X lock on table.
Transaction 1: SELECT * FROM TABLEB; Waits for X on table.
Transaction 2: SELECT * FROM TABLEA; Deadlock.

A common deadlock scenario for PUBLICREADtables is to do a SELECT, thus obtaining a
table level share lock, and then an UPDATEwhich must upgrade the lock to exclusive:

Transaction 1: SELECT * FROM TABLEA,; Obtains S lock on table.
Transaction 2: SELECT * FROM TABLEA,; Obtains S lock on table.
Transaction 1: UPDATE TABLEA,; Waits to upgrade to X on table.
Transaction 2: UPDATE TABLEA; Deadlock.

The need to upgrade frequently results in deadlock.

Table Size and Deadlock

The size of a table is another factor affecting its susceptibility to deadlock. If the table is
small, it is highly probable that several users may need the same pages, so deadlocks may
be relatively frequent when page level locking is used. The probability of collision is
highest when the table is small and its rows are also small, with many stored on one page.
If the table is large, it is relatively unlikely that multiple users will want the same pages
at the same time, so page level locking should cause relatively few deadlocks.

196 Chapter5

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions

Avoiding Deadlock

The tradeoff between deadlock and throughput is one of the central issues in concurrency
control. It is important to minimize the number of deadlocks while permitting the greatest
possible concurrent access to database tables.

Avoiding Deadlock by Using the Same Order of Execution

To avoid deadlock among multiple tables, be sure to have all transactions access them in
the same order. This can often be done by modifying programs to use the same algorithms
to access data in the same order (for example, first update table 1, then table 2), rather
than accessing data in random order. This strategy cannot always be followed, but when it
can be used, processes will wait their turn to use a particular data object rather than
deadlocking.

Avoiding Deadlock by Reading for Update

You can avoid deadlocks that stem from upgrading locks by designing transactions that
use SIX locks, which have the effect of serializing updates on a table while permitting
concurrent reads. To employ SIX locks, read the table with a cursor that includes a FOR
UPDATElause. You can also obtain SIX locks by using the LOCK TABLE statement,
specifying the SHARE UPDATEption.

Avoiding Deadlock by Using the LOCK TABLE Statement

Locking at the table level should reduce deadlocks when all or most pages in a PUBLIC
table (rows in a PUBLICROWable) are accessed in a query. Locking the table in share
update mode obtains SIX locks on the table and its pages (or rows) when you are reading
data with the intention of updating some data.

Avoiding Deadlock on Single Tables by Using PUBLICREAD and PRIVATE

The use of PUBLICREADand PRIVATE tables decreases the chance of encountering a
deadlock by forcing serialization of updates within a single table, that is, requiring one
update transaction to be committed before another can obtain any locks on the same table.
Obviously, this reduces concurrency during update operations. You can also use the LOCK
TABLEstatement for transactions on PUBLICREADtables that read data prior to updating it.

Avoiding Deadlock by Using the KEEP CURSOR Option

In applications that declare cursors explicitly, you can use the KEEP CURSO®ption in the
OPENstatement to release exclusive locks as quickly as possible. When you use the KEEP
CURSORption for a cursor you explicitly open in a program, you can use the COMMIT WORK
statement to end the transaction and release locks without losing the cursor's position.
Furthermore, you can either retain or release the locks on the page or row pointed to by

the current cursor position. When you use the KEEP CURSORption, your transaction

holds individual exclusive locks only for a very short time. Thus, the chance of deadlock is
reduced, and throughput is improved dramatically. For details, refer to the chapter

entitled "Processing with Cursors" in the ALLBASE/SQL application programming guide
for the language of your choice.

Chapter 5 197

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions

Undetectable Deadlock

Applications that connect to multiple DBEnvironments may encounter deadlocks that
cannot be detected and resolved by ALLBASE/SQL. An example follows:

Transaction 1: SET CONNECTION 'DBE1";

UPDATE TABLEA SET COL1 =5; Obtains X table lock.
Transaction 2: SET CONNECTION 'DBEZ2';
UPDATE TABLEB SET COL1 =7, Obtains X table lock.
Transaction 1: SET CONNECTION 'DBEZ2';
SELECT * FROM TABLEB; Waits.
Transaction 2: SET CONNECTION 'DBE1";
SELECT * FROM TABLEA; Waits--Undetectable Deadlock.

This kind of deadlock is called undetectable because ALLBASE/SQL can only detect a
deadlock within a single DBEnvironment session. It is your responsibility to coordinate
your system's use of distributed transactions so as to prevent undetectable deadlock. You
can enable ALLBASE/SQL to identify and roll back what probably are undetectable
deadlocks by setting appropriate user timeout values for each DBEnvironment connection.
For more information refer to "Using Multiple Connections and Transactions with
Timeouts" in Chapter 2 , “Using ALLBASE/SQL.”

A similar condition known as an undetectable wait state can also arise when you are
using multi-connect functionality. An undetectable wait occurs when you connect more
than once to the same DBEnvironment from the same application in multi-transaction
mode and attempt to obtain resources held by your other connection. For example:

CONNECT TO 'DBE1' AS 'CONNECT1";a

CONNECT TO 'DBE1' AS 'CONNECTZ2;
SET CONNECTION 'CONNECT1",

UPDATE TABLEA SET COL1 =5; Obtains X table lock.
SET CONNECTION 'CONNECT2;
UPDATE TABLEA SET COL1 =7; Waits--Undetectable wait.

In this instance, you are waiting on your own resources. To avoid situations like this, be
sure to set user timeout values when you use multi-connect functionality

198 Chapter5

Concurrency Control through Locks and Isolation Levels
Monitoring Locking with SQLMON

Monitoring Locking with SQLMON

SQLMONs an online diagnostic tool that monitors the activity of your DBEnvironment. In
addition to providing information on file capacity, 1/0, logging, tables, and indexes, SQLMON
displays information on the locks currently held in your DBEnvironment. SQLMONs fully
documented in the ALLBASE/SQL Performance and Monitoring Guidelines.

MONITOR Authority

Users with DBA authority or who are granted MONITORauthority can run SQLMONUJse the
GRANT MONITORommand to allow users to run SQLMONUJse the REVOKE MONITOR
command to revoke the authority. SYSTEM.SPECAUTIdNd CATALOG.SPECAUTHkIentify
users with MONITORauthority.

Monitoring Tasks

Table 5-5 summarizes the monitoring tasks related to locking you can perform with
SQLMON

Table 5-5. SQLMON Monitoring Tasks

Task Screens Fields

Determining Size of Runtime Overview RUNTIME CB %
Control Block Used Pages

Max Pages
Monitoring DBEnvironment Lock Load LOCK REQTS
Activity LOCK WAITS

LOCK WAIT %
Comparing Number of Locks by Lock TabSummary | OWNER.TABLE
Table G

TOTAL LOCKS
Comparing Number of Locks by Lock Memory TABLE
Session PAGE

ROW

TOTAL

MAXTOTAL
Identifying Locks on a Table or Lock OWNER.TABLE[/CONSTRAINT]
Referential Constraint (PCR) G

PAGE/ROW ID

LOCK QUEUE
Determining Number of Sessions Lock LOCK QUEUE
that are Accessing a Particular
Lock

Chapter 5 199

Concurrency Control through Locks and Isolation Levels

Monitoring Locking with SQLMON

Table 5-5. SQLMON Monitoring Tasks

Task

Screens

Fields

Determining Number of
Transactions that are Waiting for
Locks

Overview Load

IMPEDE XACT

Identifying Locks for which Lock all fields
Sessions are Waiting
Identifying Sessions that have Lock Object GWC
Obtained a Particular Lock MOD
PIN
Identifying Sessions that are Lock Object GwC
Waiting to Obtain (or to Convert) a MOD
Particular Lock NEW
PIN
Identifying Lock Activity for a Lock Session all fields
Particular Session
Identifying Locks Obtained by a Lock Impede all fields
Particular Session that are
Causing Other Sessions to Wait
Detecting Deadlocks Load DEADLOCKS
Load Session
Load Program
Resolving Deadlocks Lock all fields
Lock Object
Lock Impede

200

Chapter5

6 Names

This chapter contains general rules for names used in ALLBASE/SQL commands.

Names

Syntactically, names used in ALLBASE/SQL commands fall into several categories. This

chapter includes a section for each category as follows:

Basic Names

Native Language Object Names
DBEUserlIDs

Owner Names

Authorization Names
Compound ldentifiers

Host Variable Names

Local Variable Names
Parameter Names
DBEnvironment and DBECon File Names
DBEFile and Log File Identifiers
TempSpace Names

Special Names

Some programming languages define reserved words that cannot be defined as names by
the user.

Chapter 6

201

Names
Basic Names

Basic Names

The syntax rules in this chapter apply to most SQL names. Names that are required to
conform to the following rules can be classified as basic names:

< A basic name can be up to 20 bytes in length.

= A name can be made up of any combination of letters (A to Z), decimal digits (0 to 9), $,
#, @, or underscore (). However, the first character cannot be an underscore or a
decimal digit.

= Lowercase letters (a to z) are automatically changed to the corresponding uppercase
letters (A to Z) unless enclosed in double quotation marks.

< You can use any combination of characters in a basic name if you enclose it in double
gquotation marks. However, note that if you define a name using double quotes, you
must use double quotes when you use the name later. Moreover, if the context in which
you are using the name would itself require the use of double quotes, you must precede
each of the quotes around the basic hame with a backslash, as in the following example:

UNLOAD TO EXTERNAL EParts FROM
"SELECT * FROM \"PurchDB\".PARTS";

In addition, application programs must be capable of distinguishing double-quoted
names. To prevent any possible conflict, minimize the use of double-quoted basic names.

The following are classified as basic names:

Class names Log file names
Column names Module names
Constraint names Procedure names
Cursor names Rule names

DBEFile names Table names
DBEFileSet names TempSpace names
Group names View names

Index names

202 Chapter6

Names
Native Language Object Names

Native Language Object Names

All the object names in a DBEnvironment can be represented in the DBEnvironment
language or in NATIVE 3000. The following rules for object names are the same as for
ASCII:

= The length of an object name is specified as a number of bytes. Note that this would
mean a maximum of 20 characters for a table name in English and 10 in Chinese,
because Chinese is represented in a two-byte character set.

« Table and view names can be qualified by prefixing the owner name followed by a
period (.") The period serves as the delimiter and is thus a part of the syntax of SQL. It
cannot be represented by a native language delimiter but must be ASCII.

DBEUserIDs

A DBEUserlID is made up of a user's MPE XL user and account names connected with the
@ symbol. An example is WOLFGANG@DBMS, where Wolfgang is the user name, and
DBMS is the account name.

When a DBEnvironment is configured, ALLBASE/SQL grants DBA authority to the
DBEUserlID of the DBECreator. You cannot revoke DBA authority from the DBECreator.

Owner Names
Owner names can be one of the following:

= DBEUSserID
= Group name

e Class name

Chapter 6 203

Names
Authorization Names

Authorization Names

An authorization name identifies an owner name defined in the AUTHORIZATION
clause of the CREATE SCHEMAtatement. Authorization names must be unique within the
DBEnvironment. There cannot be another owner, authorization group, or grantor with the
same name on the system when the CREATE SCHEMAtatement is issued.

Authorization names can be one of the following:
« DBEUserID
= Group name

< Class name

Compound ldentifiers

Basic names and DBEUSserIDs are considered simple names. In some cases, simple
names are combined to form a compound identifier, which consists of an owner name
combined with one or more basic names, with periods (.) between them.

Often you can abbreviate a compound identifier by omitting one of its parts. If you do this,
a default value is automatically used in place of the missing part. For example, you can
omit the owner name (and the period) when you refer to tables you own; ALLBASE/SQL
generates the owner name by using your logon name.

A complete compound identifier, including all of its parts, is called a fully qualified
name. The following are compound identifiers:

Authorization group identifier—[Owner.]GroupName
Column identifier— [[Owner.] TableName .]ColumnName
Constraint identifier— [Owner.]ConstraintName

Index identifier— [Owner.]IndexName

Module identifier—[Owner.]ModuleName

Procedure identifier— [Owner.]ProcedureName

Rule identifier—[Owner.]RuleName

Section identifier— [Owner.]ModuleName(SectionNumber)
Table identifier— [Owner.] TableName

View identifier— [Owner.]ViewName

Different owners can have modules, tables, or views by the same name; the fully qualified
name of these objects must be unique in the DBEnvironment. Group names, however,
must be unique in the DBEnvironment.

204 Chapter6

Names
Host Variable Names

Host VVariable Names

Host variables are used to pass information between an application program and
ALLBASE/SQL. They are ordinary application program variables that happen to be used
in SQL commands.

A host variable name must be preceded by a colon (:) when used in an SQL command.
When used elsewhere in an application program, no colon should be used.

Host variable names must conform to ALLBASE/SQL's rules for basic names; however,
they are allowed to be up to 30 bytes in length. In addition, host variable names must
conform to the rules of the language in which the application program is written.

Local Variable Names

Local variables are used to hold data within a procedure. A local variable is declared in a
DECLAREtatement in the procedure, and it is prefixed with a colon (:) when used in any
other statement. Local variable names must conform to ALLBASE/SQL's rules for basic
names.

Parameter Names

Parameters are used to pass information between the database and a procedure. A
parameter is identified in the parameter list of a CREATE PROCEDUR&Eatement, and it is
prefixed with a colon (:) when used in the body of the procedure. Parameter names must
conform to ALLBASE/SQL's rules for basic names.

DBENnvironment and DBECon File Names

The name of a DBEnvironment and the name of its DBECon file are identical. This name
uses the form shown here, follows HP-UX file naming conventions, and cannot exceed 128
characters, including slashes:

FileName [.GroupName[.AccountName]]

This name must always be enclosed in single quotation marks when specified in SQL
commands. If athe group and account are not given, ALLBASE/SQL assumes the name
specified is in the current group and account.

Chapter 6 205

Names
DBEFile and Log File Identifiers

DBEFile and Log File Identifiers

DBEFiles and log files have logical names which conform to the rules for ALLBASE/SQL
basic names. DBEFile and log file names are stored in the system catalog.

In addition to logical names, the physical DBEFiles and log files are referred to in the SQL
syntax by system file names. If the group and account are not given, ALLBASE/SQL
assumes the name specified is in the current group and account. System file names are
always enclosed in single quotation marks in SQL commands.

TempSpace Names

A TempSpace name is a logical name for the area where temporary files are stored by
ALLBASE/SQL. This name conforms to the rules for ALLBASE/SQL basic hames.
TempSpace names are stored in the system catalog.

Special Names

ALLBASE/SQL has several names with special meaning. You should not create objects
with these names as owner:

e TEMP— Modules owned by TEMP are deleted when the transaction in which they are
created terminates.

e CATALOG— This name is the owner of the catalog views.
= SYSTEM— This name designates the owner of the system views.

« HPRDBSS and STOREDSECT— These names designate the owners of the system
tables. STOREDSECT owns the tables used to store compiled sections and views;
HPRDBSS owns all other system tables.

e PUBLIC— This name refers to all users and authorization groups who have been
granted CONNECT authority.

 HPODBSS— This name is reserved.
< SEMIPERM— This name is the owner of all semi-permanent sections.

206 Chapter6

Data Types

[/ Data Types

Every value in SQL belongs to some data type. A data type is associated with each value
retrieved from a table, each constant, and each value computed in an expression.

This chapter discusses data types. The following sections are presented:

Type Specifications
Value Comparisons
Overflow and Truncation
Underflow

Type Conversion

Null Values

Decimal Operations
Date/Time Operations
Binary Operations

Long Operations

Native Language Data

A data type defines a set of values. Reference to a previously defined data type is a
convenient way of specifying the set of values that can occur in some context. For example,
in SQL the type INTEGER is defined as the set of integers from -2,147,483,648 through
+2,147,483,647, plus the special value NULL If you define a column with type INTEGER
each value stored in the column must be either an integer in the range -2,147,483,648
through +2,147,483,647, or a null value (if NOT NULL is not specified).

Chapter 7 207

Data Types

Type Specifications

Type Specifications

All the data in a column must be of the same type. Specify the data type for each column
when you create a table or when you add a column to an existing table. The
ALLBASE/SQL data types and the values you can specify for data of each type are shown

in Table 7-1.

Table 7-1. ALLBASE/SQL Data Types

Group

Data Type

Description

Alpha-
numeric

CHAR[ACTER][(n)]

VARCHAR(n)

String of fixed length n, where n is an integer from 1 to
3996 bytes. The default size is CHAR (1). The keyword
CHARACTER a synonym for CHAR

String of variable length no greater than n, where n must
be an integer from 1 to 3996 bytes.

Numeric

DEC[IMAL][(p[,s])]
NUMERIC[(pL,s])]

FLOAT[(p)] or
DOUBLE
PRECISION

Fixed-point packed decimal number with a precision
(maximum number of digits excluding sign and decimal
point) no greater than p, where p is 1 through 27, and a
scale (number of digits to the right of the decimal) of s,
where s is from 0 through p. E (exponential) and L (Pascal
longreal) notation are not allowed in the specification of a
decimal value. Operations on data of type DECIMAL are
often much more precise than operations on data of type
FLOAT.

The default for NUMERIC and DECIMAL types is
DECIMAL (27,0). DEC and NUMERIC are synonyms for
DECIMAL.

Long (64-bit) floating point number. This is an approximate
numeric value consisting of an exponent and a mantissa.
The precision, p, is a positive integer that specifies the
number of significant binary digits in the mantissa. The
value of p can be from 25 to 53. The default is 53.

The range of negative numbers that can be represented is
-1.79769313486230E+308 to —2.22507385850721E-308.
The range of positive numbers that can be represented is
2.22507385850721E-308 to 1.79769313486230E+308. E
(exponential) or L (Pascal longreal) notation can be used to
specify FLOAT values.

DOUBLE PRECISION is a synonym for FLOAT(53).

208

Chapter7

Data Types
Type Specifications

Table 7-1. ALLBASE/SQL Data Types

Group

Data Type

Description

FLOAT(p) or REAL

INT[EGER]

SMALLINT

Short (32-bit) floating point number. This is an
approximate numeric value consisting of an exponent and
a mantissa. The precision, p, is a positive integer that
specifies the number of significant binary digits in the
mantissa. The value of p can be from 1 to 24. The default
(using REAL) is 24. The range of negative numbers that
can be represented is —3.402823E+38 to —1.175495E-38.
The range of positive numbers that can be represented is
3.402823E+38 to 1.175495E-38.

REAL is a synonym for FLOAT (24).

Integer in the range —2147483648 (-231) 10 2147483647
(2%1-1). INT is a synonym for INTEGER.

Integer in the range -32768 (—215) 10 32767 (215—1).

Date/Time

DATE

TIME

DATETIME

INTERVAL

String of form 'YYYY-MM-DD', where YYYY represents the
calendar year, MM is the month, and DD is the day of the
month. DATE is in the range from '0000-01-01' to
'9999-12-31".

String of the form 'HH:MI:SS: where HH represents hours,
MI is minutes, and SS is seconds. TIME is in the range
from '00:00:00' to '23:59:59'.

String of the form 'YYYY-MM-DD HH:MI:SS.FFF', where
YYYY represents the calendar year, MM is the month, DD
is the day, HH the hour, MI the minute, SS the second, and
FFF thousandths of a second. The range is from '‘000-01-01
00:00:00.000' to '9999-12-31 23:59:59.999'".

String of the form 'DDDDDDD HH:MI:SS.FFF', where
DDDDDDD is a number of days, HH a number of hours, Ml
a number of minutes, SS a number of seconds, and FFF a
number of thousandths of a second. The range is from '0
00:00:00.000' to '3652436 23:59:59.999'.

Binary

BINARY(n)

VARBINARY (n)

LONG BINARY(n)

LONG
VARBINARY (n)

Binary string of fixed length n, where n is an integer from 1
to 3996 bytes. Each byte stores 2 hexadecimal digits.

Binary string of variable length no greater than n, where n
is an integer from 1 to 3996 bytes. Each byte stores 2
hexadecimal digits.

Binary string of fixed length n, where n is an integer from 1
to (231-1) bytes.

Binary string of variable length no greater than n, where n
is an integer from 1 to (231-1) bytes.

Chapter 7

209

Data Types
Type Specifications

Your choice of data types can affect the following:

< How values are used in expressions. Some operations can be performed only with data
of a certain type. For example, arithmetic operations are limited to numeric and
date/time data types, such as INTEGER, SMALLINT, FLOAT, DECIMAL, DATE,
TIME, DATETIME, or INTERVAL. Pattern matching with the LIKE predicate can be
performed only with string data, that is, data of types CHAR or VARCHAR.

= The result of operations combining data of different types. When comparisons and
expressions combining data of different but compatible types are evaluated,
ALLBASE/SQL performs type conversion, as described later in this chapter.

< How values are transferred programmatically. When data is transferred between
ALLBASE/SQL and an application program in host variables, ALLBASE/SQL uses the
data type equivalencies described in the ALLBASE/SQL application programming

guides.

Table 7-2. contains the storage requirements of the various data types.
Table 7-2. Data Type Storage Requirements

Type

Storage Required

CHAR (n)

n bytes (where n must be an integer from 1 to 3996)

VARCHAR (n)

n bytes (where n must be an integer from 1 to 3996)

DECIMAL (p[,s])

4 bytes (where p <=7) or 8 bytes (where 7 < p <= 15) or 12 bytes (where 15
< p <= 23) or 16 bytes (where p > 23)

FLOAT 8 bytes

REAL 4 bytes

INTEGER 4 bytes. Integer values less than -2147483648 (-2**31) or larger than
2147483647 (2**31 - 1) up to 15 digits long are stored as decimals with a
precision of 15 and a scale of 0, i.e., equivalent to DECIMAL (15,0)

SMALLINT 2 bytes

DATE 16 bytes

TIME 16 bytes

DATETIME 16 bytes

INTERVAL 16 bytes

BINARY (n) n bytes (where n must be an integer from 1 to 3996)

VARBINARY (n)

n bytes (where n must be an integer from 1 to 3996)

LONG BINARY (n)

n bytes (where n must be an integer from 1 to 281 - 1)

LONG
VARBINARY (n)

n bytes (Where n must be an integer from 1 to 23! - 1)

210

Chapter7

Data Types
Value Comparisons

Value Comparisons

When you compare a CHAR and a VARCHAR string, ALLBASE/SQL pads the shorter
string with ASCII blanks to the length of the longer string. The two strings are equal if the
characters in the shorter string match those in the longer string and if the excess
characters in the longer string are all blank.

If a case sensitive CHAR column is compared to a CHAR column that is not case sensitive,
both columns are treated as case sensitive. If a string constant is compared to a column
that is not case sensitive, then the string constant is treated as not case sensitive.

Before comparing DECIMAL numbers having different scales, ALLBASE/SQL extends the
shorter scale with trailing zeroes to match the larger scale.

Items of type DATE, TIME, DATETIME, and INTERVAL can be compared only with items
of the same type, or with CHAR or VARCHAR strings in the correct format. All
comparisons are chronological, which means the point which is farthest from

'0000-01-01 00:00:00.000' is the greatest value. ALLBASE/SQL attempts to convert CHAR
or VARCHAR strings to the default date/time format before performing the comparison.

When you compare a BINARY and a VARBINARY hexadecimal string, ALLBASE/SQL
pads the shorter binary string with binary zeroes to the length of the longer string. When
comparing two BINARY or VARBINARY hexadecimal strings having different lengths,
ALLBASE/SQL compares the excess binary digits of the longer binary string with binary
zeroes. The two strings are equal if the binary digits in the shorter string match those in
the longer string and if the excess binary digits in the longer string are all binary zero.

The chapter "Search Conditions" provides more information on comparison operations.

Chapter 7 211

Data Types
Overflow and Truncation

Overflow and Truncation

Some operations can result in data overflow or truncation. Overflow results in loss of data
on the left. Truncation results in loss of data on the right.

Overflow or truncation can occur in several instances as follows:

= During arithmetic operations, for example, when multiplication results in a number
larger than the maximum value allowable in its type. Arithmetic operations are defined
inChapter 8, “Expressions.”

= When using aggregate functions, for example, when the sum of several numbers
exceeds the maximum allowable size of the type involved. Aggregate functions are
defined in Chapter 8 , “Expressions.”

= During type conversion, as when an INTEGER value is converted to a SMALLINT
value. Type conversion is discussed later in this chapter.

Because large integers (less than —2147483648 (-231) or larger than 2147483647 (231-1)
up to 15 digits long) are stored as decimals, large integer overflow actually results in a
DECIMAL OVERFLOMWnhessage.

Overflow always causes an error.

Truncation can cause a warning for the following types of data:

< Alphanumeric data—A warning occurs if a string is truncated because it is too long for
its target location. No error is given if truncation occurs on input.

= Numeric data—No error or warning occurs when zeroes are dropped from the left or
when any digit is dropped from the fractional part of DECIMAL or FLOAT values.
Otherwise, truncation of numeric values causes an error.

< LONG data—A warning occurs if LONG column data is truncated because it is too long
for its target input file. The output file location is modified to fit the LONG column
length, so no truncation error occurs on LONG column output. If the file system fills up,
or the limit of shared memory is reached, a system error occurs.

Refer to the ALLBASE/SQL Message Manual for information on handling warnings and
errors.

Underflow

Underflow occurs when a FLOAT or a REAL value is too close to zero to be represented by
the hardware. Underflow always causes an error.

212 Chapter7

Data Types
Type Conversion

Type Conversion
ALLBASE/SQL converts the type of a value in the following situations:

< Including values of different types in the same expression.

= Moving data from a host variable to a column or a column to a host variable of a
different type.

The valid type combinations are shown in Table 7-1.
Table 7-3. Valid Type Combinations

Source Data Type Target Data Type

CHAR or VARCHAR CHAR or VARCHAR

DATE, TIME DATETIME, or INTERVAL when
CHAR value involved in date/time math or inserted
into or compared to a date/time column

CHAR or VARCHAR BINARY or VARBINARY (from host
variable/constant into a binary column only)

BINARY or VARBINARY BINARY or VARBINARY

BINARY or VARBINARY CHAR or VARCHAR (from column into host

variable, or comparing a binary column with a char
column or value)

DECIMAL, FLOAT, REAL, INTEGER, Any numeric type
SMALLINT
DATE, TIME, DATETIME, INTERVAL CHAR or VARCHAR (except in LIKE predicate)

In some cases, such as the following, data conversion can lead to overflow or truncation:

= Overflow can occur during these conversions:

FLOAT to DECIMAL, INTEGER or SMALLINT
FLOAT to REAL
REAL to DECIMAL, INTEGER, or SMALLINT

DECIMAL to DECIMAL, INTEGER, or SMALLINT
INTEGER to DECIMAL or SMALLINT
SMALLINT to DECIMAL

= Overflow of the integer part and truncation of the fractional part of a number can occur
during a FLOAT-to-DECIMAL conversion, because ALLBASE/SQL aligns the decimal
points.

