
ALLBASE/SQL
Reference Manual

HP 3000 MPE/iX Computer Systems
Manufacturing Part Number: 36216-90216
E0300

U.S.A. March 2000

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1996 - 2000 by Hewlett-Packard Company
2

Contents
1. Introduction
ALLBASE/SQL Components . 42

Utility Programs . 43
ALLBASE/SQL Databases. 44

Logical Concepts . 44
Physical Concepts . 45

ALLBASE/SQL Data Access . 48
Using Queries . 49
ALLBASE/SQL Objects . 50
ALLBASE/SQL Users . 51
SQL Language Structure . 52
Using Comments within SQL Statements . 53
SQL Statement Categories . 54
Error Conditions in ALLBASE/SQL . 56

Severity of Errors . 56
Atomicity of Error Checking. 56
Additional Information about Errors . 57

Native Language Support . 57

2. Using ALLBASE/SQL
Creating DBEnvironments . 60

Specifying a Native Language Parameter . 60
Initial Privileges . 61

Starting and Terminating a DBE Session . 62
Sessions with Autostart . 62
Sessions without Autostart. 62
Terminating DBE Sessions. 62

Creating Physical Storage . 63
Defining How Data is Stored and Retrieved. 64

Creating a Table . 64
Specifying a DBEFileSet. 67
Specifying Native Language Tables and Columns . 67
Creating a View . 67
Creating Indexes . 68
Specifying Integrity Constraints . 68
Creating Procedures . 68
Creating Rules. 69

Understanding Data Access Paths . 70
Serial Access . 70
Indexed Access . 70
Hashed Access . 72
Differences between Hashed and Indexed Access. 74
When to Use a Hash Structure . 74
TID Access . 74

Controlling Database Access . 75
Authorities. 75
Obtaining Authorization. 75
DBA Authority. 76
Grants . 76
3

Contents
Grantable Privileges .76
Ownership. .77
Default Owner Rules .78
Ownership Privileges .78
Authorization Groups. .79
Classes .80
Differences between Groups and Classes .80

Manipulating Data .81
Inserting Data .81
Updating Data .82
Deleting Data .82

Managing Transactions. .83
Objectives of Transaction Management .83
Starting Transactions .85
Ending Transactions .85
Using SAVEPOINT .86
Scoping of Transaction and Session Attributes .87
Transaction Limits and Timeouts .89
Monitoring Transactions .90
Tips on Transaction Management. .90

Auditing DBEnvironments .91
Partitions in Audit DBEnvironments .91

Using Wrapper DBEnvironments. .92
Using SQLAudit .92
Application Programming .93

Preprocessor .93
Authorization .94
DBEnvironment Changes .94
Host Variables .94
Multiple-Row Manipulations .95

Using Multiple Connections and Transactions with Timeouts .95
Connecting to DBEnvironments .96
Setting the Current Connection .96
Setting Timeout Values .97
Setting the Transaction Mode .99
Disconnecting from DBEnvironments. .103

Administering a Database .105
Understanding the System Catalog .105

3. SQL Queries
Using the SELECT Statement .110
Simple Queries. .112
Complex Queries .116

UNION Queries .117
Using Character Constants with UNION. .119
Subqueries .120
Special Predicates .120
Quantified Predicate .120
IN Predicate .123
4

Contents
EXISTS Predicate . 124
Correlated Versus Noncorrelated Subqueries . 126
Outer Joins . 126

Using GENPLAN to Display the Access Plan . 134
Generating a Plan . 134
Displaying a Query Access Plan. 134
Interpreting a Display . 135

Updatability of Queries . 136

4. Constraints, Procedures, and Rules
Using Integrity Constraints. 137

Unique Constraints. 137
Referential Constraints . 138
Check Constraints. 139
Examples of Integrity Constraints. 141
Inserting Rows in Tables Having Constraints. 143
How Constraints are Enforced . 144

Using Procedures . 145
Understanding Procedures . 146
Creating Procedures . 146
Executing Procedures . 147
Procedures and Transaction Management . 147
Using SQL Statements in Procedures . 148
Queries inside Procedures . 151
Using a Procedure Cursor in ISQL . 153
Error Handling in Procedures Not Invoked by Rules . 154
Using RAISE ERROR in Procedures . 155
Recommended Coding Practices for Procedures . 156