Chapter 7 213

Data Types
Type Conversion

= Truncation of the fractional part of a value occurs during these conversions:
DECIMAL to SMALLINT or INTEGER
DECIMAL to DECIMAL when the target scale is smaller than the source scale
FLOAT to INTEGER, SMALLINT, DECIMAL, or REAL
REAL to INTEGER, SMALLINT, or DECIMAL

= Truncation can occur during these conversions if the target is too small:
DATE, TIME, DATETIME or INTERVAL to VARCHAR or CHAR
CHAR to VARCHAR, BINARY or VARBINARY
VARCHAR to CHAR, BINARY or VARBINARY
VARBINARY to BINARY, CHAR or VARCHAR
BINARY to VARBINARY, CHAR, or VARCHAR

When you use numeric data of different types in an expression or comparison operation,
the data type of the lesser type is converted to that of the greater type, and the result is
expressed in the greater type. Numeric types have the following precedence:

FLOAT

REAL, DECIMAL
INTEGER
SMALLINT

Comparison operations or expressions involving different numeric data types result in
conversion from one data type to another as explained in Table 7-4.

Table 7-4. Conversions from Combining Different Numeric Data Types

Operations containing: Result:

DECIMAL and INTEGER All participating integers are converted to DECIMAL quantities

types only having a precision of 10 and a scale of 0.

DECIMAL and SMALLINT | All participating SMALLINT values are converted to DECIMAL
types only guantities having a precision of 5 and a scale of 0.

One item of type FLOAT All participating integer and decimal operands are converted to

FLOAT quantities and precision can be lost.

One item of type REAL All arithmetic involving REAL operands results in a type of
FLOAT. All participating integer and decimal operands are
converted to FLOAT quantities and precision can be lost.

214 Chapter7

Data Types
Null Values

Null VValues

A null value is a special value that indicates the absence of a value. Any column in a table
or parameter or local variable in a procedure, regardless of its data type, can contain null
values unless you specify NOT NULL for the column when you create the table or the
procedure. NULL is used as a placeholder for a value that is missing or unknown. These
properties of null values affect operations on rows or parameters or local variables
containing the following values:

< Null values always sort highest in a sequence of values.

< Two null values are not equal to each other except in a GROUP BY or SELECT
DISTINCT operation, or in a unique index.

= An expression containing a null value evaluates to null; for example, five minus null
evaluates to null.

Because of these properties, ALLBASE/SQL ignores columns or rows or parameters or
local variables containing null values in these situations:

= Evaluating comparisons

= Joining tables, if the join is on a column containing null values
= Executing aggregate functions

= Evaluating if/while conditions or assignment expressions

In several SQL predicates, described in Chapter 9, “Search Conditions,” you can explicitly
test for null values. In an application program, you can use indicator variables to handle
input and output null values.

Chapter 7 215

Data Types
Decimal Operations

Decimal Operations

The precision (p) and scale (s) of a DECIMAL result depend on the operation used to derive
it. The following rules define the precision and scale that result from arithmetic operations
on two decimal values having precisions p; and p, and respective scales s; and s,. Rules

are also provided for the resulting precision and scale of aggregate functions that operate
on a single expression having a precision of p; and a scale of s;. Arithmetic operations and

aggregate functions are discussed further in Chapter 8 , “Expressions.”
Addition and Subtraction

p = MIN(27, MAX (p1 —S1, P2 — Sp) + MAX(Sy, Sp)+ 1)

s = MAX (s1,S)

Multiplication

p=MIN (27, py + pp)

s=MIN (27,81 + sp)

Division

p=27

s=27-MIN (27, p; —S1 +S))

where p; and s; describe the numerator operand, and p, and s, describe the denominator
operand.

MAX and MIN Functions

P=pP1

s=s;

SUM Function

p=27

s=s;

AVG Function

p =27

§S=27-p;+5s;

216 Chapter7

Data Types
Date/Time Operations

Date/Time Operations

DATE, TIME, DATETIME, or INTERVAL values may only be assigned to a column with a
matching data type or to a fixed or variable length character string column or host
variable. Otherwise an error condition is generated. All rules regarding assignment to a
character string are also true for date/time assignment to a character string variable or
column.

Conversions of the individual fields of a date/time data type follow the rules given earlier
in this subsection for the corresponding data type.

NOTE The validity of dates prior to 1753 (transition of Julian to Gregorian calendar)
cannot be guaranteed.

DATE, TIME, DATETIME, and INTERVAL data types behave similar to character strings
in data manipulation statements. The examples below illustrate this.

Examples

INSERT
DATETIME, DATE, TIME and INTERVAL values:

INSERT INTO ManufDB.TestData
(BatchStamp, TestDate, TestStart, TestEnd, LabTime, PassQty, TestQty)
VALUES ('1984-08-19 08:45:33.123',
'1984-08-23',
'08:12:19', '13:23:01",
'5 10:35:15.700',
49, 50)

SELECT
DATE and TIME values:

SELECT TestDate, TestStart
FROM ManufDB.TestData
WHERE TestDate = '1984-08-23"

DATETIME and INTERVAL values:

SELECT BatchStamp, LabTime
FROM ManufDB.TestData
WHERE TestDate = '1984-08-23"'

UPDATE
DATE and TIME values:

UPDATE ManufDB.TestData
SET TestDate = '1984-08-25', TestEnd = '19:30:00'
WHERE BatchStamp = '1984-08-19 08:45:33.123"'

Chapter 7 217

Data Types
Date/Time Operations

INTERVAL values:

UPDATE ManufDB.TestData
SET LabTime ='5 04:23:00.000'
WHERE TestEnd = '19:30:00'

Note that the radix of DATE and TIME data is seconds, whereas the radix of DATETIME
and INTERVAL data is milliseconds.

Date/time data types can also be converted to formats other than the default formats by
the date/time functions described in Chapter 8 , “Expressions.”

Use of Date/Time Data Types in Arithmetic Expressions

You can use a variety of operations to increment, decrement, add or subtract date, time,
datetime, and interval values. Table 7-5. shows the valid operations and the data type of

the result:
Table 7-5. Arithmetic Operations on Date/Time Data Types

Operanda Operator Operand b Result Type
DATE +,— INTERVAL DATE
INTERVAL + DATE DATE
DATE - DATE INTERVAL
TIME +,— INTERVAL TIME
INTERVAL + TIME TIME
TIME - TIME INTERVAL
DATETIME +,— INTERVAL DATETIME
INTERVAL + DATETIME DATETIME
DATETIME - DATETIME INTERVAL
INTERVAL +,— INTERVAL INTERVAL
INTERVAL * INTEGER INTERVAL
STRING? - DATE INTERVAL
STRINGP + DATE DATE
DATE - STRINGa INTERVAL
DATE + STRINGbD DATE
STRINGE - DATETIME INTERVAL
DATETIME - STRINGc INTERVAL
STRINGb + DATETIME DATETIME
DATETIME + STRING DATETIME

218

Chapter7

Data Types
Date/Time Operations

Table 7-5. Arithmetic Operations on Date/Time Data Types

Operanda Operator Operand b Result Type
STRINGY - TIME INTERVAL
STRINGbD + TIME TIME
TIME - STRINGd INTERVAL
TIME + STRINGd TIME
STRINGbD +,— INTERVAL INTERVAL
INTERVAL +,— STRINGD INTERVAL

a. The format for string should be DATE.
b. The format for string should be INTERVAL.
c. The format for string should be DATETIME.
d. The format for string should be TIME.

These arithmetic operations obey the normal rules associated with dates and times. If a
date/time arithmetic operation results in an invalid value (for example, a date prior to
'‘0000-01-01", an error is generated. If the format for the string does not match the above
default type, an error is generated. Another solution is to apply TO_DATE, TO_TIME,
TO_DATETIME and TO_INTERVALto the string so that the correct format is used.

You can also use the Add Months function to add or subtract from the month portion of the
DATEor DATETIMEcolumn. In the result, the day portion is unaffected, only the month and,
if necessary, the year portions are affected. However, if the addition of the month causes an
invalid day (such as 89-02-30), then a warning message is generated and the value is
truncated to the last day of the month.

Use of Date/Time Data Types in Predicates

DATE, TIME, DATETIME, and INTERVAL data types can be used in all predicates except
the LIKE predicate. LIKE works only with CHAR or VARCHAR values and so requires the
use of the TO_CHARonversion function to be used with a DATETIMEcolumn. Items of type
DATE, TIME, DATETIME , and INTERVAL can be compared with items of the same type or
with literals of type CHAR or VARCHAR. All comparisons are chronological, which means
that the point which is farthest from '0000-01-01 00:00:00.000' is the greatest value. String
representations of each data type (in host variables or as literals) can also be compared
following normal string comparison rules. Some examples follow:

SELECT * FROM ManufDB.TestData
WHERE BatchStamp = '1984-06-19 08:45:33.123'
AND TestDate = '1984-06-27"

SELECT * FROM ManufDB.TestData
WHERE Testend - TestStart <='0 06:00:00.000"

Chapter 7 219

Data Types
Binary Operations

Date/Time Data Types and Aggregate Functions

You can use the aggregate functions MIN, MAX, and COUNT in queries on columns of type
DATE, TIME, DATETIME, and INTERVAL. SUM and AVG can be done on INTERVAL
data types only.

Binary Operations

BINARY or VARBINARY values may be assigned to a column with a matching data type
or to a fixed or variable length character string host variable. All rules regarding
assignment to a character string are also true for binary assignment to a character string
variable.

LONG BINARY and LONG VARBINARY values cannot be converted to any other type,
and cannot participate in any expressions except as assignments to long functions and
string functions.

Character (ASCII) or hexadecimal format is used when inserting BINARY and
VARBINARY data literals into a column. Hexadecimal format is preceded by the
hexadecimal indicator Ox when inserting data through ISQL, but not if you are inserting
data through an application program. The result of a SELECTstatement on a BINARY or
VARBINARY column is in hexadecimal format.

You cannot insert BINARY literals (0's and 1's) into a CHAR column in ISQL; however, you
can insert them in an application program using a host variable.

220 Chapter7

Data Types
Long Operations

Long Operations

LONG columns in ALLBASE/SQL enable you to store a very large amount of binary data
in your database and to reference that data using a column name. You might use LONG
columns to store text files, software application code, voice data, graphics data, facsimile
data, or test vectors. Storing data in the database gives you the the advantages of
ALLBASE/SQL's recoverability, concurrency control, locking strategies, and indexes on
related columns.

The concept of how LONG column data is stored and retrieved differs from that of
non-LONG columns. LONG data is not processed by ALLBASE/SQL. Any formatting,
viewing, or other processing must be accomplished by a preprocessed application program.
Refer to the ALLBASE/SQL application programming guides for information on accessing
LONG columns from a preprocessed application.

Like other column data types, the LONG column is defined with the CREATE TABLEor
ALTER TABLEstatement. A LONG column descriptor, called the LONG column /O string
describes where the LONG column input data is located and where the data is placed
when a SELECT or FETCHstatement is executed. The LONG column 1/O string is specified
as an element in the VALUES clause of an INSERT or the SET clause of an UPDATE
operation. When you use the SELECTor FETCHstatement, the LONG column descriptor is
returned to the ISQL display or the host variable and the long column data is placed either
in the operating system file or stored memory.

Defining LONG Column Data with CREATE TABLE or ALTER
TABLE

Following is the syntax for specifying a column definition for a LONG column in either the
CREATE TABLEor ALTER TABLE statement. A maximum of 40 such LONG columns can be
defined for a single table.

(ColumnName LONG ColumnDataType [IN DBEFileSetName |
[LANG= ColumnLanguageName][NOT NULL) [,...]

The LONG data is stored in DBEFiles. These files can occupy up to 231 -1 bytes. For better
performance and storage considerations, specify a separate DBEFileSet when defining the
LONG column.

If IN DBEFileSetName is not specified for a LONG column, this column's data is stored in
the same DBEFileSet as its related table. Do not specify the SYSTEM DBEFileSet as this
could severely impact database performance.

In the following example, LONG data for PartPicture is stored in the DBEFileSet
PartPictureSet, while data for columns PartName and PartNumber is stored in
PartslllusSet:

CREATE TABLE PurchDB.Partslllus
(PartName CHAR(16),
PartNumber INTEGER,
PartPicture LONG VARBINARY(1000000) IN PartPictureSet)
IN PartslllusSet

Chapter 7 221

Data Types
Long Operations

The next statement specifies that data for the new LONG column, PartModule, will be
stored in PartPictureSet:

ALTER TABLE PurchDB.Partslllus
ADD PartModule LONG VARBINARY(50000) IN PartPictureSet

Since LONG data for PartMap will be stored in the same DBEFileSet as its related table,
Partslllus, it goes to PartslllusSet.

ALTER TABLE PurchDB.Partslllus
ADD PartMap LONG VARBINARY (70000)

Defining Input and Output with the LONG Column 1/O String

The INSERT and UPDATE statements use the LONG column 1/O string to define the
various input and output parameters for any LONG column. You need to understand this

string in order to input, change, or retrieve LONG data.

The LONG column 1/O string has an input portion (indicated with <) and an output
portion (indicated with >). The input portion of the LONG column 1/O string, also referred
to as the input device, specifies the location of data that you want written to the
database. You can indicate a file name or a heap address and heap length.

A variable length record file cannot be input to a LONG column.

The output portion of the LONG column 1/O string (the output device) specifies where
you want LONG data to be placed when you execute the SELECTor FETCHstatement. You
have the option of specifying a file name, part of a file name, or having ALLBASE/SQL
specify a file name. You also can direct output to the heap address (in this case,
ALLBASE/SQL will select the heap address). Additional output parameters allow you to
append to or overwrite an existing file. The output device specification is stored in the
database table and is available to you when you use the OUTPUT_DEVICE function or
OUTPUT_NAME function together with a SELECTor FETCHstatement. For more
information on the OUTPUT_DEVICE and OUTPUT_NAME functions, see Chapter 8,
“Expressions,” in this document.

The examples in the following sections illustrate the use of the input and output portions
of the LONG column 1/O string. The complete syntax for the LONG column 1/O string is
presented under the INSERT, UPDATE, and UPDATE WHERE CURRENTatements.

It is important to note that files used for LONG column input and output are opened and
closed by ALLBASE/SQL. You do not need to open or close the files for use in the
DBEnvironment. ALLBASE/SQL does not control the input or output device files on the
operating system. That is, if there is a rollback work, ALLBASE/SQL will not remove the
physical operating system file generated by the SELECTstatement.

Using INSERT with LONG Column Data

As with any column, you use the SQL INSERT statement or an ISQL INPUT command to
initially put data in a LONG column. The LONG column 1/O string requires an input
device, but the output device is optional.

The following examples illustrate some of the options available to you.

222 Chapter7

Data Types
Long Operations

Using INSERT with No Specified File Options

In this example, data from the file hammer.tools becomes the contents of the LONG
column PartPicture. The output device is the file hammer. If this file already exists when
the SELECTor FETCHstatement is issued, it is not overwritten or appended to, and an error
is generated.

INSERT INTO PurchDB.Partslllus
VALUES (‘hammer’

100,

‘<hammer.tools >hammer")

Using INSERT with the Overwrite Option

When you want to reuse an existing output device file when the inserted data is later
selected or fetched, specify the overwrite option. Here if file wrench already exists at
INSERT time, it is overwritten:

INSERT INTO PurchDB.Partslllus
VALUES (‘hammer’,
100,
'<hammer.tools >!wrench’)

Using INSERT with the Append Option

You can append LONG data to an existing file. If the file limit for the wrench files is
inadequate to hold the data that is to be appended, a warning is returned (DBWARN
2051), but data up to the file limit is added to the file. In this example, when the LONG
column PartPicture is selected or fetched, output is appended at the end of the file wrench :

INSERT INTO PurchDB.Partslllus
VALUES (‘hammer’,
100,
'<hammer.tools >>wrench")

Using INSERT with the Wildcard Option

Depending on your application, you may need to assign a specific, known name to the
output device. On the other hand, a partially generic name or a completely unknown name
may be desirable. In this example, the output device name begins with PRT and is followed
by a five-character, random wild card, for instance, 'PRT123AB":

INSERT INTO PurchDB.Partslllus
VALUES (‘hammer’
100,
'< hammer.tools >PRT$')

Chapter 7 223

Data Types
Long Operations

Using INSERT with Heap Space Input and Output

You have the option of using a heap address to indicate the location of input data. Output
datamay be directed toa heap address generated by ALLBASE/SQL at output time. In the
next example, 4000 bytes of data flow from heap address 1230 to the Partslllus table, and
when this data is selected or fetched, it goes to the heap address:

INSERT INTO PurchDB.Partslllus
VALUES ('saw'
300,
'<9%61230:4000 >%$")

Using SELECT with LONG Column Data

The concept of how data is retrieved differs from that of non-LONG columns. The output
portion of the LONG column 1/O string (rather than the data itself) is obtained with the
SELECTor FETCHstatement. The LONG data goes to a file or heap space.

In this example, the SELECTstatement places the LONG data from the PartPicture column
in a file or in heap space, as specified in the LONG column 1/0O string when the PartPicture
column was inserted or updated. The SELECTstatement puts the file name or heap space
address in the PartPicture LONG column descriptor. In an application, the contents of the
descriptor are placed in a host variable and may be parsed to extract the file name or heap
space address. When a long field column is selected using ISQL, the file name or heap
space address is displayed in the column whose heading is the long field name. Refer to the
"Programming with LONG Columns" chapter of the appropriate application programming
guide for information on the format of the LONG column descriptor.

SELECT PartPicture
FROM PurchDB.Partslllus
WHERE PartName = 'saw'

Using UPDATE with LONG Column Data
When you issue an UPDATE on a LONG column, you have the following options:

= Change the stored data as well as the output device name and/or options.
< Change the stored data only.
« Change the output device name and/or options only.

You must specify either the input device, the output device, or both.

Examples
The following examples present a sampling of possible combinations.
Using UPDATE to Change Stored Data and Output Device Name

In this example, data from the file newhammer.tools is inserted into the LONG column
PartPicture replacing the previously stored data. The output device name is changed to be
the file newhammer. Should file newhammer already exist when the SELECTor FETCH
statement is issued, it is not overwritten, and an error is generated.

224 Chapter7

Data Types
Long Operations

UPDATE PurchDB.Partslllus
SET PartPicture = '<newhammer.tools >newhammer’
WHERE PartName = 'hammer’

Using UPDATE to Change Stored Data Only

Here the stored data in LONG column PartPicture is replaced with data from the file
../tools/newhammer . Assuming the original output device was named hammer, when you
select or fetch the PartPicture column, the updated output still goes to a file named
hammer.

UPDATE PurchDB.Partslllus
SET PartPicture = '<snewhammer.tools'
WHERE PartName = 'hammer"

Using UPDATE to Change the Output Device Name and Options

You may want to change the output file name but not the LONG data associated with a
particular column. Here newhammerbecomes the output device name. When LONG column
PartPicture is SELECEd or FETCHd, output is appended to the file newhammer.

UPDATE PurchDB.Partslllus
SET PartPicture = ">>newhammer’
WHERE PartName = 'hammer’

Using UPDATE with Heap Space Input and Output

You may decide to use heap space as your input input device. Output may be directed to a
heap address. In this example, LONG data flows from file newsaw to the Partslllus table,
and when this data is selected or fetched it goes to a heap address:

UPDATE PurchDB.Partslllus
SET PartPicture = '< newsaw >%$'
WHERE PartName = 'saw'

In the next example, 4000 bytes of data flow to the database from heap address 1000 and
when the LONG column is selected or fetched, data goes to the file newsaw:

UPDATE PurchDB.Partslllus
SET PartPicture = '<%1000:4000 >newsaw'
WHERE PartName = 'saw'

Using DELETE with LONG Column Data

DELETEand DELETE WHERE CURRHYNhtax is unchanged when used with LONG columns.
It is limited in that a LONG column cannot be used in the WHERE clause.

In the following example, any rows in PurchDB.Partslllus with the PartName of hammer
are deleted:

DELETE FROM PurchDB.Partslllus
WHERE PartName = 'hammer’

When LONG data is deleted, the space it occupied in the DBEnvironment is released when
your transaction ends. But the data files still exist on the operating system.

Chapter 7 225

Data Types
Native Language Data

Native Language Data

Character data in the DBEnvironment can be represented in the native language specified
by the DBEnvironment language. When native language character columns are created,
they follow the same rules as CHAR and VARCHAR columns. For character columns, size
is defined in bytes. Thus a column defined as CHAR (20) could hold 20 characters in ASCI|I
or 10 characters in Japanese Kaniji.

Numeric data must be in ASCII representation.

Pattern matching is in terms of conceptual characters rather than bytes. This is
necessary for languages in which there are both one-byte and two-byte characters
frequently mixed in the same string. An example is Japanese, in which the Kanji and
Hiragana characters occupy 16 bits each, whereas the Katakana characters use only 8 bits.
Conceptual character matching is also necessary to establish a collating sequence that
includes the one-byte ASCII character set as a subset of a two-byte character set such as
Chinese.

Truncation is done on a character basis. For example, imagine a column defined as CHAR
(20). If a string contains 11 Kanji characters, or 22 bytes, the last character is truncated if
you try to insert it into the column. In a case where a string contains both Kanji and
Katakana characters and is 21 bytes long, the truncation depends on the size of the last
character. If it is a 2-byte Kanji character, the data is truncated to 19 bytes; if it is a 1-byte
Katakana character, the data is truncated to 20 bytes.

An implicit type conversion occurs when an NATIVE 3000 string is compared to a native
language CHAR or VARCHAR type. The shorter string is padded with ASCII blanks before
the comparison is done.

When a case insensitive ASCII expression is compared to a case insensitive NLS
expression, the two expressions are compared using the NLS collation rules. The case
insensitive NLS comparison is done by using the NLSCANMOV&nd NLCOLLATHENtrinsics.
The same ASCII characters in upper and lower case are equivalent. The same accent
characters (extended characters) in upper and lower case are also equivalent. However, an
accent character may not be the same as its ASCII equivalent, depending on the specific
language collation table.

226 Chapter7

8 Expressions

This chapter discusses value specification. The following sections are presented:

Expression

Add Months Function
Aggregate Functions
CAST Function
Constant

Current Functions
Date/Time Functions
Long Column Functions
String Functions

TID Function

An expression specifies a value to be obtained in one of the following ways:

From a column of a table

From a host variable in an application program

From a dynamic parameter

From a local variable or parameter in a procedure

From a constant

By adding, subtracting, multiplying, dividing, or negating values

By evaluating an aggregate function

By evaluating a date/time (conversion, current, or add months) function
By evaluating a long column or string function

By a combination of these methods

Expressions are used for several purposes including:

Expressions

To identify columns. In the SELECTstatement, expressions are used in the select list to

identify column values to be retrieved.

The SELECTstatement is also part of the CREATE VIEW, DECLARE CURSGIRd INSERT
statements. The expressions in this case identify columns that qualify for the view, the

cursor, or the insert operation.

To identify rows. In the search condition of the following statements, expressions help
define the set of rows affected: SELECT, INSERT, UPDATE, DELETE, CREATE VIEW

and DECLARERefer to the “Search Conditions” chapter for more information.

To define new column values. In the UPDATEstatement, expressions define a new value

for a column in an existing row.

Chapter 8

227

Expressions
Expression

Expression

An expression can consist of a primary or several primaries connected by arithmetic
operators. A primary is a signed or unsigned value derived from one of the items listed in

the SQL syntax below.

Scope
SQL Data Manipulation Statements

SQL Syntax

[+
-1{ ColumnName
USER

:HostVariable [[INDICATOR] :IndicatorVariable

2

:LocalVariable
:ProcedureParameter
::Built-inVariable
AddMonthsFunction
AggregateFunction
Constant
DateTimeFunction
CurrentFunction
LongColumnFunction
StringFunction
CASTFunction
(Expression)
TIDFunction

*
/
+

I3+

- 1{ ColumnName

: HostVariable [[INDICATOR]:

?

: LocalVariable

. ProcedureParameter
1 Built-inVariable
AddMonthsFunction
AggregateFunction
Constant
DateTimeFunction
CurrentFunction
LongColumnFunction
StringFunction
CASTFunction
Expression)

IndicatorVariable

]

"

228

Chapter8

Parameters

+_

ColumnName

USER

Expressions
Expression

designate unary plus and unary minus. Unary plus assigns the primary a
positive value. Unary minus assigns the primary a negative value. Default
is positive.

is the name of a column from which a value is to be taken; column names
are defined in the "Names" chapter.

The keyword USER can be used as a character constant in several
locations as follows:

=< In a WHERE clause predicate when comparing it to a character string,
for example:

WHERE Owner = USER
WHERE Owner IN ('ALLUSERS', USER)

< In the VALUES clause of the INSERT statement, for example:
VALUES (USER)

« In a DEFAULT clause of a column definition, for example:
Owner CHAR(20) DEFAULT USER NOT NULL

e In a SELECTIist, returning a character string, for example:
SELECT USER, columnl

< Inan UPDATE SET clause, assigning a value to a character string, for
example:

SET Owner = USER

USER evaluates to the current DBEUSserlID. In ISQL, it evaluates to the
login name of the ISQL user. From an application program, it evaluates to
the login name running the program. USER behaves like a CHAR(20)
constant, with trailing blanks if the login name has fewer than 20
characters.

Note that if a column in your table is named USER, it must be preceded
with the table name for column values to be selected. The function USER
takes precedence over any column named USER.

HostVariable contains a value in an application program being input to the expression.

IndicatorVariable names an indicator variable, whose value determines whether the
associated host variable contains a NULL value:
>=0 the value is not NULL
<0 the value is NULL (The value in the host variable will be

ignored.)

? is a place holder for a dynamic parameter in a prepared SQL statement in
an application program. The value of the dynamic parameter is supplied at
run time.

LocalVariable contains a value in a procedure.

Chapter 8

229

Expressions
Expression

ProcedureParameter contains a value that is passed into or out of a procedure.

Built-inVariable is one of the following built-in variables used for error handling:

::sqlcode
:sqglerrd2
= :sqglwarn0O
= sglwarnl
= :sglwarn2
:sqlwarn6é
;:activexact

The first six of these have the same meaning that they have as fields in the
SQLCA in application programs. Note that in procedures, sqlerrd2 returns
the number of rows processed for all host languages. However, in
application programs, sqlerrd3 is used in COBOL, Fortran, and Pascal,
while sqlerr2 is used in C. ::activexact indicates whether a transaction is
in progress or not. For additional information, refer to the application
programming guides and to Chapter 4 , “Constraints, Procedures, and
Rules.”

AddMonthsFunction returns a value that represents a DATEor DATETIMEvalue with a
certain number of months added to it.

AggregateFunction is a computed value; aggregate functions are defined in this
chapter.
Constant is a specific value; constants are defined in this chapter.

DateTimeFunction returns a value that is a conversion of a date/time data type into an
INTEGER or CHAR value, or from a CHAR value.

CurrentFunction returns a value that represents the current DATE, TIME , or
DATETIME.

LongColumnFunction returns information from a long column descriptor.
StringFunction returns a partial value or attribute of string data.

CASTFunction converts data from one data type to another.

(Expression) is one or more of the above primaries, enclosed in parentheses.
* multiplies two primaries.

/ divides two primaries.

+ adds two primaries.

- subtracts two primaries.
11 concatenates two string operands.

TIDFunction returns the database address of a row (or rows for a BULK SELECT) of a
table or an updatable view. You cannot use mathematical operators with
this function except to compare it (using = or <>) to a value, host variable,
or dynamic parameter.

230 Chapter8

Expressions
Expression

Description

Arithmetic operators can be used between numeric values, that is, those with data
types of FLOAT, REAL, INTEGER, SMALLINT, or DECIMAL. Refer to the "Data

Types" chapter for rules governing the resulting precision and scale of DECIMAL

operations.

Arithmetic operators can also be used between DATE, TIME, DATETIME , and
INTERVAL values. Refer to the "Data Types" chapter for rules on the valid operations
and the resulting data types.

Elements in an expression are evaluated in the following order:

— Aggregate functions and expressions in parentheses are evaluated first.
— Unary plusses and minuses are evaluated next.

— The * and / operations are performed next.

— The + and - operations are then performed.

You can enclose expressions in parentheses to control the order of their evaluation. For
example:

10*2 -1=19, but
10*(2 -1)=10

TO_INTEGER is the only date/time function that can be used in arithmetic
expressions.

When two primaries have the same data type, the result is of that data type. For
example, when an INTEGER is divided by an INTEGER, the result is INTEGER. In
such cases, the result will be truncated.

If either arithmetic operand is the NULL value, then the result is the NULL value.

Arithmetic operators cannot be used to concatenate string values. Use || to
concatenate string operands.

Both operands of concatenation operator should be one of the following: CHAR (or
VARCHAR, or Native CHAR, or Native VARCHAR), BINARY (or VARBINARY), but no
mix of CHAR and BINARY.

If either concatenation operand is the NULL value, then the result of the concatenation
is the NULL value.

If one concatenation operand is a variable length string (VARCHAR, Native VARCHAR,
VARBINARY), then the result data type of the concatenation is a variable length string.

If both concatenation operands are fixed length string data type (CHAR, Native CHAR,
BINARY), then the result of the concatenation is fixed length string.

The concatenation result will consist of the first operand followed by the second
operand. The trailing blanks of the string value are preserved by concatenation
regardless of the string's data types. The resultant string may be truncated on the
right, if the length exceeds the maximum string length of 3996 bytes. If truncation
occurs, a truncation warning is sent.

Type conversion, truncation, underflow, or overflow can occur when some expressions

Chapter 8 231

Expressions
Expression

are evaluated. For more information, refer to the chapter, "Data Types."

= |If the value of an indicator variable is less than zero, the value of the corresponding
host variable is considered to be NULL.

NOTE To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a -1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

= The following expressions can evaluate to NULL:

— Host variable with an indicator variable
— Local variable

— Procedure parameter

— Column

— Add Months function

— DateTime function

— Aggregate function

— CAST function

— String function

< A NULL value in an expression causes comparison operators and other predicates to
evaluate to unknown. Refer to Chapter 9 , “Search Conditions,” for more information on
evaluation of comparison operators and predicates containing NULL values.

= The ? can be used as a host variable or dynamic parameter in an expression as shown in
the following examples:

— In the WHERE clause of any SELECT statement:

SELECT *
FROM PurchDB.Orders
WHERE PartNumber = ?
AND OrderDate > ?
ORDER BY OrderDate

— In the WHERE and SET clauses of an UPDATEstatement:

UPDATE PurchDB.Parts
SET SalesPrice = ?
WHERE PartNumber = ?

— In the WHERE clause of a DELETEstatement:

DELETE FROM PurchDB.Orderltems
WHERE ItemDueDate
BETWEEN ? and ?

— In the VALUES clause of an INSERT or a BULK INSERT statement. In this example
each ? corresponds in sequential order to a column in the PurchDB.Orderltems

232 Chapter8

Expressions
Expression

table:
BULK INSERT INTO PurchDB.Orderltems VALUES (?,?,?,?

See the syntax descriptions for each DML statement, and for the PREPARE,
DESCRIBE, EXECUTE and OPENstatements for details of dynamic parameter usage.

Example

The result length of PartNumber | | VendPartNumber is 32 in this example.

CREATE TABLE PurchDB.SupplyPrice
(Part Number CHAR(16) NOT CASE SENSITVE not null unique,
VendorNumber INTEGER
VendPartNumber CHAR(16) lang=german,
UnitPrice DECIMAL (10,2),
Delivery Days SMALLINT,
DiscountQty SMALLINT)

SELECT PartNumber || VendPartNumber, UnitPrice from PurchDB.SupplyPrice;

Chapter 8 233

Expressions
Add Months Function

Add Months Function

The Add Months function uses the keyword ADD_MONTH® apply the addition operation to
a DATE or DATETIME expression. It is different from a simple addition operator in that it
adjusts the day field in the DATE or DATETIME value to the last day of the month if
adding the months creates an invalid date (such as '1989-02-30").

Scope
SQL Data Manipulation Statements

SQL Syntax

ADD_MONTHSE DateExpression ,{[+
-] IntegerValue

:HostVariable [[INDICATOR]: IndicatorVariable]
2

.:Local Variable
:ProcedureParameter P]

Parameters

DateExpression is either a DATE or DATETIME expression. See the "Expression”
section of this chapter for details on the syntax.

HostVariable is a host variable of type INTEGER. It can be positive or negative. If
negative, the absolute value is subtracted from Valuel .

IndicatorVariable names an indicator variable, whose value
determines whether the associated host variable contains
a NULL value:
>=0
the value is not NULL
<0
the value is NULL (The value in the host variable will be
ignored.)
? indicates a dynamic parameter in a prepared SQL statement. The value of

the parameter is supplied when the statement is executed.
LocalVariable contains a value within a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

Description

= The Add Months function adds a duration of months to a DATE or DATETIME
expression. Only the month portion of the value is affected, and, if necessary, the year
portion. The day portion of the date is unchanged unless the result would be invalid (for

234 Chapter8

Expressions
Add Months Function

example, '1989-02-31"). In this case, the day is set to the last day of the month for that
year, and ALLBASE/SQL generates a warning indicating the adjustment.

= If either parameter is NULL, ADD_MONTHS will evaluate to NULL also.

Example

In this example, rows are returned which comprise the batch stamp and test date that
have a pass quantity less than 48. A warning is generated because 7 months added to the
'1984-07-30' date results in an invalid date, '1985-02-30'.

SELECT BatchStamp, ADD_MONTHS(TestDate,7)
FROM ManufDB.TestData
WHERE PassQty <= 48

ADD_MONTHS result adjusted to last day of month. (DBWARN 2042)

Chapter 8 235

Expressions
Aggregate Functions

Aggregate Functions

Aggregate functions specify a value computed using data described in an argument. The
argument, enclosed in parentheses, is an expression. The value of the expression is
computed using each row that satisfies a SELECT statement. Aggregate functions can be
specified in the select list and the HAVING clause. Refer to the explanation of the SELECT
statement for more details.

Scope
SQL SELECT Statements

SQL Syntax
{ AVG ({ Expression
[ALL

DISTINCT] ColumnName)
MAX ({ Expression

[ALL

DISTINCT] ColumnName})
MIN ({ Expression

[ALL

DISTINCT] ColumnName})
SUM ({ Expression

[ALL

DISTINCT] ColumnName})
COUNT{ ~*

[ALL

DISTINCT] ColumnName}) }

Parameters

Expression specifies a value to be obtained.

AVG computes the arithmetic mean of the values in the argument; NULL
values are ignored. AVG can be applied only to numeric data types and to
the INTERVAL type. When applied to FLOAT or REAL, the result is
FLOAT. When applied to INTEGER or SMALLINT, the result is
INTEGER, and fractions are discarded. When applied to DECIMAL, the
result is DECIMAL. When applied to INTERVAL, the result is
INTERVAL.

MAX finds the largest of the values in the argument; NULL values are ignored.
MAX can be applied to numeric, alphanumeric, BINARY (not LONG), and
date/time data types; the result is the same data type as that of the
argument.

MIN finds the smallest of the values in the argument; NULL values are
ignored. MIN can be applied to numeric, alphanumeric, BINARY (not
LONG), and date/time data types; the result is the same data type as that
of the argument.

236 Chapter8

Expressions
Aggregate Functions

SUM finds the total of all values in the argument. NULL values are ignored.

SUM can be applied to numeric data types and INTERVAL only. When
applied to FLOAT or REAL, the result is FLOAT. When applied to
INTEGER or SMALLINT, the result is INTEGER. When applied to
DECIMAL, the result is DECIMAL. When applied to INTERVAL, the
result is INTERVAL.

COUNT * counts all rows in all columns, including rows containing NULL values.

The result is INTEGER.

COUNTColumnName counts all rows in a specific column; rows containing NULL values

are not counted. The data type of the column cannot be LONG BINARY or
LONG VARBINARY. The result is INTEGER.

ALL includes any duplicate rows in the argument of an aggregate function. If
neither ALL nor DISTINCT is specified, ALL is assumed.

DISTINCT eliminates duplicate column values from the argument of an aggregate
function.

Description

If an aggregate function is computed over an empty, ungrouped table, results are as
follows:

— COUNT returns 1; SQLCODE equals 0.
— AVG, SUM, MAX, and MIN return NULL; SQLCODE equals 0.

If an aggregate function is computed over an empty group or an empty grouped table,
all aggregate functions return no row at all.

Refer to the "Data Types" chapter for information on truncation and type conversion
that may occur during the evaluation of aggregate functions.

Refer to the "Data Types" chapter for information on the resulting precision and scale of
aggregate functions involving DECIMAL arguments.

A warning message is returned if a NULL is removed from the computation of an
aggregate function.

Example

The average price of each part with more than five rows in table PurchDB.SupplyPrice is
calculated.

SELECT PartNumber, AVG(UnitPrice)
FROM PurchDB.SupplyPrice

GROUP BY PartNumber

HAVING COUNT *>5

Chapter 8 237

Expressions
CAST Function

CAST Function

The CAST function converts data from one data type to another. The CAST function can be
used anywhere a general expression is allowed. CAST is supported inside functions that
support expressions including aggregate functions. CAST also takes general expressions
including nested functions as input.

Scope
SQL Data Manipulation Statements

SQL Syntax

{ CAST({ Expression
NULLG{ AS
, } DataType [,FormatSpec]) }

Parameters

Expression is the value to be converted. See the "Expression" section in this chapter
for details on the syntax.

DataType ALLBASE/SQL data type: CHAR(n), VARCHAR(n), DECIMAL(pI,s]),
FLOAT, REAL, INTEGER, SMALLINT, DATE, TIME, DATETIME,
INTERVAL, BINARY(n), VARBINARY(n), TID.

The LONG BINARY(n) and LONG VARBINARY(n) cannot be used in the
CAST operations.

FormatSpec Format specification used for DATE, TIME, DATETIME, INTERVAL
conversions. FormatSpec is the same as that used in the date/time
conversion functions.

Description

The following table shows what data type conversions the CAST function supports. These
are the status codes used in the table:

e Y—is supported
< N—is not supported
e E—is an ALLBASE/SQL Extension (not a part of ANSI standard)

238 Chapter8

Expressions

CAST Function
Source Data Type Target Data Type
ENd ANP VC CHAR B VB DATE TIME DT I TID
(n)
ENa Y¢ Yc yd Yd Ed Ed Nd N N N N
AND Yc Yc Yd Yd Ed Ed N N N N N
VARCHAR(N) Yd Yd Yc Yc Yc Yc Yc Yc Yc Yc Ed
CHAR(N) Yd Yd Yc Yc Yc Yc Yc Yc Yc Yc Ed
BINARY Ed Ed Yc Yc Yc Yc Ed Ed Ed Ed Ed
VARBINARY(n) Ed Ed Yc Yc Yc Yc Ed Ed Ed Ed Ed
DATE Ec Ec Yc Yc Ed Ed Yc N
TIME Ec Ec Yc Yc Ed Ed N Yc
DATETIME Ec Ec Yc Yc Ed Ed N N Yc
INTERVAL Yc Ec Yc Yc Ed Ed N N N Yc
TID N N Ed Ed Ed Ed N N N N Yc

a. EN—Exact Numeric (SMALLINT, INT[EGER], DEC[IMAL][(p[,s)], NUMERIC[(p[,s]D])
b. AN—Approximate Numeric (FLOAT[(p)] or DOUBLE PRECISION, REAL)

¢. Implicit conversion also supported

d. Conversion supported only with CAST

= If input to CAST is NULL, then the result of the CAST operation is NULL.
= ALLBASE/SQL supports implicit data conversion between:

< Numeric data types to numeric data types

= Character data types to character data types

= Binary data types to binary data types

= Binary data types to character data types

« Character data types to binary data types

When CAST is used to do these conversions, all existing rules are applied.

< When a number is converted, if the number does not fit within the target precision, an
overflow error occurs.

= When converting from an approximate numeric to an exact numeric or from an exact
numeric to an exact numeric with less scale (integers have a scale of 0), the extra digits
of scale beyond the target scale are dropped without rounding the result.

Chapter 8 239

Expressions
CAST Function

If both source and target data type are character strings, the language of the result
string is the same as the source.

If the source data type is a character string and the target data type is a numeric, then
the source value must only contain a character representation of a number. The result
of the conversion is the numeric value that string represented.

If the source value is not a numeric string, an error occurs.

If the target data type is CHAR(n), and the source data type is an exact numeric, the
result is a character representation of that exact numeric. If the source value is less
than zero, the first character of the result is a minus sign. Otherwise, the first character
is a number or a decimal point.

If the length of the resulted string is less than n, then blanks are added on the right. If
the length of the resulted string is greater than n, an error occurs. The same algorithm
applies if the target data type is VARCHAR(Nn), except that there is no need to pad the

numeric string if its length is less than n.

If the target data type is CHAR(n) and the source data type is an approximate numeric,
then the number is converted to a character representation in scientific notation.

If the length of the resulted string is less than n, then blanks are added on the right. If
the length of the resulted string is greater than n, then an error occurs. The same
algorithm applies if the target data type is VARCHAR(n), except that there is no need
to pad the numeric string if its length is less than n.

Conversion between character and binary data types is supported implicity as well as
with CAST. The same rules still apply with CAST. If a target is shorter than the source,
truncation occurs. If the target is larger than the source, the target is zero-filled in the
case of BINARY(n), and blank-filled in the case of CHAR(N).

When converting a non-character data type to BINARY(n) or VARBINARY(n), the data
is not modified. Only the type changes so that the data is treated as binary data. The
size of the source and the target in bytes must be equal in the case of BINARY(n), and
the size of the source must be less than or equal to the size of the target in the case of
VARBINARY(n). Otherwise, an error occurs.

For decimal numbers, each digit of precision contributes 4 bits and 4 bits for the sign.
The overall size is rounded up to a 4-byte boundary. The storage size for DATE, TIME,
DATETIME, and INTERVAL is 16 bytes.

When converting from BINARY(n) or VARBINARY(n) into a non-character data type,
the data is not modified. Only the type changes so that the data is treated as a number
of the target data type. The actual size of the source and the target in bytes must be
equal, or an error occurs.

Conversion between binary data types and numeric data types is an ALLBASE
extension and is not allowed according to the ANSI SQL2 standard.

Converting a character string to a DATE, TIME, DATETIME or INTERVAL with CAST
is equivalent to using the respective date/time function, TO_DATE, TO_TIME,
TO_DATETIME, or TO_INTERVAL. All the same rules apply.

Using CAST to convert numeric types directly to date/time types is not allowed. This

240 Chapter8

Expressions
CAST Function

should be done by nesting the CAST functions so that the numeric value is first
converted to a character string, and then converted to the date/time data type.

= Converting a date/time data type to:

= A character type with CAST is equivalent to using the TO_CHAR date/time function.
All the same rules apply.

= An INTEGER is equivalent to using the TO_INTEGER date/time function. This
function converts date/time column value into an INTEGER value which represents
a portion of the date/time column. If the source data type of CAST is date/time data
type, and the target data type is INTEGER, all rules for TO_INTEGER to convert
date/time into INTEGER will be applied. The FormatSpec must be used to specify a
single component of the date/time data type (i.e. HH, MM, SS, DAYS, etc.).

= Other numeric types are also allowed using CAST. In this case, the date/time data
type is first converted to an INTEGER applying all the TO_INTEGER rules, then is
converted from INTEGER to the target data type.

Examples

1. You will see the result has VendorNumber presented as: Vendor9000,
Vendor9020,....

CREATE TABLE PurchDB.SupplyPrice
(PartNumber CHAR(16) NOT CASE SENSITIVE not null unique,
VendorNumber INTEGER,
VendPartNumber CHAR(16) lang=german NOT CASE SENSITIVE,
UnitPrice DECIMAL(10,2),
DeliveryDays CHAR(2),
DiscountQty SMALLINT)

SELECT PartNumber, 'Vendor' || CAST(VendorNumber AS VARCHAR(4))
FROM PurchDB.SupplyPrice
WHERE VendorNumber BETWEEN 9000 AND 9020;

2. You will see the INTERVAL constant shown as: 0 23:00:00:000

SELECT PartNumber, CAST(CAST(23,CHAR(2)),INTERVAL,'HH")
FROM PurchDB.SupplyPrice;

3. You will see the INTEGER constant shown as: 99

SELECT PartNumber, CAST('9999-12-31'INTEGER,'CC)
FROM PurchDB.SupplyPrice;

4. SELECT SUM with CAST

SELECT SUM(CAST (DeliveryDays, SMALLINT))
FROM PurchDB.SupplyPrice
WHERE VendorNumber BETWEEN 9000 AND 9020;

5. EXEC SQL with CAST

EXEC SQL begin declare section;
char hostvarl[16];
sqlbinary hostvar2[8];

EXEC SQL end declare section;

Chapter 8 241

Expressions
CAST Function

Assume there is only one row qualified for the following query.

EXEC SQL select PartNumber, CAST(UnitPrice,BINARY (8))
INTO :hostvarl, :hostvar2

FROM PurchDB.SupplyPrice

WHERE VendorNumber BETWEEN 9000 AND 9020;

6. You will see the DECIMAL constant shown as: 99.99

SELECT PartNumber, CAST(99.99,VARCHAR(10))
FROM PurchDB.SupplyPrice;

242 Chapter8

Expressions
Constant

Constant

A constant is a specific numeric, character, or hexadecimal value.

Scope
SQL Data Manipulation Statements

SQL Syntax

{ IntegerValue
FloatValue
FixedPointValue
‘CharacterString’
OxHexadecimalString}

Parameters

IntegerValue is a signed or unsigned whole number compatible with INTEGER or
SMALLINT data types, for example:

-16746
155
5

FloatValue is a signed or unsigned floating point number compatible with the FLOAT
or REAL data types, for example:

2E-4

FixedPointValue is a signed or unsigned fixed-point number compatible with the
DECIMAL data type, for example:

-15.99
+1451.1

CharacterString is a character string compatible with CHAR, VARCHAR, DATE,
TIME, DATETIME, or INTERVAL data types. String constants are
delimited by single quotation marks, for example:

'DON"T JUMP!'

However, two single quotation marks in a row are interpreted as a single
guotation mark, not as string delimiters.

HexadecimalString is a string of hexadecimal digits O through 9 and A through F (the
lowercase a through f are also accepted) compatible with the BINARY and
VARBINARY data types. A HexadecimalString constant must be
prefaced with the characters 0x, for example:

OxFFFAB0880088343330FFAA7
0x000v001231

Chapter 8 243

Expressions
Current Functions

Current Functions

Current functions return a value that represents a current DATE, TIME, or DATETIME.
The value returned is a string with the format of a DATE, TIME, or DATETIME data type.

Scope
SQL Data Manipulation Statements

SQL Syntax

{ CURRENT_DATE
CURRENT_TIME
CURRENT_DATETIME

Description

e CURRENT_DATE returns the current date as a string of the form 'YYYY-MM-DD',
where YYYY represents the year, MM is the month, and DD is the day.

e CURRENT_TIME returns the current time as a string of the form 'HH:MI:SS', where
HH represents hours, Ml is minutes, and SS is seconds.

= CURRENT_DATETIME returns the current date and time as a string of the form
YYYY-MM-DD HH:MI:SS.FFF', where YYYY represents the year, MM is the month,
DD is the day, HH represents the hours, Ml the minutes, SS the seconds, and FFF the
thousandths of a second.

Examples
Set a column to the current DATE.

UPDATE ManufDB.TestData
SET TestDate = CURRENT_DATE
WHERE BatchStamp ='1984-07-25 10:15:58.159'

Set a column to the current DATETIME.

UPDATE ManufDB.SupplyBatches
SET BatchStamp = CURRENT_DATETIME
WHERE BatchStamp ='1984-07-25 10:15:58.159'

244 Chapter8

Expressions
Date/Time Functions

Date/Time Functions
The following text describes the two types of date/time conversion functions:

= The input functions convert character values into date/time values. With TO_DATE,
TO_TIME, TO DATETIME, and TO_INTERVAL you can enter date/time values in a
format other than the default format.

= The output functions convert date/time values out to integer or character values. With
TO_CHAR you can specify an output format for a date/time column value other than
the default format. With TO_INTEGER you can extract an element as an INTEGER
value.

Date/time columns are displayed in the default format.

Scope
SQL Data Manipulation Statements

SQL Syntax—Conversion Functions

{{ TO_DATE
TO_TIME
TO_DATETIME
TO_INTERVAL} (StringExpression [, FormatSpecification)
TO_CHAR DateTimeExpression [, FormatSpecification D
TO_INTEGER(DateTimeExpression , FormatSpecification) }

Parameters—Conversion Functions

TO_DATE, TO_TIME,

TO_DATETIME, TO_INTERVAL produce a result which is of the DATE, TIME,
DATETIME, or INTERVAL type, respectively. Use these
functions in any expression.

TO_CHAR produces the character string representation of the value
in the column named in the first parameter in the format
specified in the second parameter. The result type is
VARCHAR with the length as specified by the format
specification. If a format is not specified, the default
format for the data type (and length) is used. Use this
output function in any expression.

TO_INTEGER produces an INTEGER value which represents a portion of
the date/time column. The format specification is not
optional in this case, and must consist of a single element
(of the format specification). Use this output function in
any expression.

StringExpression is a string expression. Refer to the "Expression” section in
this chapter for details on the syntax. The expression must

Chapter 8 245

Expressions
Date/Time Functions

be a CHAR or VARCHAR data type.

DateTimeExpression is a Date/Time expression. See the "Expression" section of
this chapter for more details on the syntax. The expression
must be a DATE, TIME, DATETIME, or INTERVAL data

type.
FormatSpecification specifies the format of ColumnNameor CharacterValue
Refer to the syntax for FormatSpecification later in

this section. Format elements are presented in the
"Description” section below.

SQL Syntax—FormatSpecification

{'FormatString’

: HostVariable [[INDICATOR]: IndicatorVariable]

?

: LocalVariable

. ProcedureParameter

.. Built-inVariable }

Parameters—FormatSpecification

FormatString is a character string literal representing the format of
DateTimeExpression or StringExpression . It must be a string literal,
of maximum length 72 characters. Format is composed of one or more
elements. Available format elements for the date/time data types are
described below. Only n-computer characters are allowed in the
FormatString . The syntax for the format string follows:

{ FormatElement {Punctuation or Blank Y1}
The format elements are listed in the "Description” section.

HostVariable identifies a host variable that contains the format specification which
determines how the DateTimeExpression or StringExpression is to
be converted.

IndicatorVariable names an indicator variable, whose value
determines whether the associated host variable contains
a NULL value:

>=0
the value is not NULL
<0

the value is NULL (The value in the host variable will be
ignored.)

? is a place holder for a dynamic parameter in a prepared SQL statement in
an application program. The value of the dynamic parameter is supplied at
run time.

LocalVariable contains a value in a procedure.

246 Chapter8

Expressions
Date/Time Functions

ProcedureParameter contains a value that is passed into or out of a procedure.

::Built-inVariable

Description

is one of the following built-in variables used for error handling:
::sqlcode
::sqglerrd2
::sglwarn0
::sglwarnl
::sglwarn2
::sqlwarn6é

;:activexact

The first six of these have the same meaning that they have as fields in the
SQLCA in application programs. ::activexact indicates whether a
transaction is in progress or not. For additional information, refer to the
application programming guides and to Chapter 4 , “Constraints,
Procedures, and Rules.”

= If the format specification is optional and it is not supplied, the proper default format is
used. If a date/time column or string literal appears in an expression without a
conversion function, it is changed, if necessary, to the default format.

« Date format is used by the TO_DATE function and by the TO_CHAR function on DATE
expressions. The default format is 'YYYY-MM-DD".

Listed here are format elements made up of numeric characters (digits O through 9):

CcC
YYYY
YY
ZYY

Q

MM
ZMM
DAYS
ZDAYS
DDD
ZDDD
DD
ZDD

Century (00 to 99)

Year (0000 to 9999)

Year of century (00 to 99)

YY with leading zeroes suppressed (0 to 99) (TO_CHAR only)
Quarter (1 to 4) (TO_CHAR only)

Month (01 to 12)

MM with leading zeroes suppressed (1 to 12) (TO_CHAR only)
Days since January 1, 0000 (0000000 to 3652436)

DAYS with leading zeroes suppressed (0 to 3652436) (TO_CHAR only)
Day of year (001 to 366)

DDD with leading zeroes suppressed (1 to 366) (TO_CHAR only)
Day of month (01 to 31)

DD with leading zeroes suppressed (1 to 31) (TO_CHAR only)
Day of week (1 to 7) (TO_CHAR only)

Chapter 8

247

Expressions
Date/Time Functions

The Z prefix and Q and D are only allowed for the function TO_CHAR. If YY is used
without CC, the default CC is 19. The following elements are for representing
alphabetic characters:

MONTH Name of month

MON Abbreviated name of month

DAYOFWEEK Name of day

DAY Abbreviated name of day

-, Punctuation marks reproduced in value (includes spaces)
"string" Quoted string reproduced in value

Delimiting punctuation marks must be the same in the value parameter and the format
specification parameter.

= Capitalization in alphabetic representations follows the capitalization of the
corresponding format element. Elements may be represented in uppercase, lowercase,
or initial caps. Other mixtures of uppercase and lowercase letters result in an error. For
example:

'DAYOFWEEK' —--> MONDAY
'‘Dayofweek’ —--> Monday
‘dayofweek’ —--> monday
'dAyOfWeEKk' —--> error condition

e Time format is used by the TO_TIME function and by the TO_CHAR functions on
TIME expressions. The default format is 'HH:MI:SS'.