Using Rules . 157
Understanding Rules . 158
Creating Rules. 158
Techniques for Using Procedures with Rules . 159
Error Handling in Procedures Invoked by Rules . 161
Using RAISE ERROR in Procedures Invoked by Rules . 161
Enabling and Disabling Rules . 163
Special Considerations for Procedures Invoked by Rules. 163
Differences between Rules and Integrity Constraints . 166

5. Concurrency Control through Locks and Isolation Levels
Defining Transactions . 168
Understanding ALLBASE/SQL Data Access . 169
Use of Locking by Transactions. 171

Basics of Locking. 171
Locks and Queries. 171
Costs of Locking . 172

Defining Isolation Levels between Transactions . 174
Repeatable Read (RR) . 174
Cursor Stability (CS). 174
5

Contents
Read Committed (RC) .175
Read Uncommitted (RU) .176

Details of Locking .177
Lock Granularities .177
Types of Locks. .179
Lock Compatibility .180
Weak Locks .181

What Determines Lock Types. .181
Type of SQL Statement .182
Locking Structure Implicit at CREATE TABLE Time. .182
Use of the LOCK TABLE Statement. .183
Choice of a Scan Type. .183
Choice of Isolation Level .184
Updatability of Cursors or Views .187
Use of Sorting .187

Scope and Duration of Locks. .188
Examples of Obtaining and Releasing Locks. .189

Simple Example of Concurrency Control through Locking .189
Sample Transactions Using Isolation Levels .191

Resolving Conflicts among Concurrent Transactions .194
Lock Waits. .194
Deadlocks .195
Table Type and Deadlock .195
Table Size and Deadlock .196
Avoiding Deadlock .197
Undetectable Deadlock. .198

 Monitoring Locking with SQLMON .199
MONITOR Authority .199
Monitoring Tasks .199

6. Names
Basic Names. .202
Native Language Object Names .203
DBEUserIDs .203
Owner Names .203
Authorization Names .204
Compound Identifiers .204
Host Variable Names. .205
Local Variable Names .205
Parameter Names .205
DBEnvironment and DBECon File Names .205
DBEFile and Log File Identifiers .206
TempSpace Names. .206
Special Names .206

7. Data Types
Type Specifications .208
Value Comparisons .211
6

Contents
Overflow and Truncation . 212
Underflow . 212
Type Conversion . 213
Null Values . 215
Decimal Operations . 216
Date/Time Operations . 217

Examples . 217
Use of Date/Time Data Types in Arithmetic Expressions . 218
Use of Date/Time Data Types in Predicates . 219
 . 220

Binary Operations . 220
Long Operations . 221

Defining LONG Column Data with CREATE TABLE or ALTER TABLE. 221
Defining Input and Output with the LONG Column I/O String . 222
Using INSERT with LONG Column Data. 222
Using SELECT with LONG Column Data . 224
Using UPDATE with LONG Column Data . 224

Native Language Data . 226

8. Expressions
Expression . 228

Scope . 228
SQL Syntax . 228
Parameters . 229
Description. 231
Example . 233

Add Months Function. 234
Scope . 234
SQL Syntax . 234
Parameters . 234
Description. 234
Example . 235

Aggregate Functions . 236
Scope . 236
SQL Syntax . 236
Parameters . 236
Description. 237
Example . 237

CAST Function . 238
Scope . 238
SQL Syntax . 238
Parameters . 238
Description. 238
Examples . 241

Constant . 243
Scope . 243
SQL Syntax . 243
Parameters . 243

Current Functions . 244
7

Contents
Scope .244
SQL Syntax. .244
Description .244
Examples. .244

Date/Time Functions .245
Scope .245
SQL Syntax—Conversion Functions. .245
Parameters—Conversion Functions .245
SQL Syntax—FormatSpecification .246
Parameters—FormatSpecification. .246
Description .247
Examples. .250

Long Column Functions .251
Scope .251
SQL Syntax. .251
Parameters .251
Description .251
Examples. .252

String Functions .253
Function Specification .253
Examples: .254
Scope .255
SQL Syntax. .255
Parameters .255
Description .256
Examples. .256

TID Function .258
Scope .258
SQL Syntax. .258
Parameters .258
Description .258
Example .260

9. Search Conditions
Search Condition .262

Scope .262
SQL Syntax. .262
Parameters .262
Description .263

BETWEEN Predicate .264
Scope .264
SQL Syntax. .264
Parameters .264
Description .264
Example .264