Listed here are formats for elements made up of numeric characters:
HH or HH24 Hour of day (00 to 23)
ZHH or ZHH24 HH or HH24 with leading zeroes suppressed (0 to 23) (TO_CHAR only)

HH12 Hour of day (00 to 12)

ZHH12 HH12 with leading zeroes suppressed (0 to 12) (TO_CHAR only)
Ml Minute (00 to 59)

ZMI MI with leading zeroes suppressed (0 to 59) (TO_CHAR only)
SS Second (00 to 59)

ZSS SS with leading zeroes suppressed (0 to 59) (TO_CHAR only)

SECONDS Seconds past midnight (00000 to 86399)

ZSECONDS SECONDS with leading zeroes suppressed (0 to 86399) (TO_CHAR
only)

Z is not allowed for the input functions. The following elements are for representing
alphabetic characters:

AM or PM AM/PM indicator (use capital letters)
AM.or PM. A.M./P.M. indicator with periods (use capital letters)

248 Chapter8

Expressions
Date/Time Functions

A, Punctuation marks reproduced in value (includes spaces)
"string" Quoted string reproduced in value

Delimiting punctuation marks must be the same in the value parameter and the format
specification parameter.

The TO_DATETIME function and the TO_CHAR function on TIME expressions use the
date/time default format 'YYYY-MM-DD HH:MI:SS.FFF'.

In addition to all formats shown for the date and time format specifications above, the
following are also allowed for date/time formats (made up of the numeric characters 0
through 9):

F Tenth of a second (.0 to .9)
FF Hundredth of a second (.00 to .99)
FFF Thousandth of a second (.000 to .999)

The TO_INTERVAL function and the TO_CHAR function on INTERVAL expressions
use the interval default format 'DAYS HH:MI:SS.FFF'.

The following formats are allowed in an interval format specification:

DAYS Mi SECONDS FFF
ZDAYS ZMI ZSECONDS -2,
HH or HH24 SS F "string”
ZHH or ZHH24 ZSS FF

These were described in the TIME and DATETIME format specifications above.

Literals for date/time data types which do not specify all elements of the date/time
value are expanded and filled as described below:

< INTERVAL is zero filled on the left and the right.

< DATE, TIME, and DATETIME are left-filled with the current values from the
system clock, and right-filled with appropriate portions of the default '0000-01-01
00:00:00.000'.

When YY is specified in the FormatSpecification and if its value in
StringExpression is less than 50, then the century part of DATE and DATETIME
defaults to 20, else it is set to 19. This behavior can be overridden by setting the
environment variable HPSQLsplitcentury to a value between 0 and 100. If the YY part
is less than the value of environment variable HPSQLsplitcentury then the century
part is set to 20, else it is set to 19.

Output values are truncated, not rounded, to fit in the specified format.

The TO_INTEGER format specification is not optional, and must consist of one of the
following single elements only:

cC MM DAYS SS

YYYY DDD HH or HH24 SECONDS
YY DD HH12 F, FF, or FFF
Q D MI

ADD_MONTHS is a related function. ADD_MONTHS adds a duration of months to a

Chapter 8 249

Expressions
Date/Time Functions

DATE or DATETIME column. Refer to the Add Months Function for further
information.

Examples

1.

Date format

In the example below, the format MM/DD/YY is used to enter a date instead of using the
default format, which is YYYY-MM-DD:

INSERT INTO ManufDB.TestData(batchstamp, testdate)
VALUES (TO_DATETIME ('07/02/89 03:20.000', 'MM/DD/YY HH12:MI.FFF),
TO_DATE('10/02/84'MM/DD/YY"))

To return the date entered in the above example, in a format other than the default
format, the desired format is specified in the second parameter of the TO_CHAR
conversion function:

SELECT TO_CHAR(testdate, 'Dayofweek, Month DD')
FROM ManufDB.TestData
WHERE labtime < '0 05:00:00.000'

The value "Friday, July 13" is selected from TestData.

The following statement inserts different date values depending on the value of the
environment variable HPSQLsplitcentury, if it is set.

INSERT INTO ManufDB.TestData(testdata)
VALUES (TO_DATE ('30/10','YY/MM")

Case 1: HPSQLsplitcentury is not set; inserts 2030-10-01
Case 2: HPSQLsplitcentury is set to O; inserts 1930-10-01
Case 3: HPSQLsplitcentury is set to 70; inserts 2030-10-01
Time format

INSERT INTO ManufDB.TestData(teststart, batchstamp)
VALUES (TO_TIME(01:53 a.m.'HH12:MI a.m.’),
TO_DATETIME('12.01.84 02.12 AM', 'DD.MM.YY HH12.MI AMY))

Datetime format

UPDATE ManufDB.TestData
SET batchstamp = TO_DATETIME('12.01.84 02.12 AM', 'DD.MM.YY HH12.MI AM")
WHERE batchstamp = TO_DATETIME('11.01.84 1.11 PM', 'DD.MM.YY HH12.MI PM")

Interval format

UPDATE ManufDB.TestData
SET labtime = TO_INTERVAL('06 10:12:11.111', 'DAYS HH:MI:SS.FFF)
WHERE testdate = TO_DATE('10.02.84''MM.DD.YY")

250 Chapter8

Expressions
Long Column Functions

Long Column Functions

Long column functions return information from the long column descriptor.

Scope
SQL Data Manipulation Statements

SQL Syntax
{ OUTPUT_DEVICELongColumnName)
OUTPUT_NAMH.ongColumnName) }
Parameters

OUTPUT_DEVICEreturns an integer value indicating the output device type stored in the
long column descriptor for LongColumnName. The values returned are
shown in the table below:

Value Returned Output Device Type
0 none specified
1 system file
2 shared memory

OUTPUT_NAMEreturns the output device name stored in the long column descriptor for
LongColumnName. The string returned is a 44 byte value.

LongColumnName is the name of the column that has a long data type (LONG BINARY or
LONG VARBINARY).

Description

= The long column functions can appear in the select list or search condition of an SQL
data manipulation statement.

= The long column functions are useful when you need information about the long column
descriptors, but do not want to fetch the data.

= For more information on long column data types, see the "Data Types" chapter.

= Referencing a LONG column in a LONG column function does not cause the LONG
data to be written out to the output device.

Chapter 8 251

Expressions
Long Column Functions

Examples
1. OUTPUT_DEVICE example

Change the PartPicture output device name to NewHammer in any row whose output
device type for PartPicture is a system file.

UPDATE Partslllus
SET PartPicture = "> NewHammer'
WHERE OUTPUT_DEVICE(PartPicture) = 1

2. OUTPUT_NAME example

Select the output device name of the PartPicture column for any row with a
PartNumber of 100.

SELECT OUTPUT_NAME(PartPicture)
FROM Partslllus
WHERE PartNumber = 100

Change all occurrences of the output device name of the PartPicture column to
NewHammer if the current output device name is Hammer.

UPDATE Partslllus
SET PartPicture = '> NewHammer'
WHERE OUTPUT_NAME(PartPicture) = 'Hammer'

252 Chapter8

Expressions
String Functions

String Functions

String functions return partial values or attributes of character and BINARY (including
LONG) string data.

With the G3 release of ALLBASE/SQL and IMAGE/SQL, the supported SQL syntax has
been enhanced to include the following string manipulation functions: UPPER, LOWER,
POSITION, INSTR, TRIM, LTRIM and RTRIM These string functions allow you to
manipulate or examine the CHARand VARCHARalues within the SQL syntax, allowing for
more sophisticated queries and data manipulation commands to be formed. These string
functions were designed to be compatible with functions specified in the ANSI SQL '92
standard and functions used in ORACLE. In cases where the ANSI SQL '92 standard and
the ORACLE functions were not compatible (such as the LTRIM and RTRIMin ORACLE
versus TRIM in the ANSI standard), both versions were implemented. The specifications for
each of these functions follows.

Function Specification

LOWER

Converts all the characters in stringexpr ~ to lower case
Syntax [LOWER stringexpr)]

UPPER

Converts all the characters in stringexpr ~ to upper case
Syntax [UPPER stringexpr)]

POSITION

Searches for the presence of the string stringexprl in the string stringexpr2 ~ and
returns a numeric value that indicates the position at which stringexprl is found in
stringexpr2

Syntax [POSITION (stringexpr,stringexpr2)

INSTR

Searches stringexprl beginning with its nth character for the nth occurrence of
stringexpr2 and returns the position of the character in stringexprl that is the first
character of this occurrence. If nis negative, Instr counts and searches backward from the
end of stringexprl . The value of mmust be positive. The default values of both nand mare
1, meaning Instr begins searching at the first character of stringexprl for the first
occurrence of stringexpr2 . The return value is relative to the beginning of stringexprl
regardless of the value of n, and is expressed in characters. If the search is unsuccessful (if
stringexpr2 does not appear mtimes after the nth character of stringexprl) the return
value is 0.

If nand mare not specified the function is equivalent to the ANSI SQL-92 POSITION

Chapter 8 253

Expressions
String Functions

function, except that the syntax is slightly different.
Syntax [INST (stringexprl , stringexpr2 [nl, M

LTRIM
LTRIM function trims the characters specified in charset from the beginning of the string
stringexpr

Syntax [LTRIM (charset , stringexpr)]

RTRIM
RTRIMfunction trims the characters specified in charset from the end of the string
stringexpr

Syntax [RTRIM(charset , stringexpr)]

TRIM

TRIM function allows you to strip the characters specified in charset from the beginning
and/or the end of the string stringexpr . If charset is not specified, then blank characters
would be stripped from stringexpr

Syntax
[TRIM({ LEADING| TRAILING | BOTH(, charset , stringexpr)]

Examples:

Example 1

SELECT LOWER (OWNER) || ' || LOWER (NAME)
FROM SYSTEM.TABLE
WHERE NAME = UPPER ('vendors');

Returns "purchdb .vendors "

Example 2

SELECT POSITION (‘world’, 'hello world’)
FROM SYSTEM.TABLE
WHERE NAME = UPPER(vendors’);

Returns the numeric value 7

Example 3

SELECT INSTR (hello world hello world', ‘'world', 5, 2)
FROM SYSTEM.TABLE
WHERE NAME = UPPER('vendors');

Returns the numeric value 18 (starting position of the second occurrence of the string
‘world").

254 Chapter8

Expressions
String Functions

Example 4

SELECT * FROM SYSTEM.TABLE
WHERE NAME = LTRIM ('?*, 'VENDORS?*?7?7?7***")
AND OWNER = 'PURCHDB";

Returns the system table entry for PURCHDB.VENDORS

Example 5

SELECT TRIM (BOTH '?* FROM '??**?*hello ?* world???*)
FROM SYSTEM.TABLE
WHERE NAME = 'VENDORS

Returns 'hello ?* world'.

Scope
SQL Data Manipulation Statements

SQL Syntax
{ STRING_LENGTH StringExpression)
SUBSTRING StringExpression , StartPosition,Length)}
Parameters

STRING_LENGTHTreturns an integer indicating the length of the parameter. If
StringExpression is a fixed length string type, STRING_LENGTHwill
return the fixed length. If StringExpression is a variable length string,
the actual length of the string will be returned.

StringExpression is an expression of a string type. See the "Expression” section in this
chapter for the syntax. The expression must be a CHAR, VARCHAR,
BINARY, VARBINARY, Long Binary, or Long VARBINARY data type.

For example, the following are acceptable:

VendorName
'‘Applied Analysis'
SUBSTRING(VendorName,1,10)

SUBSTRING returns the portion of the SourceString parameter which begins at
StartPosition and is Length bytes long.

StartPosition is an integer constant or expression. See the "Expression” section in this
chapter for this syntax.
Length is an integer constant or expression. See the "Expression” section in this
chapter for this syntax. The following are examples of acceptable lengths:
5

STRING_LENGTH(VendorName)-28

Chapter 8 255

Expressions
String Functions

Description

The string functions can appear in an expression, a select list, or a search condition of
an SQL data manipulation statement.

The string functions can be applied to any string data type, including binary and long
column data types.

The string returned by the SUBSTRINGfunction is truncated if (StartPosition +
Length -1) is greater than the length of the StringExpression . Only (Length -
StartPosition +1) bytes is returned, and a warning is issued.

If Length is a simple constant, the substring returned has a maximum length equal to
the value of the constant. Otherwise, the length and data type returned by the
SUBSTRINGfunction depend on the data type of StringExpression , as shown in the
following table:

Table 8-1. Data Type Returned by SUBSTRING

StringExpression Data Type SUBSTRING Data Type SUBSTRING Maximum Length
CHAR VARCHAR fixed length of SourceString
VARCHAR VARCHAR maximum length of SourceString
BINARY VARBINARY fixed length of SourceString
VARBINARY VARBINARY maximum length of SourceString
LONG BINARY VARBINARY 3996 @

LONG VARBINARY VARBINARY 3996a

a. 3996 is the maximum length of a VARBINARY data type

Examples

1.

STRING_LENGTH example

In the SELECTstatement below, the Partslllus table is searched for any row whose
PartPicture contains more than 10000 bytes of data, and whose PartName is longer
than 10 bytes.

CREATE TABLE Partslllus
(PartName VARCHAR(16),
PartNumber INTEGER,
PartPicture LONG VARBINARY(1000000) in PartPictureSet)
IN PartslllusSet
SELECT PartNumber, PartName
FROM Partslllus
WHERE STRING_LENGTH(PartPicture) > 10000
AND STRING_LENGTH(PartName) > 10

256 Chapter8

Expressions
String Functions

2. SUBSTRING example

For every row in Partslllus, the PartNumber and the first 350 bytes of the PartPicture
are inserted into the DataBank table:

CREATE TABLE DataBank
(IdNumber INTEGER,
Data VARBINARY(1000))

INSERT INTO DataBank
SELECT PartNumber, SUBSTRING(PartPicture,1,350)
FROM Partslllus

Display a substring of the PartPicture column in the Partslllus table if the Data column
in the DataBank table contains more than 133 bytes:

SELECT DATA
FROM DataBank
WHERE STRING_LENGTH(Data) > 133

Chapter 8 257

Expressions
TID Function

TID Function

Used in a select list, the TID function returns the database address of a row (or rows for
BULK SELECTof a table or an updatable view. Used in a WHERE clause, the TID function
takes a row address as input and allows direct access to a single row of a table or an
updatable view.

Scope
SQL Data Manipulation Statements

SQL Syntax

TID([[Owner.] TableName
[Owner.] ViewName
CorrelationName)

Parameters

TID is an 8 byte value representing the database address of a row of a table or
an updatable view. A TID contains these elements:

Table 8-2. SQLTID Data Internal Format

Content Byte Range
Always =0 1thru 2
File Number 3 thru4
Page Number 5thru?7
Slot 8
0 indicates that the row address is to be obtained from the first table or view
specified (in the FROM clause of a SELECTstatement or in an UPDATE
statement).
Owner indicates the owner of the table or view.
TableName indicates the table from which to obtain the row address.
ViewName indicates the updatable view from which to obtain row address.
CorrelationName indicates the correlation name of the table or view from which to

obtain the row address.

Description

< The TID function can be used with user tables and updatable views and with system
base tables and system views. It cannot be used with non-updatable views (those
containing JOIN, UNION, GROUP BY, HAVING, or aggregate functions) nor on system

258 Chapter8

Expressions
TID Function

pseudotables.

= In order to assure optimization (through the use of TID access) the expressions in the
WHERE clause of a single query block must be ANDed together. No OR is allowed. In
addition, only the following TID expressions can be optimized:

TID([[Owner.] TableName
[Owner.] ViewName

CorrelationName)=
{ Constant
HostVariableName [[INDICATOR]: IndicatorVariable]
2
. LocalVariable
. ProcedureVariable }

< Only equal and not equal comparison operators are supported.
« The TID function cannot appear in an arithmetic expression.

e The TID function can be used in a restricted set of SELECTstatements. A valid SELECT
statement must not specify the following:

< An ORDER BY or GROUP BY on the TID function.

< A HAVING clause containing the TID function.

= The TID function in the select list when a GROUP BY or HAVING clause is used.
= An aggregate function on the TID function.

= Any TID function along with an aggregate function in the select list.

Chapter 8 259

Expressions
TID Function

Example

isql=> SELECT tid(), PartNumber
> FROM PurchDB.Parts;

select tid(), PartNumber from PurchDB.Parts;
+

TID [PARTNUMBER

3:3:0|1123-P-01
3:3:1]1133-P-01
3:3:2|1143-P-01
3:3:3|1153-P-01
3:3:4]1223-MU-01
3:3:5|1233-MU-01
3:3:6|1243-MU-01
3:3:7|11323-D-01
3:3:8|1333-D-01
3:3:9|1343-D-01
3:3:10|1353-D-01
3:3:11j1423-M-01
3:3:12|1433-M-01
3:3:13]|1523-K-01
3:3:14|1623-TD-01
3:3:15|1723-AD-01

First 16 rows have been selected.
Ulp], dlown], l[eft], rlight], tfop], b[ottom], pr[int] <n>, or e[nd] >

260

Chapter8

Search Conditions

9 Search Conditions

This chapter discusses search condition clauses and the predicates used in them. The
following sections are presented:

Search Condition
BETWEEN Predicate
Comparison Predicate
EXISTS Predicate

IN Predicate

LIKE Predicate
NULL Predicate

Quantified Predicate

A search condition specifies criteria for choosing rows to select, update, delete, insert,
permit in a table, or fire rules on. Search conditions are parameters in the following
statements:

In the SELECTstatement, search conditions are used for two purposes as follows:

= In the WHERE clause, to determine rows to retrieve for further processing. The only
expressions not valid in this clause are aggregate functions and expressions
containing LONG columns that are not in long column functions.

< In the HAVING clause, to specify a test to apply to each group of rows surviving the
GROUP BY clause test(s). If a GROUP BY clause is not used, the test is applied to
all the rows meeting the WHERE clause conditions. References in a HAVING clause
to non-grouping columns must be from within aggregate functions. Grouping
columns can be referred to by name or with an aggregate function.

In the UPDATEstatement, search conditions in the WHERE clause identify rows that
gualify for updating.

In the DELETEstatement, search conditions in the WHERE clause identify rows that
qgualify for deletion.

In the INSERT statement, search conditions in the embedded SELECTstatement
identify rows to copy from one or more tables or views into a table.

In the DECLARE CURSORtatement, search conditions in the embedded SELECT
statement identify rows and columns to be processed with a cursor.

In the CREATE VIEWSstatement, search conditions in the embedded SELECTstatement
identify rows and columns that qualify for the view.

In table CHECKconstraints, the search condition identifies valid rows that a table may
contain.

In rule firing conditions, search conditions identify conditions that cause rules to fire.

Chapter 9 261

Search Conditions
Search Condition

Search Condition

A search condition is a single predicate or several predicates connected by the logical
operators AND or OR. A predicate is a comparison of expressions that evaluates to a value
of TRUE, FALSE, or unknown. If a predicate evaluates to TRUE for a row, the row
gualifies for the select, update, or delete operation. If the predicate evaluates to FALSE or
unknown for a row, the row is not operated on.

Scope
SQL Data Manipulation Statements

SQL Syntax

[NOT{ BetweenPredicate
ComparisonPredicat e

ExistsPredicate
InPredicate
LikePredicate
NullPredicate
QuantifiedPredicate
(SearchCondition) }[{ AND
OR|[NOT{ BetweenPredicate
ComparisonPredicate
EXxistsPredicate
InPredicate
LikePredicate
NullPredicate
QuantifiedPredicate
(SearchCondition) -
Parameters
NOT, AND, OR are logical operators with the following functions:
NOT reverses the value of the predicate that follows it.
AND evaluates predicates it joins to TRUE if they are both
TRUE.
OR evaluates predicates it joins to TRUE if either or both are
TRUE.
BetweenPredicate determines whether an expression is within a certain
range of values.
ComparisonPredicate compares two expressions.
ExistsPredicate determines whether a subquery returns any non-null
values.
InPredicate determines whether an expression matches an element

within a specified set.

262 Chapter9

Search Conditions
Search Condition

LikePredicate determines whether an expression contains a particular
character string pattern.

NullPredicate determines whether a value is null.

QuantifiedPredicate determines whether an expression bears a particular

relationship to a specified set.

(SearchCondition) is one of the above predicates, enclosed in parentheses.

Description

= Predicates in a search condition are evaluated as follows:

Predicates in parentheses are evaluated first.

NOT is applied to each predicate.
AND is applied next, left to right.

OR is applied last, left to right.

= When a predicate contains an expression that is null, the value of the predicate is
unknown. Logical operations on such a predicate result in the following values, where a
guestion mark (?) represents the unknown value:

Figure 9-1. Logical Operations on Predicates Containing NULL Values

AND | T F 2 OR | T F 2 NOT |

T T F 2 T |l T 7 T |F

F F F F FlT F o F T

? 2 F 2 2 I B B ?2 |9
LG200189_027

When the search condition for a row evaluates to unknown, the row does not satisfy the
search condition and the row is not operated on. Check constraints are an exception; see
the section on CREATE TABLE or CREATE VIEW.

= You can compare only compatible data types. INTEGER, SMALLINT, DECIMAL,
FLOAT, and REAL are compatible. CHAR and VARCHAR are compatible, regardless of
length. You can compare items of type DATE, TIME, DATETIME, and INTERVAL to
literals of type CHAR or VARCHAR. ALLBASE/SQL converts the literal before the
comparison. BINARY and VARBINARY are compatible, regardless of length.

= You cannot include a LONG BINARY or LONG VARBINARY data type in a predicate
except within a long column function.

= A SubQuery expression cannot appear on the left-hand side of a predicate.

= Refer to Chapter 7, “Data Types,” and Chapter 8 , “Expressions,” for information
concerning value extensions and type conversion during comparison operations.

Chapter 9 263

Search Conditions
BETWEEN Predicate

BETWEEN Predicate

A BETWEEN predicate determines whether a value is equal to or greater than a second
value and equal to or less than a third value. The predicate evaluates to true if a value falls
within the specified range. If the NOT option is used, the predicate evaluates to true if a
value does not fall within the specified range.

Note that the second value must be less than or equal to the third value for BETWEEN to
possibly be TRUE and for NOT BETWEEN to possibly be FALSE.

Scope
SQL Data Manipulation Statements

SQL Syntax

Expression1 [NOT BETWEENExpression2 AND Expression3

Parameters

Expressionl, 2, 3 specify values used to identify columns, screen rows, or
define new column values. The syntax for expressions is
defined in the "Expressions" chapter. Both numeric and
non-numeric expressions are allowed in BETWEEN
predicates.

NOT is a logical operator and reverses the value of the predicate

that follows it.

Description

= Expression2 and Expression3 constitute a range of possible values for which
Expression2 is the lowest possible value and Expression3 is the highest possible
value. In the BETWEENMNredicate, the low value must come before the high value. Also in
the BETWEEINredicate, subqueries are not allowed.

< Comparisons are conducted as described under "Comparison Predicates" later in this
chapter.

Example

Parts sold for under $250.00 and over $1500.00 are discounted by 25 percent.

UPDATE PurchDB.Parts SET SalesPrice = SalesPrice * .75
WHERE SalesPrice NOT BETWEEN 250.00 AND 1500.00

264 Chapter9

Search Conditions
Comparison Predicate

Comparison Predicate

A comparison predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression is related to the second expression as
specified in the comparison operator.

Scope

SQL Data Manipulation Statements

SQL Syntax
Expression { =
<>
>
>=
<
<=}[Expression
SubQuery]
Parameters
Expression specifies a value used to identify columns, screen rows, or define new

column values. The syntax of expressions is defined in Chapter 8,
“Expressions.” Both numeric and non-numeric expressions are allowed in
comparison predicates. Predicates cannot include LONG columns.

SubQuery is a QueryExpression whose result is used in evaluating another query.
The syntax of QueryExpression is presented in the description of the
SELECTstatement.

= is equal to. A comparison predicate using = is also known as an EQUAL
predicate.

<> is not equal to.

> is greater than.

>= is greater than or equal to.

< is less than.

<= is less than or equal to.

Description

= Character strings are compared according to the HP eight-bit ASCII collating sequence
for ASCII data, or the collation rules for the native language of the DBEnvironment for
NLS data. Column data would either be ASCII data or NLS data depending on how the
column was declared upon its creation. Constants are ASCII data or NLS data
depending on whether you are using NLS or not.

If a case insensitive ASCII expression is compared to a case insensitive NLS expression,

Chapter 9 265

Search Conditions
Comparison Predicate

the two expressions are compared using the NLS collation rules. The case insensitive
NLS comparison is done by using the NLSCANMOV&Nnd NLSCOLLATHENtrinsics. The same
ASCII characters in upper and lower case are equivalent. Accent characters (extended
character) in upper and lower case are also equivalent. However, an accent character
may not be the same as its ASCII equivalent, depending on the specific language
collation table.

Extended upper and lower case characters are not equivalent to the ASCII expression.
They are compared to the NLS collation table.

If a case sensitive character column is compared to a character column that is not case
sensitive, both columns are treated as case sensitive. If a string constant is compared to
a column that is not case sensitive, then the string constant is treated as not case
sensitive.

= Refer to Chapter 7, “Data Types,” for type conversion that ALLBASE/SQL performs
when you compare values of different types.

= For purposes of the Comparison Predicate, a NULL value on either or both sides of the
predicate causes it to evaluate to unknown. Thus, two NULL values on either side of an
equals predicate will not result in a TRUE result but rather in unknown.

< A NULL value in an expression causes comparison operators to evaluate to unknown.
Refer to the "Search Condition"” section at the beginning of this chapter for more
information on evaluation of operators.

= A subquery must return a single value (one column of one row). If the subquery returns
more than one value, an error is given. If the subquery returns no rows, the predicate
evaluates to unknown.

Example

The part numbers of parts that require fewer than 20 days for delivery are retrieved.

SELECT PartNumber
FROM PurchDB.SupplyPrice
WHERE DeliveryDays < 20

266 Chapter9

Search Conditions
EXISTS Predicate

EXISTS Predicate

An EXISTS predicate tests for the existence of a row satisfying the search condition of a
subquery. The predicate evaluates to TRUE if at least one row satisfies the search
condition of the subquery.

Scope

SQL Data Manipulation Statements

SQL Syntax
EXISTS SubQuery

Parameters

SubQuery A subquery is a nested query. The syntax of subqueries is presented in the
description of the SELECTstatement in Chapter 12 , “SQL Statements S -
z”

Description

Unlike other places in which subqueries occur, the EXISTS predicate allows the subquery
to specify more than one column in its select list.

Example

Get supplier names for suppliers who provide at least one part.

SELECT S.SNAME
FROM S
WHERE EXISTS (SELECT * FROM SP
WHERE SP.SNO = S.SNO);

Chapter 9 267

Search Conditions
IN Predicate

IN Predicate

An IN predicate compares an expression with a list of specified values or a list of values
derived from a subqguery. The predicate evaluates to TRUE if the expression is equal to one
of the values in the list. If the NOT option is used, the predicate evaluates to TRUE if the
expression is not equal to any of the values in the list.

Scope
SQL Data Manipulation Statements

SQL Syntax

Expression [NOT IN { SubQuery
{ValuelList) '}

Parameters
Expression An expression specifies a value to be obtained. The syntax
of expressions is presented in Chapter 8 , “Expressions.”
Both numeric and non-numeric expressions are allowed in
guantified predicates. The expression may not include
subqueries or LONG columns.
NOT reverses the value of the predicate that follows it.
SubQuery A subquery is a nested query. The syntax of subqueries is
presented in the description of the SELECT statement in
Chapter 12, “SQL Statements S-2Z.”
ValuelList defines a list of values to be compared against the
expression's value. The syntax for ValueList is:
{ USER
CurrentFunction
[+-]1{ Integer
Float
Decimal }
‘CharacterString’
OxHexadecimalString
: HostVariable [[INDICATOR]: IndicatorVariable]
?
: Local Variable
. ProcedureParameter
:: Built-inVariable
LongColumnFunction
StringFunction o
USER USER evaluates to the DBEUSserID. In ISQL, it evaluates

to the DBEUSserID of the ISQL user. From an application
program, it evaluates DBEUserID of the individual

268 Chapter9

CurrentFunction

Integer
Float
Decimal

CharacterString

HexadecimalString

HostVariable

IndicatorVariable

LocalVariable
ProcedureParameter

Built-inVariable

Search Conditions
IN Predicate

running the program. USER behaves like a CHAR(20)
constant, with trailing blanks if the login name has fewer
than 20 characters.

indicates the value of the current DATE, TIME, or
DATETIME.

indicates a value of type INTEGER or SMALLINT.
indicates a value of type FLOAT.
indicates a value of type DECIMAL.

specifies a CHAR, VARCHAR, DATE, TIME, DATETIME,
or INTERVAL value. Whichever is shorter -- the string or
the expression value -- is padded with blanks before the
comparison is made.

specifies a BINARY or VARBINARY value. If the string is
shorter than the target column, it is padded with binary
zeroes; if it is longer than the target column, the string is
truncated.

contains a value in an application program being input to
the expression.

names an indicator variable, whose value determines
whether the associated host variable contains a NULL
value:

the value is not NULL

the value is NULL (The value in the host variable will be
ignored.)

is a place holder for a dynamic parameter in a prepared
SQL statement in an application program. The value of
the dynamic parameter is supplied at run time.

contains a value in a procedure.
contains a value that is passed into or out of a procedure.

is one of the following built-in variables used for error
handling:

= :sqlcode

e :sqlerrd2
e :sglwarn0
= :sglwarnl
= :sglwarn2
= :sglwarn6

= :activexact

Chapter 9

269

Search Conditions
IN Predicate

The first six of these have the same meaning that they
have as fields in the SQLCA in application programs. Note
that in procedures, sqlerrd2 returns the number of rows
processed for all host languages. However, in application
programs, sglerrd3 is used in COBOL, Fortran, and
Pascal, while sqglerr2 is used in C. ::activexact indicates
whether a transaction is in progress or not. For additional
information, refer to the application programming guides
and to Chapter 4 , “Constraints, Procedures, and Rules.”

StringFunction returns partial values or attributes of character and
binary (including LONG) string data.

LongColumnFunction returns information from the long column descriptor.

Description

< |If X is the value of Expression and (a,b, ..., z) represent the result of a SubQuery or
the elements in a ValueList , then the following are true:

e XIN(a,b,...,2) is equivalent to X = ANY (a,b,...,2)
e XIN(ab,...,2) is equivalentto X=aOR X=b OR..OR X =2
e« XNOTIN (a,b,...,2) is equivalent to NOT (X IN (a,b,...,2))

= Refer to the "Data Types" chapter for information about the type conversions that
ALLBASE/SQL performs when you compare values of different types.

= You can use host variables in the ValueList . If an indicator variable is used and
contains a value less than zero, the value in the corresponding host variable is
considered to be unknown.

NOTE To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a -1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

= If all values in the ValueList are NULL, the predicate evaluates to unknown.

Example

Get part numbers of parts whose weight is 12, 16, or 17.

SELECT P.PNO
FROM P
WHERE P.WEIGHT IN (12, 16, 17)

Get the names of suppliers who supply part number 'P2'.

SELECT S.SNAME
FROM S
WHERE S.SNO IN (SELECT SP.SNO FROM SP
WHERE SP.SNO ="'P2")

270 Chapter9

Search Conditions
IN Predicate

If the indicator variable is >= 0 and PartNumber is one of '1123-P-01', '1733-AD-01', or
:PartNumber, then the predicate evaluates to true.

If the indicator variable is < 0, the rows containing the part numbers 1123-P-01 and
1733-AD-01 are selected; but no rows will be selected based upon the value in
:PartNumber.

EXEC SQL SELECT PartNumber
FROM PurchDB.Parts
WHERE PartNumber
IN ('1123-P-01', '1733-AD-01', :PartNumber :Partind)

Chapter 9 271

Search Conditions
LIKE Predicate

LIKE Predicate

A LIKE predicate determines whether an expression contains a given pattern. The
predicate evaluates to TRUE if an expression contains the pattern. If the NOT option is
used, the predicate evaluates to TRUE if the expression does not contain the pattern.

Scope
SQL Data Manipulation Statements

SQL Syntax

Expression [NOT LIKE { ‘PatternString’
:HostVariable1 [[INDICATOR]: IndicatorVariablel]
?
. LocalVariablel
. ProcedureParameterl }
[ESCAPE ‘EscapeChar’

. HostVariable2 [[INDICATOR]: IndicatorVariable2]
?

. LocalVariable2
. ProcedureParameter2 H

Parameters

Expression specifies a value used to identify columns, screen rows, or
define new column values. The syntax of expressions is
presented in the "Expressions” chapter. Only CHAR and
VARCHAR expressions are valid in LIKE predicates.
Date/time columns cannot be referred to directly; however,
they can be placed inside the conversion function
TO_CHAR and be converted to a CHAR value.

Expression cannot be a subquery.

NOT reverses the value of the predicate.
PatternString describes what you are searching for in the expression.

The pattern can consist of characters only (including
digits). For example, NAME LIKE 'Annie’ evaluates to
true only for a name of Annie. Uppercase and lowercase
are significant.

You can also use the predicate to test for the existence of a
partial match, by using the following symbols in the
pattern:

represents any single character; for example, BOB and
TOM both satisfy the predicate NAME LIKE' O .

272 Chapter9

HostVariablel

EscapeChar

HostVariable2

LocalVariable2

%

Search Conditions
LIKE Predicate

represents any string of zero or more characters; for
example, THOMAS and TOM both satisfy the predicate
NAME LIKE '%0%'.

The _and % symbols can be used multiple times and in
any combination in a pattern. You cannot use these
symbols literally within a pattern unless the ESCAPE
clause appears, and the escape character precedes them.
Note that they must be ASCII and not your local
representations.

identifies the host variable in which the pattern is stored.

IndicatorVariablel names an indicator variable, an input host

variable whose value determines whether the associated
host variable contains a NULL value:

>=0

the value is not NULL
<0

the value is NULL

describes an optional escape character which can be used
to include the symbols _ and % in the pattern.

The escape character must be a single character, although
it can be a one- or two-byte NLS character. When it
appears in the pattern, it must be followed by the escaped
character, host variable or, _, or %. Each such pair
represents a single literal occurrence of the second
character in the pattern. The escape character is always
case sensitive. All other characters are interpreted as
described before.

identifies the host variable containing the escape
character.

IndicatorVariable2 names an indicator variable, an input host

variable whose value determines whether the associated
host variable contains a NULL value:

>=0

the value is not NULL
<0

the value is NULL

If the escape character is NULL, the predicate evaluates
to unknown.

contains the escape character.

Chapter 9

273

Search Conditions

LIKE Predicate

ProcedureParameter2 contains the escape character that is passed into or out of
a procedure.

? indicates a dynamic parameter in a prepared SQL
statement. The value of the parameter is supplied when
the statement is executed.

Description

< |If an escape character is not specified, then the _ or % in the pattern continues to act as
a wildcard. No default escape character is available. If an escape character is specified,
then the wildcard or escape character which follows an escape character is treated as a
constant. If the character following an escape character is not a wildcard or the escape
character, an error results.

= If the value of the expression, the pattern, or the escape character is NULL, then the
LIKE predicate evaluates to unknown.

Example

Vendors located in states beginning with an A are identified.

SELECT VendorName FROM PurchDB.Vendors
WHERE VendorState LIKE 'A%’

Vendors whose names begin with ACME_ are identified.

SELECT VendorName FROM PurchDB.Vendors
WHERE VendorName LIKE 'ACME!_ %' ESCAPE "

274 Chapter9

Search Conditions
NULL Predicate

NULL Predicate

A NULL predicate determines whether a primary has the value NULL. The predicate
evaluates to true if the primary is NULL. If the NOT option is used, the predicate
evaluates to true if the primary is not NULL.

Scope

SQL Data Manipulation Statements

SQL Syntax

{ColumnName
: HostVariable [[INDICATOR]: IndicatorVariable]

?
:LocalVariable
:ProcedureParameter
.. Built-inVariable
AddMonthsFunction
AggregateFunction
Constant
DateTimeFunction
CurrentFunction
LongColumnFunction
StringFunction
CASTFunction
TIDFunction
(Expression) } 1S [NOT] NULL
Parameters
ColumnName is the name of a column from which a value is to be taken;
column names are defined in Chapter 6 , “Names.”.
HostVariable contains a value in an application program being input to
the expression.
IndicatorVariable names an indicator variable, whose value
determines whether the associated host variable contains
a NULL value:
>=0
the value is not NULL
<0
the value is NULL (The value in the host variable will be
ignored.)
? is a place holder for a dynamic parameter in a prepared

SQL statement in an application program. The value of
the dynamic parameter is supplied at run time.

Chapter 9 275

Search Conditions
NULL Predicate

LocalVariable
ProcedureParameter

Built-inVariable

contains a value in a procedure.
contains a value that is passed into or out of a procedure.

is one of the following built-in variables used for error
handling:

= :sglcode

= :sglerrd2
= :sglwarn0
e :sqglwarnl
e :sqlwarn2
e ..sglwarn6é

e activexact

The first six of these have the same meaning that they
have as fields in the SQLCA in application programs. Note
that in procedures, sqlerrd2 returns the number of rows
processed for all host languages. However, in application
programs, sqlerrd3 is used in COBOL, Fortran, and
Pascal, while sglerr2 is used in C. ::activexact indicates
whether a transaction is in progress or not. For additional
information, refer to the application programming guides
and to Chapter 4 , “Constraints, Procedures, and Rules.”

AddMonthsFunction returns a value that represents a DATE or DATETIME
value with a certain number of months added to it.

AggregateFunction is a computed value; aggregate functions are defined in
this chapter.

Constant is a specific value; constants are defined later in this
chapter.

ConversionFunction returns a value that is a conversion of a date/time data
type into an INTEGER or CHAR value, or from a CHAR
value.

CurrentFunction returns a value that represents the current DATE, TIME,
or DATETIME.

LongColumnFunction returns information from a long column descriptor.

StringFunction returns a partial value or attribute of string data.

TIDFunction returns the database address of a row (or rows for a BULK
SELECT) of a table or an updatable view. You cannot use
mathematical operators with this function except to
compare it to a value, host variable, or dynamic parameter
(using =, or <>) .

(Expression) is one or more of the above primaries, enclosed in
parentheses.

NOT reverses the value of the predicate that follows it.

276 Chapter9

Search Conditions
NULL Predicate

Description
The primary may be of any data type except LONG BINARY or LONG VARBINARY.

Example
Vendors with no personal contact named are identified.

SELECT *
FROM PurchDB.Vendors
WHERE ContactName IS NULL

Chapter 9 277

Search Conditions
Quantified Predicate

Quantified Predicate

A guantified predicate compares an expression with a list of specified values or a list of
values derived from a subquery. The predicate evaluates to true if the expression is related
to the value list as specified by the comparison operator and the quantifier.

Scope

SQL Data Manipulation Statements

SQL Syntax
Expression {=
<>
>
>=
<
<=}{ ALL
ANY
SOME{ SubQuery
(ValueList)}
Parameters
Expression An expression specifies a value to be obtained. The syntax of expressions is
presented in Chapter 8 , “Expressions.”
= is equal to.
<> is not equal to.
> is greater than.
>= is greater than or equal to.
< is less than.
<= is less than or equal to.

ALL, ANY, SOME are quantifiers which indicate how many of the values from the
ValueList or SubQuery must relate to the expression as indicated by the
comparison operator in order for the predicate to be true. Each quantifier
is explained below:

ALL the predicate is true if all the values in the ValueList or
returned by the SubQuery relate to the expression as
indicated by the comparison operator.

ANY the predicate is true if any of the values in the ValueList
or returned by the SubQuery relate to the expression as
indicated by the comparison operator.

SOME a synonym for ANY.

278 Chapter9

SubQuery

ValuelList

Search Conditions
Quantified Predicate

A subquery is a nested query. Subqueries are presented fully in the
description of the SELECTstatement.

defines a list of values to be compared against the expression's value. The
syntax for ValueList is:

{ USER
CurrentFunction
[+
-1{ Integer
Float
Decimal }
‘CharacterString’
OxHexadecimalString
: HostVariable [[INDICATOR]: IndicatorVariable]
?
: Local Variable
. ProcedureParameter
.. Built-inVariable
LongColumnFunction
StringFunction j3 |
USER USER evaluates to login name. In ISQL, it evaluates to
the login name of the ISQL user. From an application
program, it evaluates to the login name of the individual
running the program. USER behaves like a CHAR(20)
constant, with trailing blanks if the login name has fewer
than 20 characters.
CurrentFunction indicates the value of the current DATE, TIME, or
DATETIME.
Integer indicates a value of type INTEGER or SMALLINT.
Float indicates a value of type FLOAT.
Decimal indicates a value of type DECIMAL.

CharacterString specifies a CHAR, VARCHAR, DATE, TIME,
DATETIME, or INTERVAL value. Whichever is shorter --
the string or the expression value -- is padded with blanks
before the comparison is made.

HexadecimalString specifies a BINARY or VARBINARY value. If the
string is shorter than the target column, it is padded with
binary zeroes; if it is longer than the target column, it is
truncated.

HostVariable identifies the host variable containing the column value.

Chapter 9

279

Search Conditions
Quantified Predicate

IndicatorVariable1 names an indicator variable, an input host
variable whose value determines whether the associated
host variable contains a NULL value:

>=0

the value is not NULL
<0

the value is NULL

LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

?

indicates a dynamic parameter in a prepared SQL statement. The value of
the parameter is supplied when the statement is executed.

Description

If X is the value of Expression , and (a,b, ..., z) represent the result of a SubQuery or
the elements in a ValueList , and OPis a comparison operator, then the following are
true:

e X OP ANY (a,b,...,2) is equivalent to X OP a OR X OP b OR...OR X
OPz

e XOPALL(a,b,...,2) is equivalent to X OP a AND X OP b AND...AND
XOPz

Character strings are compared according to the HP 8-bit ASCII collating sequence for
ASCII data, or the collation rules for the native language of the DBEnvironment for
NLS data. Column data would either be ASCII data or NLS data depending on how the
column was declared upon its creation. Constants will be ASCII data or NLS data
depending on whether the user is using NLS or not. If an ASCII expression is compared
to an NLS expression, the two expressions are compared using the NLS collation rules.

Refer to Chapter 7, “Data Types,” for information about the type conversions that
ALLBASE/SQL performs when you compare values of different types.

If any value of any element in the value list is a NULL value, then that value is not
considered a part of the ValueList

NOTE To be consistent with the standard SQL and to support portability of code, it

is strongly recommended that you use a -1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

280 Chapter9

Search Conditions
Quantified Predicate

Example
Get supplier numbers for suppliers who supply at least one part in a quantity greater than
every guantity in which supplier S1 supplies a part.

SELECT DISTINCT SP.SNO

FROM SP
WHERE SP.QTY > ALL (SELECT SP.QTY

FROM SP
WHERE SP.SNO ='S1")

An alternative, possibly faster form of the query is:

SELECT DISTINCT SP.SNO

FROM SP
WHERE SP.QTY > (SELECT MAX(SP.QTY)

FROM SP
WHERE SP.SNO ='S1)

Chapter 9 281

Search Conditions
Quantified Predicate

282 Chapter9

SQL Statements A-D
SQL Statement Summary

10 SQL Statements A -D

Chapters 10, 11 and 12 describe all the SQL statements in alphabetical order, giving
syntax, parameters, descriptions, authorization requirements, and examples for each
statement. Examples often consist of groups of statements so you can see how each
statement is related to other statements functionally.

SQL Statement Summary

SQL statements fall into four groups. General-purpose statements are used
programmatically, interactively, and in procedures. Application programming statements
are used in application programs. Database administration statements are usually used
interactively. Procedure, control flow, and status statements are used only in procedures.
Within each of these groups, the SQL statements fall into categories, as shown in Table
10-1.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use

General Purpose Statements

DBEnNvironment session management

CONNECT Begins a DBEnvironment session.

DISCONNECT Terminates a connection to a
DBEnNvironment, or all connections.

SET CONNECTION Sets the current connection within
the currently connected set of
DBEnNvironments.

SET MULTI Switches between

TRANSACTION single-transaction mode and
multi-transaction mode.

RELEASE Terminates a DBEnvironment
session.

Data definition

Databases CREATE SCHEMA Defines a database and associates it
with an authorization name.

Indexes CREATE INDEX Defines an index for a table based
on one or more of its columns.

DROP INDEX Deletes an index.

Chapter 10 283

SQL Statements A-D
SQL Statement Summary

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use

Tables ALTER TABLE Adds to a table new columns and
constraints, or drops constraints
from a table, and assigns a table to a
partition or removes it from a
partition.

RENAME COLUMN Defines a new name for an existing
column.

RENAME TABLE Defines a new name for an existing
table.

CREATE TABLE Defines a table and assigns it to a
partition.

TRUNCATE TABLE Deletes all rows from a table.

DROP TABLE Deletes a table and any authorities,
indexes, rules, and views based on
it.

Views CREATE VIEW Defines a view based on a table,
another view, or a combination of
tables and views.

DROP VIEW Deletes the definition of a view as
well as authorities or views based
on the view.

Rules CREATE RULE Defines a rule for a table and
associates it with INSERTS,
UPDATES, and/or DELETES.

DROP RULE Deletes a rule.

Groups, Refer to the database

DBEFileSet, | administration

DBEFiles statements.

Procedures CREATE PROCEDURE Defines a procedure for storage in
the DBEnvironment.

DROP PROCEDURE Deletes a procedure.

Partitions CREATE PARTITION Defines a partition for audit logging
in the DBEnvironment.

DROP PARTITION Deletes a partition.

Data manipulation

DELETE Deletes one or more rows from a
single table or view.

284 Chapter 10

Table 10-1. SQL Statement Summary

SQL Statements A-D
SQL Statement Summary

Group Category Statement Statement Use
INSERT Adds a row to a single table or view.
SELECT Retrieves data from one or more
tables or views.
UPDATE Changes the values of one or more

DROP MODULE
EXECUTE

EXECUTE IMMEDIATE

PREPARE

columns in all rows of a specific
table or view that satisfy a search
condition.

Deletes a preprocessed module.

Executes dynamically preprocessed
statements.

Defines and executes dynamic
statements.

Dynamically preprocesses
statements, storing them as a
module if issued interactively.

Transaction management

BEGIN WORK

COMMIT WORK

ROLLBACK WORK

SAVEPOINT

SET DML ATOMICITY

SET CONSTRAINTS

SET SESSION

SET TRANSACTION

Begins a transaction and optionally
sets its isolation level and priority.

Ends a transaction and makes
permanent any changes it made to
the DBEnvironment.

Ends a transaction and undoes
changes made to the
DBEnNvironment during the whole
transaction or back to a savepoint
within the transaction.

Defines a point within a transaction
back to which you can roll back
work.

Sets the general error checking
level.

Sets the level of constraint error
checking.

Sets transaction attributes for a
session.

Sets execution attributes for a
transaction.

Chapter 10

285

SQL Statements A-D
SQL Statement Summary

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
Executing EXECUTE PROCEDURE Invokes a procedure.
procedures
Other RAISE ERROR Causes a user-defined error to occur
and specifies the error number and
text to be raised.
Concurrency

CREATE TABLE Defines the automatic locking
strategy and implicit authority
grants used for a table.

LOCK TABLE Locks a table, explicitly overriding
ALLBASE/SQL's automatic locking
strategy.

START DBE Defines the maximum number of

transactions that can execute
concurrently, when used with the
TRANSACTION= parameter.

Module maintenance

DROP MODULE

GENPLAN

SETOPT

VALIDATE

Deletes a module from the system
catalog, optionally retaining
authorization information.

Places optimizer's access plan in
SYSTEM.PLAN (from ISQL only).

Modifies access optimization plan
used by queries.

Validates modules and procedures.

Application Programming Statements

Single row data manipulations

FETCH

INSERT
SELECT

Retrieves a single row from an
active set associated with a cursor.

Inserts a single row into a table.

Retrieves a single row not
associated with a cursor.

Bulk manipulations

BULK FETCH

Retrieves multiple rows from an
active set associated with a cursor.
(See EETCH.)

286

Chapter 10

Table 10-1. SQL Statement Summary

SQL Statements A-D
SQL Statement Summary

Group

Category

Statement

Statement Use

BULK INSERT

BULK SELECT

Inserts multiple rows into a single
table. (See INSERT.)

Retrieves multiple rows not
associated with a cursor. (See
SELECT)

Cursor manag

ement

ADVANCE
CLOSE

DECLARE CURSOR

DELETE WHERE CURRENT

FETCH

REFETCH

OPEN

UPDATE WHERE CURRENT

Advances a procedure cursor.

Closes a cursor currently in the
open state.

Associates a cursor with a specific
SELECTor EXECUTE PROCEDURE
statement.

Deletes the current row of an active
set.

Advances the position of an open
cursor to the next row of the active
set and copies columns into host
variables.

Copies columns from the current
cursor position in the active set into
host variables. Used with the RU
and RC isolation levels to verify the
continued existence of data and to
obtain stronger locks prior to
updating.

Makes an active set available to
manipulation statements.

I Changes columns in the current row
of the active set.

Preprocessor directives

BEGIN DECLARE
SECTION

END DECLARE SECTION

INCLUDE

Indicates the beginning of the host
variable declarations in an
application program.

Indicates the end of the host
variable declarations in an
application program.

Includes declarations for structures
used to pass information between
ALLBASE/SQL and a program.

Chapter 10

287

SQL Statements A-D
SQL Statement Summary

Table 10-1. SQL Statement Summary

Group Category

Statement

Statement Use

WHENEVER

Specifies an action to be taken
depending on the outcome of an
SQL statement.

Dynamically preprocessed queries

DESCRIBE

EXECUTE
EXECUTE IMMEDIATE
PREPARE

Obtains information about the
results of a dynamic statement.

Refer to general-purpose
statements.

Status
messages

SQLEXPLAIN

Retrieves a message describing the
status of SQL statement execution.

Database Administration Statements

Authorization

GRANT

REVOKE

TRANSFER OWNERSHIP

Grants authorities to all users,
specific users, or groups.

Revokes authorities from all users,
specific users, or groups.

Makes a different user or
authorization group the owner of a
table, view, authorization group, or
procedure.

Authorization

groups

ADD TO GROUP

CREATE GROUP
DROP GROUP

REMOVE FROM GROUP

Adds one or more users or groups to
an authorization group.

Defines an authorization group.

Removes the definition of an
authorization group from the
system catalog.

Removes one or more users or
groups from an authorization group.

DBEnvironment configuration and use

START DBE NEW
START DBE

Configures a new DBEnvironment.

Makes a DBEnvironment available
in a mode different from that
defined in the DBECon file; also
starts up a DBEnvironment when
the autostart flag is off.

288

Chapter 10

SQL Statements A-D

SQL Statement Summary
Table 10-1. SQL Statement Summary
Group Category Statement Statement Use

STOP DBE
Terminates all DBE
sessions and causes a
checkpoint to be taken,
recovering log file space if
nonarchive logging is in
effect.
TERMINATE QUERY Terminates a running Query.
TERMINATE Stops the transaction.
TRANSACTION
TERMINATE USER Stops the DBE session for a specific

user.

DBEnNvironment settings

ENABLE RULES Turns rule checking on for the

current DBEnvironment session.

DISABLE RULES Turns rule checking off for the
current DBEnvironment session.

SET PRINTRULES Specifies whether rule names and
statement types are to be issued as
messages when the rules are fired
during a DBEnvironment session.

SET USER TIMEOUT Specifies the amount of time the
user waits if requested database
resource is unavailable.

Space Management

DBEFiles ADD DBEFILE Associates a DBEFile with a
DBEFileSet.
ALTER DBEFILE Changes the type attribute of a
DBEFile.
CREATE DBEFILE Defines and creates a DBEFile.
DROP DBEFILE Removes the definition of an empty
DBEFile not associated with a
DBEFileSet.
REMOVE DBEFILE Disassociates a DBEFile from a
DBEFileSet.
DBEFileSets | CREATE DBEFILESET Defines a DBEFileSet.

Chapter 10 289

SQL Statements A-D
SQL Statement Summary

Table 10-1. SQL Statement Summary

Group

Category

Statement

Statement Use

SET DEFAULT
DBEFILESET

DROP DBEFILESET

Sets a default DBEFileSet.

Removes the definition of a
DBEFileSet from the system
catalog.

Temporary sort space

CREATE TEMPSPACE

DROP TEMPSPACE

Defines and creates a temporary
storage space.

Removes the definition of a
temporary storage space from the
system catalog.

Logging

Recovery of
log space

BEGIN ARCHIVE
COMMIT ARCHIVE

CHECKPOINT

START DBE NEWLOG

START DBE

STOP DBE

Starts a new archive log file before a
DBEnvironment is back up.

Causes an ALLBASE/SQL system
checkpoint to be taken. A system
checkpoint causes data and log
buffers to be written to disk and
makes old log space, occupied by
completed transactions, available
for reuse if nonarchive logging is in
effect. Returns values in host
variable.

Reinitializes log file(s) when you
need to change the size. Makes
audit logging effective when used
with AUDIT LOG option.

Initiates the first DBE session if the
DBE is not in autostart mode and
causes a checkpoint to be taken,
recovering log file space if
nonarchive logging is in effect.

Terminates all DBE sessions and
causes a checkpoint to be taken,
recovering log file space if
nonarchive logging is in effect.

Dual logging

START DBE NEW

Causes ALLBASE/SQL to maintain
two separate, identical logs, when
used with the DUAL LOG option.
Makes audit logging effective when
used with AUDIT LOG option.

290

Chapter 10

Table 10-1. SQL Statement Summary

SQL Statements A-D
SQL Statement Summary

Group Category Statement Statement Use
Audit DISABLE AUDIT Disables current audit logging for a
logging LOGGING session.
Log LOG COMMENT Enters a user comment in the log
comment file.

ENABLE AUDIT LOGGING

Enables audit logging for a session
after being disabled.

Recovery Ro

lIback

START DBE

TERMINATE USER

STOP DBE

Rolls back transactions that were
incomplete the last time the
DBEnNvironment was shut down.

Ends a user's transactions, backing
out any work not committed.

Terminates all DBE sessions and
causes a checkpoint to be taken,

Rollforward

BEGIN ARCHIVE
COMMIT ARCHIVE

Creates an archive record in the
rollforward log(s) and initiates
archive mode logging.

DBEnvironment statistics

RESET

UPDATE STATISTICS

Resets ALLBASE/SQL accounting
and statistical data activity
management.