Comparison Predicate .265
Scope .265
SQL Syntax. .265
Parameters .265
8

Contents
Description. 265
Example . 266

EXISTS Predicate. 267
Scope . 267
SQL Syntax . 267
Parameters . 267
Description. 267
Example . 267

IN Predicate . 268
Scope . 268
SQL Syntax . 268
Parameters . 268
Description. 270
Example . 270

LIKE Predicate. 272
Scope . 272
SQL Syntax . 272
Parameters . 272
Description. 274
Example . 274

NULL Predicate . 275
Scope . 275
SQL Syntax . 275
Parameters . 275
Description. 277
Example . 277

Quantified Predicate . 278
Scope . 278
SQL Syntax . 278
Parameters . 278
Description. 280
Example . 281

10. SQL Statements A - D
SQL Statement Summary . 283
ADD DBEFILE. 293

Scope . 293
SQL Syntax . 293
Parameters . 293
Description. 293
Authorization. 293
Example . 293

ADD TO GROUP . 295
Scope . 295
SQL Syntax . 295
Parameters . 295
Description. 295
Authorization. 295
Example . 295
9

Contents
ADVANCE .297
Scope .297
SQL Syntax. .297
Parameters .297
Description .297
Authorization .298
Example .298

ALTER DBEFILE .299
Scope .299
SQL Syntax. .299
Parameters .299
Description .299
Authorization .299
Example .300

ALTER TABLE .301
Scope .301
SQL Syntax. .301
Parameters—ALTER TABLE .301
SQL Syntax—AddColumnSpecification .301
Parameters—AddColumnSpecification .301
SQL Syntax—AddConstraintSpecification .302
Parameters—AddConstraintSpecification .302
SQL Syntax—DropConstraintSpecification .302
Parameters—DropConstraintSpecification. .302
SQL Syntax—SetTypeSpecification .303
Parameters—SetTypeSpecification .303
SQL Syntax—SetPartitionSpecification .304
Parameters—SetPartitionSpecification .304
Description .304
Authorization .306
Examples. .306

Assignment (=). .307
Scope .307
SQL Syntax. .307
Parameters .307
Description .307
Authorization .307
Example .308

BEGIN .309
Scope .309
SQL Syntax. .309
Parameters .309
Description .309
Authorization .309
Example .309

BEGIN ARCHIVE .310
Scope .310
SQL Syntax. .310
Description .310
10

Contents
Authorization. 310
BEGIN DECLARE SECTION . 311

Scope . 311
SQL Syntax . 311
Description. 311
Authorization. 311
Example . 311

BEGIN WORK . 312
Scope . 312
SQL Syntax . 312
Parameters . 312
Description. 313
Authorization. 314
Examples . 314

CHECKPOINT . 316
Scope . 316
SQL Syntax . 316
Parameters . 316
Description. 316
Authorization. 317
Example . 317

CLOSE . 319
Scope . 319
SQL Syntax . 319
Parameters . 319
Description. 320
Authorization. 320
Examples . 320

COMMIT ARCHIVE . 322
Scope . 322
SQL Syntax . 322
Description. 322
Authorization. 322

COMMIT WORK . 323
Scope . 323
SQL Syntax . 323
Parameters . 323
Description. 323
Authorization. 323
Example . 324

CONNECT . 325
Scope . 325
SQL Syntax . 325
Parameters . 325
Description. 326
Authorization. 326
Example . 326

CREATE DBEFILE . 327
Scope . 327
11

Contents
SQL Syntax. .327
Parameters .327
Description .328
Authorization .329
Example .329

CREATE DBEFILESET .330
Scope .330
SQL Syntax. .330
Parameters .330
Description .330
Authorization .331
Example .331

CREATE GROUP .332
Scope .332
SQL Syntax. .332
Parameters .332
Description .332
Authorization .332
Example .333

CREATE INDEX .334
Scope .334
SQL Syntax. .334
Parameters .334
Description .335
Authorization .335
Example .336

CREATE PARTITION. .337
Scope .337
SQL Syntax. .337
Parameters .337
Description .337
Authorization .338
Example .338

CREATE PROCEDURE .339
Scope .339
SQL Syntax. .339
Parameters .339
SQL Syntax—ParameterDeclaration .340
Parameters—ParameterDeclaration. .341
SQL Syntax—ResultDeclaration. .341
Parameters—ResultDeclaration .341
Description .342
Authorization .344
Examples. .344