Updates system catalog information
used to optimize data access
operations on a per table basis.

Procedure Statements

General statements

Assignment (=)

DECLARE Variable

PRINT

Assigns a value to a local variable or
parameter in a procedure.

Defines a local variable within a
procedure.

Stores information to be displayed
by ISQL or an application program.

Control flow statements

BEGIN

GOTO

Begins a single statement or group
of statements within a procedure.

Permits a jump to a labeled
statement within a procedure.

Chapter 10

291

SQL Statements A-D

SQL Statement Summary

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use

Label Labels a statement in a procedure.

IF Allows conditional execution of one
or more statements within a
procedure.

RETURN Permits an exit from a procedure
with an optional return code.

WHILE Allows looping within a procedure.

292

Chapter 10

SQL Statements A-D
ADD DBEFILE

ADD DBEFILE

The ADD DBEFILE statement updates a row in SYSTEM.DBEFile to show the DBEFileSet
with which the file is associated.

Scope
ISQL or Application Program

SQL Syntax
ADD DBEFILE DBEFileName TO DBEFILESET DBEFileSetName

Parameters

DBEFileName is the name of a DBEFile previously defined and created
by the CREATE DBEFILE statement.

DBEFileSetName is the name of a previously defined DBEFileSet. You can
use the CREATE DBEFILESETstatement to define
DBEFileSets.

Description

= You cannot insert any rows or create any indexes for a table or put any non-null values
in a LONG column until the DBEFileSet it is located in has DBEFiles associated with
it.

< You can add DBEFiles to the SYSTEM DBEFileSet.

= Before a DBEFile can be added to the SYSTEM DBEFileSet, other users' transactions
must complete. Other users must wait until the transaction that is adding the DBEFile
to SYSTEM has completed.

= ADD DBEFILE increases the number of files associated with the DBEFileSet shown in
the DBEFSNDBEFILES column of SYSTEM.DBEFileSet by one.

Authorization

You must have DBA authority to use this statement.

Example

CREATE DBEFILE ThisDBEFile WITH PAGES =4,
NAME = ThisFile', TYPE = TABLE

CREATE DBEFILESET Miscellaneous

ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous
The DBEFile is used to store rows of a new table. When the table needs an index, a

Chapter 10 293

SQL Statements A-D
ADD DBEFILE

DBEFile to store rows of the index is created:

CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
NAME = ThatFile', TYPE = INDEX

ADD DBEFILE ThatDBEFile

TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous
ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM

ALTER DBEFILE ThisDBEFile SET TYPE = MIXED
All rows are later deleted from the table, so you can reclaim file space.
REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

DROP DBEFILE ThisDBEFile
The DBEFileSet definition can now be dropped.

DROP DBEFILESET Miscellaneous

294 Chapter 10

SQL Statements A-D
ADD TO GROUP

ADD TO GROUP

The ADD TO GROUPRstatement adds one or more users or groups, or a combination of users
and groups, to an authorization group.

Scope

ISQL or Application Program

SQL Syntax
ADD{ DBEUserlD
GroupName
ClassNamel],...] TO GROUP TargetGroupName
Parameters
DBEUSserID identifies a user to be added. You cannot specify the name
of the DBECreator.
GroupName identifies a group to be added.
ClassName identifies a class to be added.
TargetGroupName is the name of the authorization group to which the

specified users, groups, and classes are to be added.

Description

= You can specify a single parameter chosen from the available types. You can also specify
multiple parameters (using the same or multiple types) separating them with commas.

= Two authorization groups cannot be members of each other, that is group membership
cannot follow a circular chain. If, for example, group3 is a member of group2, and
group2 is a member of groupl, groupl cannot be a member of group2 or group3.

= You cannot add an authorization group to itself.

= When you specify several users or groups in one ADD TO GROURstatement,
ALLBASE/SQL ignores any invalid names, but processes the valid names.

Authorization

You can use this statement if you have OWNER authority for the authorization group or if
you have DBA authority.

Example
CREATE GROUP Warehse

GRANT CONNECT TO Warehse

Chapter 10 295

SQL Statements A-D
ADD TO GROUP

GRANT SELECT,
UPDATE (BinNumber,QtyOnHand,LastCountDate)
ON PurchDB.Inventory
TO Warehse

These two users will be able to start DBE sessions on PartsDBE, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

ADD Clem, George TO GROUP Warehse
Clem will no longer have any of the authorities associated with group Warehse.
REMOVE Clem FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

DROP GROUP Warehse

296 Chapter 10

SQL Statements A-D
ADVANCE

ADVANCE

The ADVANCEstatement is a procedure cursor manipulation statement. It is used in
conjunction with procedures having one or more multiple row result sets to advance the
position of an opened procedure cursor to the first or next query result set and to initialize
information in the associated sqlda_type and sqglformat_type data structures.

Scope
Application Programs Only

SQL Syntax
ADVANCECursorName [USING[SQLU DESCRIPTOR SQLDA
AreaName}]
Parameters
CursorName identifies a procedure cursor. The procedure cursor's

current active query result set, the procedure's
statements, and the values of any procedure input
parameters, determine the format information to be
returned by each successive ADVANCEtatement.

USING [SQL] DESCRIPTOR defines where to place the data format information of a
query result for an EXECUTE PROCEDURHEatement on
which a procedure cursor has been defined. Specify a
location that does not conflict with that of another SQL
statement such as OPEN, CLOSE, DESCRIBE, EXECUTE
or any FETCHthat is not associated with this ADVANCE
statement.

SQLDA specifies that a data structure of sqlda_type named
SQLDA is to be used to pass information about the next
result set between the application and ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of
sglda_type that is to be used to pass information about the
next result set between the application and
ALLBASE/SQL.

Description

« The query result set to which the procedure cursor points is called the active result set.
You use the information in the associated sqlda_type and sqglformat_type data
structures to process the query result set via FETCHstatements.

= For a procedure that returns multiple row results of a single format, if the procedure
was created with the WITH RESULT clause, it is unnecessary to issue an ADVANCE
statement to get format information for each result set, since the format is already

Chapter 10 297

SQL Statements A-D
ADVANCE

known from the DESCRIBE RESULTstatement.

= The ADVANCEtatement cancels any current, active query result set. It can be used as
an efficient way to throw away any unread rows resulting from the most recently
executed multiple row result set SELECTstatement in the procedure. The execution of
the procedure continues with the next statement. Control returns to the application
when the next multiple row result set statement is executed, or when procedure
execution terminates.

= Refer to the ALLBASE/SQL Advanced Application Programming Guide for further
explanation and examples of how to use the ADVANCEtatement.

Authorization

You do not need authorization to use the ADVANCEtatement.

Example

Refer to the ALLBASE/SQL Advanced Application Programming Guide for a pseudocode
example of procedure cursor usage.

298 Chapter 10

SQL Statements A-D

ALTER DBEFILE
ALTER DBEFILE
The ALTER DBEFILE statement changes the TYPE attribute of a DBEFile.
Scope
ISQL or Application Program
SQL Syntax
ALTER DBEFILE DBEFileName SET TYPE={ TABLE
INDEX
MIXED}
Parameters
DBEFileName specifies the DBEFile to be altered.
TYPE = specifies the new setting of the DBEFile's TYPE attribute. The following
are valid settings:
TABLE Only data (table, LONG column, or HASH) pages can be
stored in the DBEFile.
INDEX Only index pages can be stored in the DBEFile.
MIXED A mixture of data and index pages can be stored in the
DBEFile.

Description

= The type of an empty DBEFile, that is, a DBEFile in which no table or index entries
exist, can be changed without restriction.

= The type of a nonempty DBEFile can be changed from TABLE or INDEX to MIXED; no
other changes are allowed.

= Once a DBEFile contains primary pages for a HASH table, no other nonhash table,
index, or LONG data can be placed in that DBEFile.

= Before you can alter the type of a DBEFile in the SYSTEM DBEFileSet, other users'
transactions must complete. Other users must wait until the transaction that is
altering the DBEFile has completed.

Authorization

You must have DBA authority to use this statement.

Chapter 10 299

SQL Statements A-D
ALTER DBEFILE

Example
CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
NAME = 'ThisFile', TYPE = TABLE
CREATE DBEFILESET Miscellaneous
ADD DBEFILE ThisDBEFile
TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs a DBEFile in
which to store an index, one is created as follows:

CREATE DBEFILE ThatDBEFile WITH PAGES =4,
NAME = '"ThatFile', TYPE = INDEX
ADD DBEFILE ThatDBEFile
TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous
ADD DBEFILE ThatDBEFile
TO DBEFILESET SYSTEM
ALTER DBEFILE ThisDBEFile SET TYPE = MIXED
All rows are later deleted from the table, so you can reclaim file space.
REMOVE DBEFILE ThisDBEFile
FROM DBEFILESET Miscellaneous
DROP DBEFILE ThisDBEFile
The DBEFileSet definition can now be dropped.
DROP DBEFILESET Miscellaneous

300 Chapter 10

SQL Statements A-D
ALTER TABLE

ALTER TABLE

The ALTER TABLE statement is used to add one or more new columns or constraints, to
drop one or more constraints, or to reassign the table audit partition. This statement is
also used to change the type of table access, updatability, and locking strategies. New
columns are appended following already existing columns of a table. New column
definitions must either allow null values or provide default values if the table is not empty.
Added columns may specify constraints.

Scope
ISQL or Application Programs

SQL Syntax

ALTER TABLE[Owner.] TableName { AddColumnSpecification
AddConstraintSpecification
DropConstraintSpecification

SetTypeSpecification
SetPartitionSpecification }
Parameters—ALTER TABLE
[Owner.] TableName designates the table to be altered.
AddColumnSpecification allows a new column to be added to an existing table. This
parameter is discussed In a separate section below.
AddConstraintSpecification allows a new constraint to be added to an existing
table. This parameter is discussed in a separate section
below.
DropConstraintSpecification allows an existing constraint to be dropped from an

existing table. This parameter is discussed in a separate
section below.

SetTypeSpecification allows the locking mode of the table and related
authorities to be changed. This parameter is discussed in a
separate section below.

SetPartitionSpecification allows a table or DBEnvironment partition to be
changed.

SQL Syntax—AddColumnSpecification

ADD{ (ColumnDefinition [--])
ColumnDefinition }[CLUSTERING ON CONSTRAINT ConstraintiD 1]

Parameters—AddColumnSpecification

ColumnDefinition The syntax of ColumnDefinition is presented under the

Chapter 10 301

SQL Statements A-D
ALTER TABLE

CREATE TABLEstatement.

CLUSTERING ON CONSTRAINTspecifies that the named unique or referential constraint
specified within the Column Definition be managed
through a clustered index structure rather than
nonclustered. The unique constraint's unique column list,
or referential constraint's referencing column list, becomes
the clustered key.

ConstraintiD specifies the unique or referential constraint on which
clustering is to be applied. If not specified, the primary key
of the table is assumed. The ConstraintlD must be for a
constraint being added with the ALTER TABLEstatement.

SQL Syntax—AddConstraintSpecification

ADD CONSTRAINT{ UniqueConstraint
ReferentialConstraint
CheckConstraint },...])

[CLUSTERING ON CONSTRAINT ConstraintiD1 1]

Parameters—AddConstraintSpecification

UniqueConstraint defines a unique constraint being added. This parameter
is described under the CREATE TABLEstatement.

ReferentialConstraint defines a referential constraint being added. This
parameter is described under the CREATE TABLE
statement.

CheckConstraint defines a check constraint being added. This parameter is

described under the CREATE TABLEstatement.

CLUSTERING ON CONSTRAINTspecifies that the named unique or referential constraint
be managed through a clustered index structure rather
than nonclustered. The unique constraint's unique column
list, or referential constraint's referencing column list,
becomes the clustered key.

ConstraintiD1 specifies the unique or referential constraint name on
which clustering is to be applied. If not specified, the
primary key of the table is assumed. ConstraintiD1
must be for a constraint being added with the ALTER
TABLE statement.

SQL Syntax—DropConstraintSpecification

DROP CONSTRAINT(ConstraintlID [--])
ConstraintID }

Parameters—DropConstraintSpecification

ConstraintlD is the name of the constraint optionally defined when the

302 Chapter 10

SQL Statements A-D
ALTER TABLE

constraint was defined.

SQL Syntax—SetTypeSpecification
SET TYPE { PRIVATE

PUBLICREAD
PUBLIC
PUBLICROW } RESET AUTHORITY

PRESERVE AUTHORITY

Parameters—SetTypeSpecification

PRIVATE

PUBLICREAD

PUBLIC

PUBLICROW

enables the table to be used by only one transaction at a time. Locks are
applied at the table level. This is the most efficient option for tables that do
not need to be shared because ALLBASE/SQL spends less time managing
locks.

If RESET AUTHORITY is specified, the option automatically revokes all
authorities on the table from PUBLIC. Otherwise, the authority on the
table remains unchanged.

enables the table to be read by concurrent transactions, but allows no more
than one transaction at a time to update the table. Locks are applied at the
table level.

If RESET AUTHORITY is specified, the option automatically issues GRANT
SELECT on Owner. TableName to PUBLIC, and revokes all other authorities

on the table from PUBLIC. Otherwise, the authority on the table remains

unchanged.

enables the table to be read and updated by concurrent transactions. The
locking unit is a page. A transaction locks a page in share mode before
reading it and in exclusive mode before updating it.

If RESET AUTHORITY is specified, the option automatically issues GRANT
ALL on Owner.TableName to PUBLIC. Otherwise, the authority on the table
remains unchanged.

enables the table to be read and updated by concurrent transactions. The
locking unit is a row. A transaction locks a row in share mode before
reading it and in exclusive mode before updating it.

If RESET AUTHORITY is specified, the option automatically issues GRANT
ALL on Owner.TableName to PUBLIC. Otherwise, the authority on the table
remains unchanged.

RESET AUTHORITY is used to indicate that the authority on the table should be changed

to reflect the new table type. If not specified, the authority on the table
remains unchanged.

PRESERVE AUTHORITYis used to indicate that the authority currently in effect on the

table should be preserved. This is the default.

Chapter 10

303

SQL Statements A-D
ALTER TABLE

SQL Syntax—SetPartitionSpecification

SET PARTITION { PartitionName

DEFAULT
NONE }

Parameters—SetPartitionSpecification

PartitionName specifies the new partition of the table.
DEFAULT specifies the new partition of the table to be the default

partition of the DBEnvironment. If the default partition
number is later changed, that change will automatically
be recorded the next time an INSERT, UPDATEor DELETE
operation is executed on the table. If the default partition
is NONE at that time, audit logging of the operation is not
done.

NONE specifies that the table is no longer in any partition. No

further audit logging will be done on the table.

Description

Unless the table is currently empty, you cannot specify the NOT NULL attribute for
any new columns unless you specify a default value.

If no DEFAULT clause is given for an added column, an implicit DEFAULT NULL is
assumed. Any INSERT statement which does not include a column for which a default
has been declared causes the default value to be inserted into that column for all rows
inserted.

All rows currently in the table are updated with the default value for any new column
which specifies default values.

The ALTER TABLE statement can invalidate stored sections.
Character strings are accepted as date/time default values.

If an added constraint is violated when it is defined, an error message is immediately
issued and the ALTER TABLE statement has no effect.

A unique constraint referenced by a FOREIGN KEY cannot be dropped without first
dropping the referential constraint.

Constraints being added in AddConstraintSpecification must be on existing columns of
the table.

The ALTER TABLE statement can be used to change the type of an existing table.
Changing the type of a table redefines the locking strategy that ALLBASE/SQL uses
when the table is accessed. You can decide whether to use page or row level locking for
your applications.

No other transaction can access the table until the transaction that issued the ALTER
TABLE statement has committed.

The type of a table is changed permanently when you issue a COMMIT WORKtatement.

304 Chapter 10

SQL Statements A-D
ALTER TABLE

= When altering the type of an existing table, you can also specify the option to preserve
existing authority on the table or change the authority to the default for the new table
type. If you specify RESET AUTHORITY, the following changes are made to the table

authority:

Table 10-2. Changes to Table Authority in ALTER TABLE

Old Table Type New Table Type Changes to Authority
PRIVATE PUBLIC Grant ALL to PUBLIC
PUBLICROW Grant ALL to PUBLIC
PUBLICREAD Grant SELECT to PUBLIC
PUBLICREAD PUBLIC Grant ALL to PUBLIC
PUBLICROW Grant ALL to PUBLIC
PRIVATE Revoke ALL from PUBLIC
PUBLIC PUBLICROW No change
PUBLICREAD Revoke ALL from PUBLIC
Grant SELECT to PUBLIC
PRIVATE Revoke ALL from PUBLIC
PUBLICROW PUBLIC No change
PUBLICREAD Revoke ALL from PUBLIC
Grant SELECT to PUBLIC
PRIVATE Revoke ALL from PUBLIC

= To indicate that a table is in no partition, the partition NONE can be specified.

= The PartitionName specified must be one previously defined in a CREATE
PARTITION statement, must be the DEFAULT partition, or must be specified as
NONE.

= Changing the partition number of the table causes all future audit logging on the table
to use the new partition number. Past audit log records will not be altered to reflect a
change in a table's partition number; that is, the effect of this statement is not
retroactively applied to existing log records. If NONE was specified, there will be no
more audit logging done on this table (until another ALTER TABLE SET PARTITION
statement is issued on the table).

< When specifiying CLUSTERING ON CONSTRAINT, an error is returned if the table is
already clustered on a constraint or index or if the table is hashed.

= Adding a clustered constraint does not affect the physical placement of rows already in
the table.

= See syntax for the CREATE TABLENd CREATE INDEXtatements for more information
on clustering.

Chapter 10 305

SQL Statements A-D
ALTER TABLE

Authorization

You can issue this statement if you have ALTER or OWNER authority for the table or if
you have DBA authority.

To define added referential constraints, the table owner must have REFERENCES
authority on the referenced table and referenced columns, own the referenced table, or
have DBA authority.

To specify a DBEFileSetName for a long column, the table owner must have TABLESPACE
authority on the referenced DBEFileSet.

To specify a DBEFileSetName for a check constraint, the section owner must have
SECTIONSPACE authority on the referenced DBEFileSet.

Examples

Two new columns, ShippingWeight and PartDescription, are added to table
PurchDB.Parts. ShippingWeight must be greater than 0.

ALTER TABLE PurchDB.Parts
ADD (ShippingWeight DECIMAL(6,3) CHECK (ShippingWeight > 0)
CONSTRAINT Check_Weight,
PartDescription CHAR(40))

A constraint is added to table PurchDB.Parts to ensure that the sales price is greater than
$100.

ALTER TABLE PurchDB.Parts
ADD CONSTRAINT CHECK (SalesPrice > 100.) CONSTRAINT Check_Price

A column named DiscountPercent is added to table PurchDB.Orderltems, with a default
value of 0 percent.

ALTER TABLE PurchDB.Orderltems
ADD (DiscountPercent FLOAT DEFAULT 0)

The constraint named Check_Price is dropped.

ALTER TABLE PurchDB.Parts
DROP CONSTRAINT Check_Price

The type of a table is changed:

ALTER TABLE PurchDB.Orderltems
SET TYPE PUBLICROW

The table's partition is modified to be partition PartsPart2.

ALTER TABLE PurchDB.Parts
SET PARTITION PartsPart2;

No more audit logging will be done on the table.

ALTER TABLE PurchDB.Parts
SET PARTITION NONE;

306 Chapter 10

SQL Statements A-D
Assignment (=)

Assignment (=)

The assignment statement is used in a procedure to assign a value to a local variable or
procedure parameter.

Scope

Procedures only

SQL Syntax

{: LocalVariable
: ProcedureParameter }= Expression ;

Parameters

LocalVariable identifies the local variable to which a value is being
assigned. The variable name has a : prefix. Local variables
are declared in the procedure definition using the
DECLAREstatement.

ProcedureParameter identifies the procedure parameter to which a value is
being assigned. The procedure parameter has a : prefix.
Parameters are declared in parentheses following the
procedure name in the procedure definition.

Expression identifies an expression whose value is assigned to the
local variable. The Expression may include anything
that is allowed in an SQL expression except host variables,
subqueries, column references, dynamic parameters,
aggregate functions, date/time functions involving column
references, string functions, TID functions, and long
column functions. Local variables, built-in variables, and
procedure parameters may be included. See Chapter 8,
“Expressions,” for more information.

Description

= Host variables are not allowed anywhere in procedures, including Expressions
assigned to local variables or parameters. However, local variables, built-in variables,
and parameters may be used in an Expression anywhere a host variable would be
allowed in an application program.

= The data type of the expression result must be compatible with that of the parameter or
variable to which it is being assigned.

Authorization

Anyone can use the assignment statement in a procedure definition.

Chapter 10 307

SQL Statements A-D
Assignment (=)

Example

:msg = 'Vendor number found in "Orders" table.’;
:SalesPrice = :OldPrice;

:NewPrice = :SalesPrice*.80;

:nrows = ::sqlerrd2;

308 Chapter 10

SQL Statements A-D
BEGIN

BEGIN

The BEGIN statement is a compound statement and defines a group of statements within a
procedure.

Scope

Procedures only

SQL Syntax
BEGIN|[Statement :][...] END:;
Parameters
Statement is the statement or statements between the begin and end of the
statement.

Description

= This statement can be used to improve readability.

Authorization

Anyone can use the BEGIN statement.

Example

CREATE PROCEDURE PurchDB.DiscountPart(PartNumber CHAR(16))
AS BEGIN
DECLARE SalesPrice DECIMAL(6,2);

SELECT SalesPrice INTO :SalesPrice
FROM PurchDB.Parts
WHERE PartNumber = :PartNumber;

IF ::sglcode = 0 THEN
IF :SalesPrice > 100. THEN
BEGIN
:SalesPrice = :SalesPrice*.80;
INSERT INTO PurchDB.Discounts
VALUES (:PartNumber, :SalesPrice);
END
ENDIF;
ENDIF;
END;

Chapter 10 309

SQL Statements A-D
BEGIN ARCHIVE

BEGIN ARCHIVE

The BEGIN ARCHIVE statement in conjunction with the COMMIT ARCHIVEstatement starts
a new archive log file before a static backup is done to a DBEnvironment. However, this
method is no longer recommended. The recommended approach to initiate archive logging
and dynamic backup is to use the SQLUtil STOREONLINEEommand.

Scope

ISQL or Application Programs

SQL Syntax
BEGIN ARCHIVE

Description

Use of the BEGIN ARCHIVEstatement is no longer recommended. Refer to the ALLBASE/SQL
Database Administration Guide for detailed backup and recovery procedures and
recommended practices.

Authorization

You must have DBA authority to use this statement.

310 Chapter 10

SQL Statements A-D
BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

The BEGIN DECLARE SECTIONpreprocessor directive indicates the beginning of the host
variable eclaration section in an application program.

Scope

Application Programs Only

SQL Syntax
BEGIN DECLARE SECTION

Description

= This directive cannot be used interactively.
= Use this directive in conjunction with the END DECLARE SECTIONdirective.

Authorization
You do not need authorization to use the BEGIN DECLARE SECTIONstatement.

Example

You define host variables here, including indicator variables, if any.
BEGIN DECLARE SECTION

END DECLARE SECTION

Chapter 10 311

SQL Statements A-D
BEGIN WORK

BEGIN WORK

The BEGIN WORKstatement begins a transaction and, optionally, sets one or more
transaction attributes.

Scope

ISQL, Application Programs, or Procedures

SQL Syntax
BEGIN WORHK Priority][RR

CS

RC

RU][LABEL{ ‘LabelString’

: HostVariable }][[PARALLEL
NO] FILL]

Parameters
Priority is an integer from 0 to 255 specifying the priority of the transaction.

Priority 127 is assigned if you do not specify a priority. ALLBASE/SQL
uses the priority to resolve a deadlock. The transaction with the largest
priority number is aborted to remove the deadlock.

For example, if a priority-0 transaction and a priority-1 transaction are
deadlocked, the priority-1 transaction is aborted. If two transactions
involved in a deadlock have the same priority, the deadlock is resolved by
aborting the newer transaction (the last transaction begun, either
implicitly or with a BEGIN WORKstatement).

RR Repeatable Read. Means that the transaction uses locking strategies to
guarantee repeatable reads.

RR is the default isolation level.

Cs Cursor Stability. Means that your transaction uses locking strategies to
assure cursor-level stability only.

RC Read Committed. Means that your transaction uses locking strategies to
ensure that you retrieve only rows that have been committed by some
transaction.

RU Read Uncommitted. Means that the transaction can read uncommitted
changes from other transactions. Reading data with RU does not place any
locks on the table being read.

LabelString is a user defined character string of up to 8 characters. The default is a
blank string.

The label is visible in the SYSTEM.TRANSACTION pseudo-table and also
in SQLMONT ransaction labels can be useful for troubleshooting and
performance tuning. Each transaction in an application program can be

312 Chapter 10

SQL Statements A-D
BEGIN WORK

marked uniquely, allowing the DBA to easily identify the transaction being
executed by any user at any moment.

HostVariable is a host variable containing the LabelString
FILL is used to optimize 1/0O performance when loading data and creating
indexes.

PARALLEL FILL is used to optimize 1/O performance for multiple, concurrent loads to the
same table. The PARALLEL FILL option must be in effect for each load.

NO FILL turns off the FILL or PARALLEL FILL option for the duration of the
transaction. This is the default fill option.

Description

= Detailed information about isolation levels is presented in the "Concurrency Control
through Locks and Isolation Levels" chapter.

= When you use most SQL statements, ISQL or the preprocessor automatically issues the
BEGIN WORKstatement on your behalf, unless a transaction is already in progress.
However, to clearly delimit transaction boundaries and to set attributes for a
transaction (isolation level, priority, transaction label, and fill options), you can use
explicit BEGIN WORKstatements.

The following statements do not force an automatic BEGIN WORKo be processed:

ASSIGN BEGIN ARCHIVE BEGIN DECLARE SECTION

BEGIN WORK CHECKPOINT COMMIT ARCHIVE

COMMIT WORK CONNECT DECLARE VARIABLE

DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING END DECLARE SECTION
ASSIGN BEGIN ARCHIVE BEGIN DECLARE SECTION

BEGIN WORK CHECKPOINT COMMIT ARCHIVE

COMMIT WORK CONNECT DECLARE VARIABLE

DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING END DECLARE SECTION
GOTO IF INCLUDE

PRINT RAISE ERROR RELEASE

RESET RETURN ROLLBACK TO SAVEPOINT

ROLLBACK WORK SET SESSION SET TIMEOUT

SET TRANSACTION START DBE STOP DBE

SQLEXPLAIN TERMINATE USER WHENEVER

WHILE

e See Chapter 2, “Using ALLBASE/SQL,” "Scoping of Transaction and Session
Attributes" section for information about statements used to set transaction attributes.

= Within a given transaction, the isolation level, priority, and label can be changed by
issuing a SET TRANSACTIONstatement. Attributes specified in a SET TRANSACTION
statement within a transaction override any attributes set by a BEGIN WORKtatement
for the same transaction.

= An application or ISQL can have one or more active transactions at a time. Refer to the
SET MULTITRANSACTIONstatement syntax in this chapter.

Chapter 10 313

SQL Statements A-D
BEGIN WORK

The following sequences of statements must be in the same transaction in a program:
PREPARE and EXECUTE

PREPARE, DESCRIBE, OPEN, FETCH USING DESCRIPTOR, EXECUTE, and CLOSE

OPEN, FETCH, DELETE WHERE CURRENT, UPDATE WHERE CURRENT, and CLOSE (unless
KEEP CURSOR is used)

To end your transaction, you must issue a COMMIT WORK ROLLBACK WORitatement.
Otherwise, locks set by your transaction are held until a STOP DBE, DISCONNECT,
RELEASE or TERMINATE USERstatement is processed.

If the maximum number of concurrent DBEnvironment transactions has been reached,
the application is placed on a wait queue. If the application times out while waiting, an
error occurs. Default and maximum timeout values are specified at the DBEnvironment
level. To set a timeout for a session or transaction, use the SET USER TIMEOUT
statement. Refer to Chapter 2, “Using ALLBASE/SQL,” "Setting Timeout Values"
section for further information.

To avoid lock contention in a given DBEnvironment, do not allow simultaneous
transactions when performing data definition operations.

When using RC or RU, you should verify the existence of a row before you issue an
UPDATE statement. In application programs that employ cursors, you can use the
REFETCHstatement prior to updating. REFETCHSs not available in ISQL. Therefore, you
should use caution in employing RC and RU in ISQL if you are doing updates.

If the FILL or PARALLEL FILL option has already been set for the session with a SET
SESSIONstatement, and you do not want either of these options in effect for a given
transaction, specify NO FILL in the transaction's BEGIN WORKstatement.

Authorization

You do not need authorization to use the BEGIN WORKstatement.

Examples

1.

BEGIN WORKand ROLLBACK WORK
Transaction begins:

BEGIN WORK CS
Statement-1

SAVEPOINT :MyVariable
Sstatement-2
statement-3

Work of statements 2 and 3 is undone:
ROLLBACK WORK TO :MyVariable

Work of statement-1 is committed and the transaction ends:
COMMIT WORK

314 Chapter 10

SQL Statements A-D
BEGIN WORK

2. BEGIN WORKand set attributes
Begin the transaction and set priority, isolation level, label name, and fill option:
BEGIN WORK 32 CS LABEL 'xactl' FILL

Execute SQL statements.

Work is committed and the transaction ends.
COMMIT WORK

Begin another transaction and set priority, isolation level, and label name. Note that
since a fill option is not specified, the default (NO FILL) is in effect.

BEGIN WORK 64 RC LABEL 'xact2'

Execute SQL statements.

Work is committed and the transaction ends.
COMMIT WORK;

Chapter 10 315

SQL Statements A-D
CHECKPOINT

CHECKPOINT
The CHECKPOINEtatement causes an ALLBASE/SQL system checkpoint to be taken.

Scope

ISQL or Application Programs

SQL Syntax

CHECKPOINT: HostVariable

. LocalVariable
. ProcedureParameter |

Parameters

HostVariable identifies an output host variable used to communicate the
amount of log space available for use. The host variable is
an integer.

LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

Description

Specifying a host variable with CHECKPOINTstatement in an application allows you to
determine how much free space is available in the log file.

The LocalVariable parameter is used in the stored procedure for obtaining free log
space.

When you can use the host variable in a CHECKPOINTtatement in an application
program or procedure, the host variable can be omitted if you don't need to know the
number of free blocks available.

When you enter a CHECKPOINTtatement interactively in ISQL, you cannot specify a
host variable. Returned information is displayed on the screen.

Checkpoint processing is as follows:

= Contents of the log buffers are written to the log files(s).
< Data buffers containing changed pages are written to DBEFiles.

= A checkpoint record containing a list of the transactions currently in progress is
written in the log.

= When nonarchive logging is in effect, space containing log records written prior to
the beginning of the oldest incomplete transaction is made available for reuse. When
archive logging is in effect, however, this step is skipped and no log file space is
recovered by checkpoints.

316 Chapter 10

SQL Statements A-D
CHECKPOINT

= For a brief interval while a checkpoint is being taken, SQL statements that modify
the DBEnvironment continue to be accepted but their processing is temporarily
suspended. This suspension occurs for the amount of time needed to write the log
buffers and changed pages to permanent storage. Retrieval from the
DBEnNvironment is not suspended during a checkpoint.

= Contents of the log buffer are also written to the log file(s) when a COMMIT WORKks
executed.

e When you submit a START DBEstatement, ALLBASE/SQL processes all log records
created since the last checkpoint record. Therefore taking a checkpoint just before
stopping the DBE reduces the amount of time that is needed when a DBEnvironment is
started up.

= ALLBASE/SQL automatically takes a checkpoint when the log file is full, when the data
buffer is full, and when the STOP DBEnd COMMIT ARCHIVEtatements are processed.
When the START DBEstatement is processed, ALLBASE/SQL writes a checkpoint
record.

= Submitting a CHECKPOINTtatement allows you to determine how much free space is
available in the log file.

Authorization

You must have DBA authority to use this statement.

Example

A stored procedure retrieves the number of free blocks of log space available. Create a
stored procedure with an output parameter.

EXEC SQL create procedure cp (freeblock integer OUTPUT) as
begin
checkpoint :freeblock;
end;
Pass the host variable as an output parameter to procedure.

EXEC SQL execute procedure cp (hstfblk output);

writeln(‘free log space available', hstfblk);
if hstfblk <= TOOLOW then
writeln('‘Add new log files *);

A log block is a 512-byte allocation of storage. When you submit the CHECKPOINBtatement
interactively, ISQL displays the amount of log space available for use.

isql=> CHECKPOINT;
Number of free log blocks is 240
isql=>

ISQL assigns and displays the free log space.

Chapter 10 317

SQL Statements A-D
CHECKPOINT

A program retrieves the number of free blocks of log space available. In a Pascal
application program, declare a host variable.

EXEC SQL begin declare section;
hstfblk : integer;
EXEC SQL end declare section;

Submit a checkpoint with host variable to obtain free log space available.
EXEC SQL checkpoint :hstfblk;
writeln(‘free log space: ',hstfblk);

if hstfblk <= TOOLOW then
writeln('Add new log files ');

318 Chapter 10

CLOSE

SQL Statements A-D
CLOSE

The CLOSEstatement is used to close an open cursor.

Scope

Application Programs or Procedures

SQL Syntax

CLOSE CursorName [USING{[SQL DESCRIPTOR SQLDA

Parameters

CursorName
USING

HostVariable

Indicator

>0

DESCRIPTOR

SQLDA

AreaName

Areaname}
: HostVariable [[INDICATOR]: Indicator 1][,...]}]

designates the open cursor to be closed.

defines where to place return status and output
parameters after closing a dynamic procedure cursor.

identifies a host variable for holding return status and
output parameters after closing a dynamic procedure
cursor. These must be specified in the same order as in the
associated EXECUTE PROCEDURH#atement.

names the indicator variable, an output host variable
whose value depends on whether the host variable
contains a null value. The following integer values are
svalid:

meaning the output parameter's value is not null
meaning the output parameter's value is null

meaning the output parameter's value is truncated (for
CHAR, VARCHAR, BINARY, and VARBINARY columns)

defines where to place return status and output
parameters after closing a procedure cursor. Specify the
same location (SQLDA, area name, or host variable) as
you specified in the DESCRIBE OUTPUTstatement.

specifies that a data structure of sqlda_type named
SQLDA is to be used to pass information about the
prepared statement between the application and
ALLBASE/SQL.

specifies the user defined name of a data structure of
sglda_type that is to be used to pass information about the
prepared statement.

Chapter 10

319

SQL Statements A-D
CLOSE

Description
= When it applies to a select cursor (one that is declared for a SELECTstatement), the
CLOSEstatement can be issued in an application program or in a procedure.

When it applies to a procedure cursor (one that is declared for an EXECUTE
PROCEDUR&atement), the CLOSEstatement can be issued only in an application
program.

e The CLOSEstatement cannot be used in ISQL.
= CLOSEreturns an error if the cursor is not in the open state.

e The COMMIT WORMd ROLLBACK WORiatements automatically close all cursors not
opened with the KEEP CURSOR option.

= To close a select cursor opened with the KEEP CURSOR option, you must perform an
explicit CLOSEfollowed by a COMMIT WORK

< When you close a select cursor, its active set becomes undefined, and it can no longer be
used in DELETE, FETCH, or UPDATEstatements. To use the cursor again you must
reopen it by issuing an OPENstatement.

= When you close a procedure cursor, its active result set becomes undefined, and it can
no longer be used in FETCHstatements. To use the procedure cursor again you must
reopen it by issuing an OPENstatement.

< When used with a procedure cursor, CLOSEdiscards any pending rows or result sets
from the procedure. Execution of the procedure continues with the next statement.
Control returns to the application when the procedure terminates.

Note that following processing of the last multiple row result set, procedure execution
cannot continue until you close or advance the procedure cursor in the application.

< Upon execution of the CLOSEstatement used with a procedure cursor, return status and
output parameter values are available to the application in either the SQLDA or the
HostVariable Specification of the USING clause or in any host variables specified
in the related DECLARE CURSORtatement.

= The USING clause is allowed only for dynamic procedure cursors.

Authorization

You do not need authorization to use the CLOSEstatement.

Examples

Declare and open a cursor for use in updating values in column QtyOnHand.

DECLARE NewQtyCursor CURSOR FOR
SELECT PartNumber,QtyOnHand FROM PurchDB.Inventory
FOR UPDATE OF QtyOnHand

OPEN NewQtyCursor
Statements setting up a FETCH-UPDATE loop appear next.
FETCH NewQtyCursor INTO :Num :Numnul, :Qty :Qtynul

320 Chapter 10

SQL Statements A-D
CLOSE

Statements for displaying a row to a user and accepting a new QtyOnHand value go here.
The new value is stored in :NewQty.

UPDATE PurchDB.Inventory
SET QtyOnHand = :NewQty
WHERE CURRENT OF NewQtyCursor

éLOSE NewQtyCursor USING sgldaout

Chapter 10 321

SQL Statements A-D
COMMIT ARCHIVE

COMMIT ARCHIVE

The COMMIT ARCHIVEstatement in conjunction with the BEGIN ARCHIVE statement starts
a new archive log file before a static backup is done to a DBEnvironment. However, this
method is no longer recommended. The recommended approach to initiate archive logging
and do a dynamic backup is to use the SQLUtil STOREONLINEEommand.

Scope

ISQL or Application Programs

SQL Syntax
COMMIT ARCHIVE

Description

= Use of the COMMIT ARCHIVEstatement is no longer recommended.

Refer to the ALLBASE/SQL Database Administration Guide for detailed backup and
recovery procedures and recommended practices.

Authorization

You must have DBA authority to use this statement.

322 Chapter 10

SQL Statements A-D
COMMIT WORK

COMMIT WORK

The COMMIT WORKtatement ends the current transaction. All changes made during the
transaction are committed (made permanent).

Scope

ISQL or Application Programs

SQL Syntax
COMMIT WORK RELEASE

Parameters

RELEASE terminates your DBE session after the changes made during the
transaction are committed. Specifying RELEASE has the same effect as
issuing a COMMIT WORKtatement followed by a RELEASEstatement.

Description

< The COMMIT WORKtatement has no effect if you do not have a transaction in progress.

< The COMMIT WORKtatement releases all locks held by the transaction, except those
associated with a kept cursor in an application program.

= In an application program, the COMMIT WORKtatement closes all cursors opened
without the KEEP CURSOR option in the current transaction.

= For cursors opened with the KEEP CURSOR option, the COMMIT WORKtatement (but
not the COMMIT WORK RELEASEatement) implicitly starts a new transaction that
maintains the current cursor position and inherits the isolation level. Whether or not
locks on data objects pointed to by these cursors are released depends on the use of the
WITH LOCKS or WITH NOLOCKS option in the OPENstatement.

= If a procedure invoked by a rule executes a COMMIT WORKtatement, an error occurs.

« |f a commit is done while constraints are deferred, and constraint errors exist, the
system will roll back the transaction and report that constraint errors exist.

= Short transactions (frequent COMMIT WORKtatements) are recommended to improve
concurrency.

= |f RELEASE is used, all cursors are closed and the current connection is terminated
= The RELEASE option is not allowed within a procedure.

Authorization
You do not need authorization to use the COMMIT WORKtatement.

Chapter 10 323

SQL Statements A-D
COMMIT WORK

Example
Transaction begins.
BEGIN WORK
Statement-1
SAVEPOINT :MyVariable

statement-2

Statement-3
Work of statements 2 and 3 is undone.
ROLLBACK WORK TO :MyVariable
Work of statement 1 is committed; the transaction ends.
COMMIT WORK

324 Chapter 10

SQL Statements A-D
CONNECT

CONNECT

The CONNECTS$tatement initiates a connection with a given DBEnvironment. This
connection is the current connection. Any SQL statements issued apply to the current
connection.

Scope

ISQL or Application Programs

SQL Syntax

CONNECT TQ ‘DBEnvironmentName’
: HostVariablel HAS { ‘ConnectionName’
:HostVariable2 H
[USER{ ‘UserID’
:HostVariable3 }[USING: HostVariable4 1]

Parameters

DBEnvironmentName identifies the DBEnvironment to be used. Any path name
you specify, unless absolute, is assumed to be relative to
your current working directory.

HostVariable1 is a character string host variable containing the name of
a DBEnvironment.

ConnectionName is a string literal identifying the name associated with this
connection. This name must be unique for each
DBEnvironment connection within an application or an
ISQL session. If a ConnectionName is not specified,
DBEnvironmentName is the default. ConnectionName
cannot exceed 128 bytes.

HostVariable2 is a character string host variable containing the
ConnectionName associated with this connection.

UserID is a string literal identifying the user associated with this
connection. UserID cannot exceed 64 bytes.

HostVariable3 is a character string host variable containing the User/iD
associated with this connection.

HostVariable4 is a character string host variable containing the
connection password associated with the specified user
identifier. The connection password assigned to
HostVariable4 cannot exceed 64 bytes.

Chapter 10 325

SQL Statements A-D
CONNECT

Description

= ALLBASE/SQL creates an implicit, brief transaction when the CONNECStatement is
issued.

= When the value of the autostart flag is ON, the CONNECTEtatement initiates a
single-user DBE session if the DBECon file user mode is currently set to single and no
other user is accessing the DBEnvironment. A multiuser DBE session is established if
the DBECon file user mode is currently set to MULTI.

= If the value of the autostart flag is OFF, the CONNECTStatement is used to initiate a
multiuser session after a START DBEstatement has been processed.

< When more than one CONNECStatement is issued, the application (or ISQL) is
currently connected to the DBEnvironment specified by the most recent CONNECT
statement. The current connection can be changed with the SET CONNECTION
statement.

= The USER and USING clauses are implementation-defined features intended for use in
determining if a CONNECT$tatement should be accepted or rejected. They are not
currently used by ALLBASE/SQL as criteria for accepting or rejecting a CONNECT
statement. However, other database products in a network environment may require
them in order to granulize authorization to a connection level.

Authorization

You can use this statement if you have CONNEC®r DBA authority for the specified
DBEnNvironment.

Example

A user whose current working directory is just above the sampledb directory begins a DBE
session; the value of the autostart mode is ON. The PartsDBE DBEnvironment is
currently configured to operate in multiuser mode, so other users can also initiate DBE
sessions.

CONNECT TO 'sampledb/PartsDBE'
A second user starts a DBE session from a different directory.
CONNECT TO '../sampledb/PartsDBE'
Specifying a connection name
CONNECT TO 'sampledb/PartsDBE' AS 'Parts1'
Partsl is the connection name to be used with multiconnect functionality.

326 Chapter 10

SQL Statements A-D
CREATE DBEFILE

CREATE DBEFILE

The CREATE DBEFILE statement defines and creates a DBEFile and places a row
describing the file in SYSTEM.DBEFile. A DBEFile is a file that stores tables, indexes,
hash structures, and/or LONG data.

Scope

ISQL or Application Programs

SQL Syntax

CREATE DBEFILE DBEFileName WITH PAGES = DBEFileSize , NAME =SystemFileName’
[[INCREMENE DBEFileincrSize [, MAXPAGES DBEFileMaxSize]
[[TYPE ={ TABLE

INDEX

MIXED]

Parameters

DBEFileName is the logical name to be assigned to the new DBEFile.
Two DBEFiles in one DBEnvironment cannot have the
same logical name.

DBEFileSize specifies the number of 4096-byte pages in the new
DBEFile. The minimum DBEFile size is 2 pages. The
maximum DBEFile size is 524,287 pages.

SystemFileName identifies how the DBEFile is known to the operating
system. The system file name is in the format
[Pathname/ 1FileName . The DBEFile is created relative
to the directory where the DBECon file resides unless an
absolute path name is specified. The maximum length for
SystemFileName is 44 bytes.

DBEFilelncrSize is a number you must supply with the INCREMENT
clause when you want to expand the DBEFILE. The
DBEFilelncrSize should be 8 pages or greater but it
cannot exceed 65,535. No system default is provided by
ALLBASE/SQL; if this number is omitted, no DBEFile
expansion takes place.

DBEFileMaxSize is a number that you can supply with the MAXPAGES
clause if you have already specified a DBEFilelncrSize
If the DBEFileMaxSize is not a multiple of
DBEFileincrSize , the number may be rounded up or
down as follows: The smallest higher multiple is tried first.
If the smallest higher multiple is not a valid size, the
largest lower multiple is used. A warning message is
returned to let you know that the DBEFileMaxSize is

Chapter 10 327

SQL Statements A-D
CREATE DBEFILE

rounded based on the DBEFilelncrSize provided. If you
omit the MAXPAGES clause, the value defaults to the
ALLBASE/SQL DBEFile maximum size.

TYPE = specifies the setting of the DBEFile's TYPE attribute. The

following are valid settings:

TABLE Only data pages (table, HASH, or LONG) can be stored in
the DBEFile.

INDEX Only index pages can be stored in the DBEFile.

MIXED A mixture of data and index pages can be stored in the
DBEFile.

Description

You use this statement to create all DBEFiles except DBEFileO, which is created when
a START DBE NEWstatement is processed.

The CREATE DBEFILEstatement formats the DBEFile. The name and characteristics of
the DBEFile are stored in the system catalog.

The DBEFile created is owned by hpdb and has the following permissions:

To use a DBEFile for storing a table, LONG data, and/or an index, you add it to a
DBEFileSet with the ADD DBEFILE statement, then reference the name of the
DBEFileSet in the CREATE TABLEtatement. You may add a DBEFile to the SYSTEM
DBEFileSet.

To delete the row describing a DBEFile from SYSTEM.DBEFile, use the DROP
DBEFILE statement.

INCREMENT and MAXPAGES are optional clauses. If they are omitted, no DBEFile
expansion takes place.

It is highly recommended that you provide the DBEFileMaxSize along with the
DBEFilelncrSize . Not specifying the DBEFileMaxSize causes it to be set to the
system maximum. This results in a high value for the ratio for this file. The
DBEFileMaxSize is stored internally as an integer multiple of the DBEFilelncrSize
if the DBEFileMaxSize is not a multiple of DBEFilelncrSize , rounding can occur.
Refer to the description of DBEFileMaxSize in the previous section for information on
the rounding process.

The DBEFileMaxSize , after rounding, should be equal to or greater than the
DBEFileSize . It should not exceed the maximum DBEFile size of 524,287 pages.

The optimal DBEFilelncrSize depends on the expected rate of expansion for the file.
Refer to the section "Calculating Storage for Database Objects" in the ALLBASE/SQL
Database Administration Guide for information about estimating size requirements for
tables and indexes.

Expandable DBEFiles do not expand dynamically during the creation of hash tables.

328 Chapter 10

SQL Statements A-D
CREATE DBEFILE

= DBEFiles that contain hash tables are not expanded even though they were specified as
expandable when created.

Authorization

You must have DBA authority to use this statement. hpdb must have write permission in
the directory where the DBEFile will reside.

Example

CREATE DBEFILE ThisDBEFile\
WITH PAGES = 4, NAME = ThisFile', TYPE = TABLE

CREATE DBEFILESET Miscellaneous

ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, a
DBEFile is created to store an index:

CREATE DBEFILE ThatDBEFile\
WITH PAGES =4, NAME = ThatFile', TYPE = INDEX

ADD DBEFILE ThatDBEFile TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous
ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM

ALTER DBEFILE ThisDBEFile SET TYPE = MIXED
All rows are later deleted from the table, so you can reclaim file space.
REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

DROP DBEFILE ThisDBEFile
The DBEFileSet definition can now be dropped.
DROP DBEFILESET Miscellaneous

CREATE DBEFILE NewDBEFile\
WITH PAGES = 4, NAME = ThatFile', TYPE = INDEX

ADD DBEFILE NewDBEFile TO DBEFILESET SYSTEM

Chapter 10 329

SQL Statements A-D
CREATE DBEFILESET

CREATE DBEFILESET

The CREATE DBEFILESETstatement defines a DBEFileSet. A DBEFileSet is a group of
related DBEFiles; as such, it serves as a mechanism for allocating and deallocating file
space for tables.

Scope
ISQL or Application Programs

SQL Syntax
CREATE DBEFILESET DBEFileSetName

Parameters

DBEFileSetName specifies the name to be given to the new DBEFileSet. Two
DBEFileSets in the same DBEnvironment cannot have the same name.

Description

e The CREATE DBEFILESETstatement records the new DBEFileSet name in the system
catalog with an indication that no physical storage is associated with the DBEFileSet.

= You associate physical storage with a DBEFileSet by associating DBEFiles with the
DBEFileSet, using the ADD DBEFILEstatement. Then you can associate a table and its
indexes with the DBEFileSet by using the CREATE TABLEstatement. ALLBASE/SQL
allocates all data and index pages for a table to DBEFiles in the DBEFileSet named in
the IN clause of the CREATE TABLEstatement. If automatic DBEFile expansion is not
being used when you need more space for a table, you add another DBEFile to the
DBEFileSet associated with the table when the CREATE TABLEstatement was issued.

= To remove a DBEFile from a DBEFileSet, you use the REMOVE DBEFILEstatement.

e Ifa LONG column uses the IN DBEFileSet clause, ALLBASE/SQL allocates all LONG
data pages for that column in DBEFiles in the DBEFileSet specified. If automatic
DBEFile expansion is not being used when more space is needed for the LONG column,
you add another DBEFile to the DBEFileSet associated with the LONG column when
the column was defined.

e To delete the definition of a DBEFileSet, use the DROP DBEFILESETstatement.

= One DBEFileSet is created automatically when the START DBE NEWstatement is
issued -- the SYSTEM DBEFileSet. The system catalog resides in the SYSTEM
DBEFileSet. Those parts of the system catalog that are needed to start up a
DBEnNvironment reside in DBEFile0. You may add a DBEFile to the SYSTEM
DBEFileSet.

330 Chapter 10

SQL Statements A-D
CREATE DBEFILESET

Authorization

You must have DBA authority to use this statement.

Example
The DBEFile is used to store rows of a new table.
CREATE DBEFILE ThisDBEFile WITH PAGES =4,
NAME = 'ThisFile', TYPE = TABLE
CREATE DBEFILESET Miscellaneous

ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous
When the table needs a DBEFile to hold an index, one is created as follows:
CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
NAME = 'ThatFile', TYPE = INDEX
ADD DBEFILE ThatDBEFile TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile
FROM DBEFILESET Miscellaneous

ADD DBEFILE ThatDBEFile

TO DBEFILESET SomethingElse

ALTER DBEFILE ThisDBEFile SET TYPE = MIXED
Now you can use this DBEFile to store an index later if you need one.
All rows are later deleted from the table, so you can reclaim file space.

REMOVE DBEFILE ThisDBEFile

FROM DBEFILESET Miscellaneous

DROP DBEFILE ThisDBEFile
The DBEFileSet definition can now be dropped.

DROP DBEFILESET Miscellaneous

CREATE DBEFILE NewDBEFile

ADD DBEFILE NewDBEFile
TO DBEFILESET SYSTEM

Chapter 10 331

SQL Statements A-D
CREATE GROUP

CREATE GROUP
The CREATE GROUBtatement defines a new authorization group.

Scope
ISQL or Application Programs

SQL Syntax
CREATE GROUH Owner. 1 GroupName

Parameters

[Owner.] GroupName specifies the group name to be assigned to the new authorization
group. The group name must conform to the syntax rules for basic names,
described in the "Names" chapter.

You can specify the owner of the new group if you have DBA authority.
Non-DBA users can specify as owner the name of any group of which they
are a member. If you do not specify the owner name, your login name
becomes the owner of the new group.

Although the owner name can be specified as a prefix to the group name in
this statement, the owner name is not actually considered a part of the
group identifier. The group name by itself uniquely identifies a group
within the database.

The group name you specify cannot be the same as any of the following
names:

< Name of an existing authorization group.

= Owner name of an existing table, view, module, or authorization group.
= DBEUserlID existing in the authorization tables of the system catalog.
= DBEUserlID associated with any DBE session currently in progress.

= Special names PUBLIC, SYSTEM, CATALOG, HPRDBSS,
STOREDSECT, SEMIPERM, HPODBSS, and TEMP.

Description

< When you create an authorization group, its owner name and group name are entered
into the system catalog. You can then refer to the group in the ADD TO GROUP, REMOVE
FROM GROUP, GRANT, REVOKE, TRANSFER OWNERSH)Rnd DROP GROUP
statements.

Authorization
You must have RESOURCE or DBA authority to use this statement.

332 Chapter 10

SQL Statements A-D
CREATE GROUP

Example
CREATE GROUP Warehse

GRANT CONNECT TO Warehse

GRANT SELECT,
UPDATE (BinNumber,QtyOnHand,LastCountDate)
ON PurchDB.Inventory
TO Warehse

These two users will be able to start DBE sessions for PartsDBE, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

ADD Clem, George TO GROUP Warehse
Clem will no longer have any of the authorities associated with group Warehse.
REMOVE Clem FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

DROP GROUP Warehse

Chapter 10 333

SQL Statements A-D
CREATE INDEX

CREATE INDEX

The CREATE INDEXstatement creates an index on one or more columns of a table and
assigns a name to the new index.

Scope
ISQL or Application Programs

SQL Syntax

CREATH UNIQUH[CLUSTERING INDEX][Owner.] Indexname ON
[Owner.] TableName ({ColumnName[ASC

DESQ)L...])

Parameters

UNIQUE prohibits duplicates in the index. If UNIQUE is specified, each possible
combination of index key column values can occur in only one row of the
table. If UNIQUE is omitted, duplicate values are allowed. Because all
null values are equivalent, a unigue index allows only one row with a null
value in an indexed column. When you create a unique index, all existing
rows must have unique values in the indexed column(s).

CLUSTERING can increase the efficiency of sequential processing.

If CLUSTERING is specified, rows added to the table after the index is
created are placed physically near other rows with similar key values
whenever space is available in the page. If CLUSTERING is omitted, the
key values in a newly inserted row do not necessarily have any
relationship with the row's physical placement in the database.