CREATE RULE .346
Scope .346
SQL Syntax. .346
Parameters .346
Description .348
12

Contents
Authorization. 349
Example . 349

CREATE SCHEMA . 351
Scope . 351
SQL Syntax . 351
Parameters . 351
Description. 352
Authorization. 352
Example . 352

CREATE TABLE . 354
Scope . 354
SQL Syntax—CREATE TABLE . 354
Parameters—CREATE TABLE . 354
SQL Syntax—Column Definition . 357
Parameters—Column Definition . 357
SQL Syntax—Unique Constraint (Table Level) . 358
Parameters—Unique Constraint (Table Level) . 358
SQL Syntax—Referential Constraint (Table Level) . 358
Parameters—Referential Constraint (Table Level). 359
SQL Syntax—Check Constraint (Table Level) . 359
Parameters—Check Constraint (Table Level) . 359
Description. 359
Authorization. 362
Examples . 362

CREATE TEMPSPACE . 365
Scope . 365
SQL Syntax . 365
Parameters . 365
Description. 365
Authorization. 366
Example . 366

CREATE VIEW . 367
Scope . 367
SQL Syntax . 367
Parameters . 367
Description. 368
Authorization. 369
Examples . 369

DECLARE CURSOR . 371
Scope . 371
SQL Syntax . 371
Parameters . 371
Description. 372
Authorization. 373
Examples . 374

DECLARE Variable . 376
Scope . 376
SQL Syntax . 376
Parameters . 376
13

Contents
Description .376
Authorization .377
Example .377

DELETE. .378
Scope .378
SQL Syntax. .378
Parameters .378
Description .378
Authorization .380
Example .380

DELETE WHERE CURRENT .381
Scope .381
SQL Syntax. .381
Parameters .381
Description .381
Authorization .382
Example .383

DESCRIBE. .384
Scope .384
SQL Syntax. .384
Parameters .384
Description .385
Authorization .386
Examples. .386

DISABLE AUDIT LOGGING .389
Scope .389
SQL Syntax. .389
Description .389
Authorization .389
Example .389

DISABLE RULES .390
Scope .390
SQL Syntax. .390
Description .390
Authorization .390
Example .390

DISCONNECT. .391
Scope .391
SQL Syntax. .391
Parameters .391
Description .391
Authorization .392
Example .392

DROP DBEFILE .393
Scope .393
SQL Syntax. .393
Parameters .393
Description .393
Authorization .393
14

Contents
Example . 393
DROP DBEFILESET . 395

Scope . 395
SQL Syntax . 395
Parameters . 395
Description. 395
Authorization. 395
Example . 395

DROP GROUP . 397
Scope . 397
SQL Syntax . 397
Parameters . 397
Description. 397
Authorization. 397
Example . 397

DROP INDEX . 399
Scope . 399
SQL Syntax . 399
Parameters . 399
Description. 399
Authorization. 399
Example . 400

DROP MODULE . 401
Scope . 401
SQL Syntax . 401
Parameters . 401
Description. 401
Authorization. 401
Examples . 402

DROP PARTITION . 403
Scope . 403
SQL Syntax . 403
Parameters . 403
Description. 403
Authorization. 403
Example . 403

DROP PROCEDURE . 404
Scope . 404
SQL Syntax . 404
Parameters . 404
Description. 404
Authorization. 404
Example . 404

DROP RULE. 405
Scope . 405
SQL Syntax . 405
Parameters . 405
Description. 405
Authorization. 405
15

Contents
Example .405
DROP TABLE .406

Scope .406
SQL Syntax. .406
Parameters .406
Description .406
Authorization .406
Example .406

DROP TEMPSPACE .408
Scope .408
SQL Syntax. .408
Parameters .408
Description .408
Authorization .408
Example .408

DROP VIEW .409
Scope .409
SQL Syntax. .409
Parameters .409
Description .409
Authorization .409
Example .409

11. SQL Statements E - R
ENABLE AUDIT LOGGING .411

Scope .411
SQL Syntax. .411
Description .411
Authorization .411
Example .411

ENABLE RULES. .413
Scope .413
SQL Syntax. .413
Description .413
Authorization .413
Example .413

END DECLARE SECTION. .414
Scope .414
SQL Syntax. .414
Description .414
Authorization .414
Example .414