No more than one index for a table can have the CLUSTERING attribute.

If the table was declared to use a HASH structure, no clustering indexes
may be defined upon it. See the CREATE TABLEstatement for information
on HASH structures.

[Owner.] IndexName is the name to be assigned to the new index. A table cannot have
two indexes with the same name. If the owner is specified, it must be the
same as the owner of the table. The default owner name is the owner name
of the table it is being defined on. The usual default owner rules do not
apply here.

[Owner.] TableName designates the table for which an index is to be created.

ColumnName is the name of a column to be used as an index key. You can specify up to
16 columns in order from major index key to minor index key. The data
type of the column cannot be a LONG data type.

ASC | DESC specifies the order of the index to be either ascending or descending,
respectively. The default is ascending. Specifying DESC does not create a

334 Chapter 10

SQL Statements A-D
CREATE INDEX

descending index. It is the same index as ascending. Therefore, SELECT
statements that require data to be retrieved in descending order must
specify ORDER BY columniD DESC.

Description

If the table does not contain any rows, the CREATE INDEXstatement enters the
definition of the index in the system catalog and allocates a root page for it. If the table
has rows, the CREATE INDEXtatement enters the definition in the system catalog and
builds an index on the existing data.

If the UNIQUE option is specified and the table already contains rows having duplicate
values in the index key columns, the CREATE INDEXstatement is rejected.

The CLUSTERING option does not affect the physical placement of rows that are
already in the table when the CREATE INDEXstatement is issued.

The new index is maintained automatically by ALLBASE/SQL until the index is deleted
by a DROP INDEXstatement or until the table it is associated with is dropped.

The following equation determines the maximum key size for a B-tree or hash index:
(NumberOfindexColumns + 2)*2 + SumKeyLengths + 8 <=1024

If the index contains only one column, the maximum length that column can be is 1010
bytes. At compile time, SumKeyLengths is computed assuming columns of NULL and
VARCHAR columns contain no data. At run time, the actual data lengths are assumed.

At most 16 columns are allowed in a user-defined index.
Indexes cannot be created for views, including the system views and pseudotables.

Index entries are sorted in ascending order. Null compares higher than other values for
sorting.

An index is automatically stored in the same DBEFileSet as its table.

The CREATE INDEXstatement can invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

The CREATE INDEX statement allocates file space for sorting under any available
TempSpace location, or in the default sort space. After the index has been created, this
file space is deallocated.

Indexes created with the CREATE INDEXstatement are not associated with referential
or unique constraints in any manner, and are not used to support any constraints. So a
unique index created with the CREATE INDEXstatement cannot be referenced as a
primary key in a referential constraint.

Authorization

You can issue this statement if you have INDEX or OWNER authority for the table or if
you have DBA authority.

Chapter 10 335

SQL Statements A-D
CREATE INDEX

Example

This unigue index ensures that all part numbers are unique.

CREATE UNIQUE INDEX PurchDB.PartNumIndex
ON PurchDB.Parts (PartNumber)

This clustering index causes rows for order items associated with one order to be stored
physically close together.

CREATE CLUSTERING INDEX OrderltemIndex
ON PurchDB.Orderltems (OrderNumber)

336 Chapter 10

SQL Statements A-D
CREATE PARTITION

CREATE PARTITION

The CREATE PARTITION statement defines a partition to be used for audit logging
purposes.

Scope

ISQL or Application Programs

SQL Syntax
CREATE PARTITION PartitionName WITH ID = PartitionNumber

Parameters

PartitionName specifies the logical name to be given to the new partition. Two
partitions in the same DBEnvironment cannot have the same name.
PartitionName may not be DEFAULT or NONE.

PartitionNumber is an integer specifying the partition number. It must be a positive
integer in the range 1 to 32767. The partition number identifies the
partition in the audit log record.

Description

= The CREATE PARTITION statement creates a new audit partition, which is a unit of
data logging for an audit DBEnvironment.

= The partition number may already be assigned to another partition, including the
default partition. For example, several partitions with different partition names may
have the same partition number in the audit log file. This allows the Audit Tool to
gather statistics for all of these partitions as one unit while preserving the ability to
manipulate each partition separately.

= Creation of a partition does not cause a check against the maximum number of
partitions. Only creation of audit log records in a partition checks if the maximum
number of partitions is exceeded. The process of determining the number of partitions
in a DBEnvironment is described under the START DBE NEWstatement.

= One data partition can be defined with the START DBE NEWor START DBE NEWLOG
statements -- the DEFAULT partition. Before tables are assigned to a particular
partition, they are placed in the DEFAULT partition.

« To put atable in a partition, use the CREATE TABLBr ALTER TABLE SET PARTITION
statement.

= To remove a table from a partition, or change the partition it is in, use the ALTER
TABLE SET PARTITION statement.

= To delete the definition of a partition, use the DROP PARTITION statement.

= Partitions can be created and tables placed in them without audit logging being enabled

Chapter 10 337

SQL Statements A-D
CREATE PARTITION

for a DBEnvironment. However, the partition information is only used in audit log
records. Thus, partition information will not be utilized in logging until the
DBEnvironment has audit logging enabled.

< Data partition information (including the default partition) appears in the system view
SYSTEM.PARTITION. If the default partition is set to NONE, or is never defined, no
row appears in SYSTEM.PARTITION for it.

e The DROP PARTITION and CREATE PARTITION statements are used to change the
partition number assigned to a partition other than the default partition. The START
DBE NEWLOSatement is used to change the partition number of the default partition.

= The partition number, not the partition name, is used in audit logging. A partition name
is used in the CREATE TABLENnd ALTER TABLEstatements to associate a table with a
partition.

Authorization

You must have DBA authority to use this statement.

Example
To create a partition containing tables, first create the partition.
CREATE PARTITION PartsPart WITH ID = 10;
Then assign tables(s) to the partition.
ALTER TABLE PurchDB.Parts SET PARTITION PartsPart;
To drop a partition, first assign all tables in the partition to the NONE partition.
ALTER TABLE PurchDB.Parts SET PARTITION NONE;
Then drop the partition.
DROP PARTITION PartsPart;

338 Chapter 10

SQL Statements A-D
CREATE PROCEDURE

CREATE PROCEDURE

The CREATE PROCEDHRtatement defines a procedure for storage in a DBEnvironment. A
procedure may subsequently be executed through the firing of a rule by an INSERT,
UPDATE or DELETEstatement, or by using the EXECUTE PROCEDURiatement or a
procedure cursor.

Scope
ISQL or Application Programs

SQL Syntax
CREATE PROCEDURE Owner. | ProcedureName [LANG= ProcLangName]
[(ParameterDeclaration [, ParameterDeclaration 1I.-D]
[WITH RESULT ResultDeclaration [, ResultDeclaration 1.1
AS BEGIN [ProcedureStatement][...] END[IN DBEFileSetName]
Parameters

[Owner.]ProcedureName specifies the owner and the name of the procedure. If an owner
name is not specified, the owner is the current user's DBEUserID or the
schema's authorization name, or the ISQL SET OWNER value. You can
specify the owner of the new procedure if you have DBA authority. If you
do not have DBA authority, you can specify as owner the name of any
group of which you are a member. Two procedures cannot have the same
owner and procedure name.

ProcLangName is the name of the default language used within the procedure for
parameters and local variables. This language may be either the language
of the DBEnvironment or n-computer. The default is the language of the
DBEnvironment.

ParameterDeclaration specifies the attributes of parameter data to be passed to or
from the procedure. The syntax of ParameterDeclaration is presented
separately below.

ResultDeclaration specifies the attributes of a result column in a multiple row result
set or sets returned from a procedure to an application or ISQL. The
syntax of ResultDeclaration is presented separately below.

ProcedureStatement Specifies a statement in the procedure body. The statement may
be any one of the following:

< Local variable declaration (see DECLARE Variable).

= Parameter or local variable assignment (see Assignment).

= Compound statement. A compound statement has the following syntax:
BEGIN|[Statement :][...] END;

= Control flow and status statements

Chapter 10 339

SQL Statements A-D
CREATE PROCEDURE

IF..THEN...ELSEIF...ELSE...ENDIF
WHILE...DO...ENDWHILE

Jump statement (GOTO, GO TO, or RETURN)

PRINT

Any SQL statement allowed in an application except the following:

ADVANCE

BEGIN DECLARE SECTION

BULK statements

CLOSE (when the USING clause is specified)
COMMIT WORK RELEASE

CONNECT

CREATE PROCEDURE (including inside CREATE SCHEMA)
DECLARE CURSOR (when declaring a cursor for an EXECUTE
PROCEDURE statement)

DESCRIBE

DISCONNECT

END DECLARE SECTION

EXECUTE

EXECUTE IMMEDIATE

EXECUTE PROCEDURE

GENPLAN

INCLUDE

OPEN CURSOR USING DESCRIPTOR
OPEN CURSOR USING HostVariableList
PREPARE

RELEASE

ROLLBACK WORK RELEASE

SET CONNECTION

SET DML ATOMICITY

SET MULTITRANSACTION

SET SESSION

SET TRANSACTION

SQLEXPLAIN

START DBE

STOP DBE

A ProcedureStatement ~ must be terminated by a semicolon.

DBEFileSetName

identifies the DBEFileSet in which ALLBASE/SQL is to store sections

associated with the procedure. If not specified, the SECTIONSPACE
DBEFileSet is used.

SQL Syntax—ParameterDeclaration

ParameterName ParameterType [LANG= ParameterLanguage |
[DEFAULT DefaultvValue][NOT NULY[OUTPUT ONLY]

340

Chapter 10

SQL Statements A-D
CREATE PROCEDURE

Parameters—ParameterDeclaration

ParameterName is the name assigned to a parameter in the procedure. No two
parameters in the procedure can be given the same name. You can define
no more than 1023 parameters in a procedure.

ParameterType indicates what type of data the parameter will contain. The
ParameterType cannot be a LONG data type. For a list of data types,
refer to the "Data Types" chapter.

ParameterLanguage specifies the language for the parameter. A LANG may only be
specified for a parameter with a character data type. This language may be
either the language of the procedure or n-computer. The default is the
language of the procedure.

DefaultValue specifies the default value for the parameter. The default can be a
constant, NULL, or a date/time current function. The data type of the
default value must be compatible with the data type of the column.

NOT NULL means that the parameter cannot contain null values. If NOT NULL is
specified, any statement that attempts to place a null value in the
parameter is rejected.

OUTPUT specifies that the parameter can be used for procedure output as well as
input (the default). If OUTPUT is not specified, the parameter can only be
used for input to the procedure.

If procedure output is required, OUTPUT must also be specified for any
corresponding parameter in the EXECUTE PROCEDUR#atement.

ONLY specifies that the parameter can be used for procedure output only. ONLY
should be used, when applicable, to avoid unnecessary initialization of
procedure parameters.

You must also specify OUTPUT for any corresponding parameter in the
EXECUTE PROCEDURfatement.

The DEFAULT option cannot be specified for OUTPUT ONLY parameters.

SQL Syntax—ResultDeclaration
ResultType [LANG= ResultLanguage][NOT NULY

Parameters—ResultDeclaration

ResultType indicates the data type of a result column in a query result for a query or
gueries in the procedure. The "Data Types" chapter describes the data
types available in ALLBASE/SQL.

ResultLanguage specifies the language of the result column. A LANG may only be
specified for a result column with a character data type. This language
may be either the language of the procedure or n-computer. The default is
the language of the procedure.

NOT NULL indicates that the result column cannot contain null values.

Chapter 10 341

SQL Statements A-D
CREATE PROCEDURE

Description

A procedure may be created through ISQL or through an application program.

= A procedure result set is the set of rows returned by a procedure SELECT, FETCH or
REFETCHstatement.

« A select cursor (one declared for a SELECTstatement) opened in an application
program (i.e, outside the procedure) cannot be accessed within the procedure. However,
a procedure can open and access its own select cursors.

= A procedure cursor (one declared for an EXECUTE PROCEDUREatement) must be
opened and accessed outside of the specified procedure, in an application program. An
application can open more than one procedure cursor.

< A procedure with multiple row result sets is a procedure containing one or more
SELECTstatements with no INTO clause. In order to retrieve one or more multiple row
result sets from a procedure, you must execute the procedure using a procedure cursor.
The application can then either process data from a result (by issuing the FETCH
statement within the application) or advance past the result set (by issuing the
ADVANCEYr the CLOSEstatement within the application).

If you execute a procedure without using a procedure cursor in the above case, a
warning is returned to the application, no result set data is returned, and any return
status and output parameters are returned as usual.

= Transaction statements (COMMIT WORK, ROLLBACK WORK, WHENEVER .. STOR
executed have the usual effect on non-KEEP cursors, i.e. such cursors are closed.

A procedure executing transaction statements can close a cursor defined on itself.
Therefore, transaction statements must be used with care in procedures containing
statements returning multiple row result sets.

= Procedures may reference the following set of built-in variables in non-SQL statements
only:

= :sqlcode

e :sqlerrd2

e :sglwarn0
= :sglwarnl
= :sglwarn2
= :sglwarn6
= activexact

The first six of these have the same meaning that they have as fields in the SQLCA in
application programs. Note that in procedures, sglerrd2 returns the number of rows
processed for all host languages. However, in application programs, sqlerrd(3) is used in
COBOL and Fortran, sqlerrd[3] is used in Pascal, and sqglerr[2] is used in C. ::activexact
indicates whether a transaction is in progress or not. For additional information, refer
to the application programming guides and to the chapter "Constraints, Procedures,
and Rules."

342 Chapter 10

SQL Statements A-D
CREATE PROCEDURE

Built-in variables cannot be referenced in any SQL statement. They may be referenced
in ASSIGNMENT, IF, WHILE, RETURN , and PRINT statements. Refer to the section
"Using Procedures” in the chapter "Constraints, Procedures, and Rules" for more
explanation of built-in variables.

Control flow and status statements, local variable declarations, parameter or local
variable assignments, and labeled statements are allowed only within procedures.

Each ProcedureStatement must be terminated with a semicolon.

A label may appear only at the start of a ProcedureStatement that is not a compound
statement, a local variable declaration, or a WHENEVERirective.

Host variables cannot be accessed within a procedure.
No more than 1024 result columns can be defined in a procedure result set.

Within a procedure, any SELECT, FETCH or REFETCHstatement with an INTO clause
specifying parameters and/or local variables returns at most a one row result.

A procedure with single format multiple row result sets is a procedure having
one or more multiple row result sets, whose result format is defined in the WITH
RESULT clause. Each SELECTstatement with no INTO clause must return rows of a
format compatible with this defined result format. When using the WITH RESULT
clause, all such result sets in the procedure must return the same number of columns.
The corresponding result columns of each result set must be compatible in data type,
language and nullability. The corresponding result columns of each result set must be
no longer than defined in the WITH RESULT clause. (For more information about data
type compatibility, refer to chapter 7, "Data Types.")

The WITH RESULT clause is used to describe the data format of a procedure's multiple
row result sets. Since, by definition, all single format multiple row result sets have the
same format, there is no distinction made between result sets. There is no need to issue
any ADVANCEtatement in the application. Use the WITH RESULT clause only when
you do not need to know the boundary between result sets.

ALLBASE/SQL attempts to verify compatibility of each result set format with the
format defined in the WITH RESULT clause at the time the procedure is created. In
addition, since verification is not always possible at procedure creation time (sections
may be created as invalid), compatibility is also verified at procedure execution time for
each procedure result set. If incompatibility is detected during procedure creation, the
create statement returns a warning. If incompatibility is detected during procedure
execution, the execution of the procedure result set statement fails with an error, and
no more data is returned (For an ADVANCBr CLOSE procedure execution continues with
the next statement).

An attempt to execute a CREATE PROCEDUR$atement containing a WITH RESULT
clause but no multiple row result set causes an error and the procedure is not created.

When a procedure with single format multiple row result sets is created using the
WITH RESULT clause, the format specified in this clause is stored in the system
catalog PROCRESULT table. This format information can be returned after defining a
cursor on a procedure (at procedure execution time) with a DESCRIBE RESULT
statement before (opening and fetching) from the cursor.

Chapter 10 343

SQL Statements A-D
CREATE PROCEDURE

= Indicator variables are not allowed or needed inside procedures. However, you can
include an indicator variable with a host variable in supplying a value to a parameter in
EXECUTE PROCEDURE, DECLARE CURSOR, OPEbF CLOSEstatements.

Indicator variables specified for output host variables in CLOSE, DECLARE CURSORor
EXECUTE PROCEDUREatements are set by ALLBASE/SQL.

= Syntactic errors are returned along with an indication of the location of the error inside
the CREATE PROCEDURstatement.

= Statements that support dynamic processing are not allowed within a procedure.

= Within a procedure, a single row SELECTstatement (one having an INTO clause) that
returns multiple rows will assign the first row to output host variables or procedure
parameters, and a warning is issued. In an application, this case would generate an
error.

= If the IN DBEFileSetName clause is specified, but the procedure owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead.

Authorization

You must have RESOURCE or DBA authority to create a procedure. If you do not have all
appropriate authorities on the objects referenced by the procedure when you create the
procedure, warnings are returned. If you do not have the appropriate authorities at
execution time, errors are returned but (except in a rule) the execution of the rest of the
procedure does not stop. The procedure owner becomes the owner of any object created by
the procedure with no owner explicitly specified. A user granted authority to execute a
procedure need not have any direct authority on the objects accessed by the procedure.

To specify a DBEFileSetName , the procedure owner must have SECTIONSPACE authority
on the referenced DBEFileSet.

Examples

1. DELETE

CREATE PROCEDURE ManufDB.RemoveBatchStamp (BatchStamp DATETIME NOT NULL)
AS
BEGIN

DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;

IF ::sqglcode < >0 THEN

PRINT 'Delete failed.’;

ENDIF,;

END;

344 Chapter 10

SQL Statements A-D
CREATE PROCEDURE

2. INSERT

CREATE PROCEDURE PurchDB.ReportMonitor (Name CHAR(20) NOT NULL,
Owner CHAR(20) NOT NULL, Type CHAR(10) NOT NULL)
AS
BEGIN
INSERT INTO PurchDB.ReportMonitor
VALUES (:Type, CURRENT_DATETIME,
USER, :Name, :Owner);
RETURN ::sglcode;
IN PurchFS;
END

3. SELECT (multiple row and single row)

CREATE PROCEDURE ReportOrder (OrderNumber INTEGER,
TotalPrice DECIMAL (10,2) OUTPUT) AS
BEGIN

Multiple row result set is returned to the application for processing using a procedure
cursor.

SELECT ItemNumber, OrderQty, PurchasePrice
FROM PurchDB.Orderltems
WHERE OrderNumber = :OrderNumber;

Single row result set value is returned to the application via an OUTPUT parameter.

SELECT SUM (OrderQty * PurchasePrice)
INTO :TotalPrice
FROM PurchDB.Orderltems
WHERE OrderNumber = :OrderNumber;
END;

Chapter 10 345

SQL Statements A-D
CREATE RULE

CREATE RULE
The CREATE RULEstatement defines a rule and associates it with specific kinds of data

manipulation on a particular table. The rule definition specifies the name of a procedure to
be executed when the rule fires.

Scope

ISQL or Application Programs

SQL Syntax
CREATE RULH Owner. | RuleName
AFTER StatementType |[,...] ON
OF
FROM

INTO } Owner.] TableName
[REFERENCING OLD AS OldCorrellationName
NEW AS NewCorrelationName }...]] [WHEREFiringCondition
EXECUTE PROCEDUREOwnerName] ProcedureName [(ParameterValue |,...])]
[IN DBEFileSetName]

Parameters

[Owner. JRuleName is the name of the new rule. Two rules cannot have the same owner
and rule names.

The rule owner must be the same as the owner of the table the rule is
defined upon. The default owner name is the owner name of the table it is
being defined on. The usual default owner rules do not apply here.

StatementType specifies which statements will cause the rule to fire for the given table.
StatementType must be one of the following:

= INSERT
UPDATE [(ColumnNamel,...])]
< DELETE

Each statement type can be listed in the CREATE RULEBtatement only once
for a given rule. If ColumnNames are specified for a StatementType of
UPDATEthey must exist in the table.

For UPDATEstatements in which more than one column is specified, any
one of the column names listed here may be used in the UPDATHor the rule
to affect the statement. When you issue the UPDATE it is not necessary to
specify all the ColumnNames in the CREATE RULBtatement. At most, 1023
column names may be specified in this column name list.

[Owner.] TableName designates the table on which the rule is to operate. Rules cannot be
created on views.

OldCorrelationName specifies the correlation name to be used within the

346 Chapter 10

SQL Statements A-D
CREATE RULE

FiringCondition and ParameterValue to refer to the old values of the
row (before it was changed by the DELETEor UPDATEStatement). The
default OldCorrelationName is OLD. If the StatementType is INSERT,
an OldCorrelationName will refer to the new values of the row, since no
old values are available.

NewCorrelationName specifies the correlation name to be used within the

FiringCondition

FiringCondition and ParameterValue to refer to the new values of the
row (after it was changed by the INSERT or UPDATEstatement). The
default NewCorrelationName is NEW. If the StatementType is DELETE,
a NewCorrelationName will refer to old values of the row, since no new
values are available.

specifies a search condition the current row must meet once the rule's
statement type has matched before the rule can fire on that row. Refer to
the "Search Conditions" chapter for possible predicates.

The search condition must evaluate to TRUE to invoke the specified
procedure. The search condition cannot contain any subqueries, aggregate
functions, host variables, local variables, procedure parameters, dynamic
parameters, or the TID function.

[Owner. 1Procedure Name specifies the procedure to invoke when a rule fires. The

ParameterValue

procedure must exist when the rule is created.

specifies a value for a parameter in the procedure. The parameter
values must correspond in sequential order to the parameters defined for
the procedure.

ParameterValue has the following syntax:

{ NULL
Expression '}

The Expression may include anything allowed within an SQL expression
except a subquery, aggregate function, host variable, TID function, local
variable, procedure parameter, dynamic parameter, or a long column
value. Refer to the "Expressions” chapter for the complete syntax of
expressions. In particular, column references are allowed within the
EXECUTE PROCEDURiause of the CREATE RULEstatement. Column
references may be of the form:

{ OldCorrelationName.ColumnName
NewCorrelationName.ColumnName
[[Owner.] TableName. | ColumnName}

DBEFileSetName specifies the DBEFileSet in which sections associated with the rule are

to be stored. If not specified, the default SECTIONSPACE DBEFileSet is
used. (Refer to syntax for the SET DEFAULT DBEFILESET statement.)

Chapter 10

347

SQL Statements A-D
CREATE RULE

Description

A rule may be created through ISQL or through an application program.

When a rule is created, information about the rule is stored in the system catalog, and
may be examined through the following system views: SYSTEM.RULE,
SYSTEM.RULECOLUMN, and SYSTEM.RULEDEF.

The FiringCondition and ParameterValue can reference both the unchanged and
the changed values of the row being considered for the firing of a rule. The unchanged
values are known as old values and are referred to by using the

OldCorrelationName. Changed values are known as new values and are referred to
by using the NewCorrelationName

For an INSERT, there is no old value to reference, so the use of OldCorrelationName
will be treated as if NewCorrelationName had been specified.

For a DELETE there is no new value to reference, so the use of NewCorrelationName
will be treated as if OldCorrelationName had been specified.

If no OldCorrelationName is defined, OLD is the default.
If no NewCorrelationName is defined, NEW is the default.
At most one OldCorrelationName and one NewCorrelationName can be specified.

Use of the TableName has the same effect as use of the NewCorrelationName if the
StatementType is INSERT or UPDATE Use of the TableName has the same effect as
use of the OldCorrelationName if the StatementType is DELETE

NewCorrelationName and OldCorrelationName must differ from each other. If
either is the same as the TableName , then the correlation name will be assumed to be
used wherever that name qualifies a column reference without an owner qualification
also being used. If the table is called OLD, reference it by using
OwnerNameOLD.ColumnName.

Rules can execute in a forward-chaining manner. This occurs when a fired rule invokes
a procedure which contains a statement that causes other rules to fire. The maximum
nesting of rule invocations is 20 levels.

If multiple rules are to be fired by a given statement, the order in which the rules fire
may change when the section is revalidated. You can use the SET PRINTRULES ON
statement to generate messages giving the names of rules as they fire.

If an error occurs during the execution of a rule or its invoked procedure, it will have its
normal effect, that is, a message may be generated, the execution of the statement may
be halted, the effects of the statement may be rolled back, or the connection may be lost.
Even if the error has not caused the transaction to roll back or the connection to be lost,
the statement issued by the user and all rules fired on behalf of that statement (or
chained to by such rules) are undone and have no effect on the database.

The procedure invoked by a rule cannot execute a COMMIT WORK, ROLLBACK WORK,
COMMIT/ROLLBACK ARCHIVEor SAVEPOINTstatement. If the procedure executes one
of these statements, an error occurs, and the effect of the statement that triggered the
procedure is undone.

348 Chapter 10

SQL Statements A-D
CREATE RULE

If a CurrentFunction is used within the FiringCondition or a ParameterValue
it will be evaluated at the time of the statement that fires the rule.

Any value returned by the procedure with a RETURNstatement is ignored by the rule
and not returned to the statement firing the rule.

An EXECUTE PROCEDUREall from within a rule is different from one issued as a
regular SQL statement. Within a rule, you cannot specify host variables, local variables,
procedure parameters, or dynamic parameters as parameter values, since host
variables are not accessible from the rule. Also, the key word OUTPUT cannot be
specified, since a procedure called from a rule cannot return any values. A rule does
permit the specification of columns within the procedure call, since in this context
column values are available to be passed to the procedure from the row the rule is firing
on.

The CREATE RULEstatement invalidates sections that contain dependencies upon the
table the rule is defined upon. This is to enable the rule to be included when those
sections are revalidated.

If a procedure specified in a CREATE RULEtatement returns multiple row result set(s),
a warning is issued when the rule is created. Note that no warning is issued when the
procedure is invoked by the rule.

If the IN DBEFileSetName clause is specified, but the rule owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DBEFILESET statement.)

Authorization

The CREATE RULEstatement requires you to have OWNER authority for the table and
OWNER or EXECUTE authority for the procedure, or to have DBA authority. Once the
rule is defined, users issuing statements which cause the rule to fire need not have
EXECUTE authority for the procedure.

To specify a DBEFileSetName for a rule, the rule owner must have SECTIONSPACE
authority on the referenced DBEFileSet.

Example

First, create a procedure to monitor operations on the Reports table:

CREATE PROCEDURE PurchDB.ReportMonitor (Name CHAR(20) NOT NULL,
Owner CHAR(20) NOT NULL, Type CHAR(10) NOT NULL) AS
BEGIN
INSERT INTO PurchDB.ReportMonitor
VALUES (:Type, CURRENT_DATETIME,
USER, :Name, :Owner);
RETURN ::sqglcode;
END
IN PurchDBFileSet;

Chapter 10 349

SQL Statements A-D
CREATE RULE

Next, create three rules that invoke the procedure with parameters:

CREATE RULE PurchDB.InsertR