EXECUTE .415
Scope .415
SQL Syntax. .415
Parameters .415
SQL Syntax — HostVariableSpecification .416
Parameters — HostVariableSpecification .416
Description .417
16

Contents
Authorization. 417
Examples . 418

EXECUTE IMMEDIATE . 420
Scope . 420
SQL Syntax . 420
Parameters . 420
Description. 420
Authorization. 420
Example . 420

EXECUTE PROCEDURE . 421
Scope . 421
Syntax . 421
Parameters . 421
SQL Syntax—ActualParameter . 421
Parameters—ParameterDeclaration . 421
Description. 422
Authorization. 423
Examples . 423

FETCH . 424
Scope . 424
SQL Syntax . 424
Parameters . 424
SQL Syntax — BULK HostVariableSpecification . 425
Parameters — BULK HostVariableSpecification . 425
SQL Syntax — non-BULK HostVariableSpecification . 425
Parameters — non-BULK HostVariableSpecification. 426
Description. 426
Authorization. 426
Examples . 427

GENPLAN . 429
Scope . 429
SQL Syntax . 429
Parameters . 429
Description. 429
Authorization. 433
Examples . 433

GOTO . 435
Scope . 435
SQL Syntax . 435
Parameters . 435
Description. 435
Authorization. 435
Example . 435

GRANT . 436
Scope . 436
SQL Syntax — Grant Table or View Authority. 436
Parameters — Grant Table or View Authority . 436
Authorization — Grant Table or View Authority . 437
SQL Syntax — Grant RUN or EXECUTE Authority . 437
17

Contents
Parameters — Grant RUN or EXECUTE Authority .438
Authorization — Grant RUN or EXECUTE Authority .438
SQL Syntax — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority .
438
Parameters — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority . .
438
Description — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority . .
439
Authorization — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
439
SQL Syntax — Grant DBEFileSet Authority .439
Parameters — Grant DBEFileSet Authority .439
Description .440
Authorization — Grant DBEFilesSet Authority .440
Examples. .440

IF .442
Scope .442
SQL Syntax. .442
Parameters .442
Description .442
Authorization .442
Example .443

INCLUDE .444
Scope .444
SQL Syntax. .444
Parameters .444
Description .444
Authorization .444
Example .444

INSERT .445
Scope .445
SQL Syntax - Insert Rows with Defined Values .445
Parameters - Insert Rows with Defined Values .445
SQL Syntax — SingleRowValues .446
Parameters — SingleRowValues .446
SQL Syntax — LongColumnIOString. .448
Parameters — LongColumnIOString .448
Description — LongColumnIOString .448
SQL Syntax — BulkValues .450
Parameters — BulkValues. .450
Description — Insert Rows with SingleRowValues and BulkValues 450
SQL Syntax — DynamicParameterValues .452
Parameters — DynamicParameterValues .452
Description — Insert Rows with DynamicParameterValues .452
Authorization — Insert Rows with SingleRowValues and Bulk Values453
SQL Syntax — INSERT Rows Defined by a SELECT Command (Type 2 Insert)453
Parameters — INSERT Rows Defined by a SELECT Command (Type 2 Insert) 453
Description — INSERT Rows Defined by a SELECT Command (Type 2 Insert).454
Authorization — INSERT Rows Defined by a SELECT Command (Type 2 Insert).455
18

Contents
Examples . 456
Labeled Statement . 458

Scope . 458
SQL Syntax . 458
Parameters . 458
Description. 458
Authorization. 458
Example . 458

LOCK TABLE. 460
Scope . 460
SQL Syntax . 460
Parameters . 460
Description. 460
Authorization. 461
Examples . 461

LOG COMMENT . 462
Scope . 462
SQL Syntax . 462
Parameters . 462
Description. 462
Authorization. 462
Example . 463

OPEN . 464
Scope . 464
SQL Syntax . 464
Parameters . 464
Description. 465

PREPARE . 466
Scope . 466
SQL Syntax . 466
Parameters . 466
Description. 468
Authorization. 468
Examples . 468

PRINT . 471
Scope . 471
SQL Syntax . 471
Parameters . 471
Description. 472
Authorization. 472
Examples . 472

RAISE ERROR . 474
Scope . 474
SQL Syntax . 474
Parameters . 474
Description. 475
Authorization. 475
Examples . 475

REFETCH. 476
19

Contents
Scope .476
SQL Syntax. .476
Parameters .476
Description .476
Authorization .477
Example .477

RELEASE. .479
Scope .479
SQL Syntax. .479
Description .479
Authorization .479
Example .479

REMOVE DBEFILE .480
Scope .480
SQL Syntax. .480
Parameters .480
Description .480
Authorization .480
Example .480

REMOVE FROM GROUP. .482
Scope .482
SQL Syntax. .482
Parameters .482
Description .482
Authorization .482
Example .483

RENAME COLUMN .484
Scope .484
SQL Syntax. .484
Parameters .484
Description .484
Authorization .484
Example .484

RENAME TABLE .485
Scope .485
SQL Syntax. .485
Parameters .485
Description .485
Authorization .485
Example .485

RESET .486
Scope .486
SQL Syntax. .486
Parameters .486
Description .486
Authorization .486
Example .486

RETURN .487
Scope .487
20

Contents
SQL Syntax . 487
Parameters . 487
Description. 487
Example . 487

REVOKE . 489
Scope . 489
SQL Syntax — Revoke Table or View Authority. 489
Parameters — Revoke Table or View Authority . 489
Description — Revoke Table or View Authority . 490
Authorization — Revoke Table or View Authority . 490
SQL Syntax — Revoke RUN or EXECUTE or Authority . 491
Parameters--Revoke RUN or EXECUTE Authority . 491
SQL Syntax — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
491
Parameters — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
491
Description — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
492
Authorization — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
492
SQL Syntax — Revoke DBEFileSet Authority . 492
Parameters — Revoke DBEFileSet Authority. 492
Description — Revoke DBEFileSet Authority. 492
Authorization — Revoke DBEFileSet Authority. 493
Examples . 493

ROLLBACK WORK . 495
Scope . 495
SQL Syntax . 495
Parameters . 495
Description. 495
Authorization. 496
Example . 496

12. SQL Statements S - Z
SAVEPOINT . 497

Scope . 497
SQL Syntax . 497
Parameters . 497
Description. 498
Authorization. 498
Example . 498

SELECT . 499
Scope . 499
SQL Syntax — Select Statement Level . 499
SQL Syntax — Subquery Level . 499
SQL Syntax — Query Expression Level . 499
SQL Syntax — Query Block Level . 499
SelectList . 499
HostVariableSpecification — With BULK Option. 499
21

Contents
HostVariableSpecification — Without BULK Option. .500
FromSpec .500
TableSpec .500
SQL Syntax — Select Statement Level. .500
Parameters — Select Statement Level .500
Description — Select Statement Level .501
SQL Syntax — Subquery Level .501
Parameters — Subquery Level .502
Description — Subquery Level .502
SQL Syntax — Query Expression Level .503
Parameters — Query Expression Level .503
Description — Query Expression Level .503
SQL Syntax — Query Block Level. .505
Parameters — Query Block Level .505
SQL Syntax — SelectList. .507
Parameters — SelectList .507
SQL Syntax — BULK HostVariableSpecification .508
Parameters — BULK HostVariableSpecification .508
SQL Syntax — non-BULK HostVariableSpecification .508
Parameters — non-BULK HostVariableSpecification .508
SQL Syntax — FromSpec .509
Parameters — FromSpec .509
Description — Query Block Level .511
Authorization .515
Examples. .515

SET CONNECTION .519
Scope .519
SQL Syntax. .519
Parameters .519
Description .519
Authorization .519
Example .520

SET CONSTRAINTS. .521
Scope .521
SQL Syntax. .521
Parameters .521
Description .521
Authorization .522
Example .522

SET DEFAULT DBEFILESET .524
Scope .524
SQL Syntax. .524
Parameters .524
Description .524
Authorization .525
Example .525

SET DML ATOMICITY. .526
Scope .526
SQL Syntax. .526
22

Contents
Parameters . 526
Description. 526
Authorization. 527
Example . 527

SET MULTITRANSACTION. 529
Scope . 529
SQL Syntax . 529
Parameters . 529
Description. 529
Authorization. 529
Example . 530

SETOPT . 531
Scope . 531
Syntax — SETOPT . 531
Syntax — Scan Access . 531
Syntax — Join Algorithm . 531
Parameters . 531
Description. 532
Authorization. 532
Examples . 532

SET PRINTRULES . 534
Scope . 534
SQL Syntax . 534
Parameters . 534
Description. 534
Authorization. 535
Example . 535

SET SESSION . 536
Scope . 536
SQL Syntax . 536
Parameters . 536
Description. 538
Authorization. 541
Example . 541

SET TRANSACTION . 542
Scope . 542
SQL Syntax . 542
Parameters . 542
Description. 544
Authorization. 546
Example . 547

SET USER TIMEOUT . 548
Scope . 548
SQL Syntax . 548
Parameters . 548
Description. 548
Authorization. 549
Example . 549

SQLEXPLAIN. 550
23

Contents
Scope .550
SQL Syntax. .550
Parameters .550
Description .550
Authorization .550
Example .551

START DBE. .552
Scope .552
SQL Syntax. .552
Parameters .552
Description .553
Authorization .554
Example .554

START DBE NEW. .555
Scope .555
SQL Syntax — START DBE NEW .555
Parameters — START DBE NEW. .555
SQL Syntax — DBEFile0Definition .559
Parameters — DBEFile0Definition .559
SQL Syntax — DBELogDefinition .560
Parameters — DBELogDefinition .560
Description .560
Authorization .562
Example .562

START DBE NEWLOG. .563
Scope .563
SQL Syntax — START DBE NEWLOG .563
Parameters — START DBE NEWLOG. .563
SQL Syntax — NewLogDefinition. .567
Parameters — NewLogDefinition .567
Description .567
Authorization .569
Example .569

STOP DBE .571
Scope .571
SQL Syntax. .571
Description .571
Authorization .571
Example .571

TERMINATE QUERY. .572
Scope .572
SQL Syntax. .572
Parameters .572
Description .572
Authorization .572
Example .572

TERMINATE TRANSACTION. .573
Scope .573
SQL Syntax. .573
24

Contents
Parameters . 573
Description. 573
Authorization. 573
Example . 573

TERMINATE USER. 574
Scope . 574
SQL Syntax . 574
Parameters . 574
Description. 574
Authorization. 574
Example . 575

TRANSFER OWNERSHIP . 576
Scope . 576
SQL Syntax . 576
Parameters . 576
Description. 576
Authorization. 576
Example . 577

TRUNCATE TABLE . 578
Scope . 578
SQL Syntax . 578
Parameters . 578
Description. 578
Authorization. 578
Example . 579

UPDATE . 580
Scope . 580
SQL Syntax . 580
Parameters . 580
Description. 580
SQL Syntax — LongColumnIOString . 582
Parameters — LongColumnIOString. 582
Description — LongColumnIOString. 583
Authorization. 584
Example . 584

UPDATE STATISTICS . 585
Scope . 585
SQL Syntax . 585
Parameters . 585
Description. 585
Authorization. 586
Example . 586

UPDATE WHERE CURRENT . 587
Scope . 587
SQL Syntax . 587
Parameters . 587
Description. 588
SQL Syntax — LongColumnIOString . 589
Parameters — LongColumnIOString. 589
25

Contents
Description — LongColumnIOString .590
Authorization .591
Example .591

VALIDATE .592
Scope .592
SQL Syntax. .592
Parameters .592
Description .592
Authorization .593
Examples. .594

WHENEVER .595
Scope .595
SQL Syntax. .595
Parameters .595
Description .595
Authorization .596
Example .596

WHILE .597
Scope .597
SQL Syntax. .597
Parameters .597
Description .597
Authorization .597
Example .597

A. SQL Syntax Summary
 .599

ADD DBEFILE. .599
ADD TO GROUP .599
ADVANCE. .599
ALTER DBEFILE. .599
ALTER TABLE .599
Assignment (=) .600
BEGIN. .600
BEGIN ARCHIVE .600
BEGIN DECLARE SECTION .600
BEGIN WORK .600
CHECKPOINT .601
CLOSE .601
COMMIT ARCHIVE .601
COMMIT WORK .601
CONNECT .601
CREATE DBEFILE .601
CREATE DBEFILESET .601
CREATE GROUP .601
CREATE INDEX .601
CREATE PARTITION .602
CREATE PROCEDURE. .602
CREATE RULE .602
26

Contents
CREATE SCHEMA. 602
CREATE TABLE. 603
CREATE TEMPSPACE . 603
CREATE VIEW . 604
DECLARE CURSOR. 604
DECLARE Variable. 604
DELETE . 604
DELETE WHERE CURRENT . 604
DESCRIBE . 604
DISABLE AUDIT LOGGING. 604
DISABLE RULES . 604
DISCONNECT . 605
DROP DBEFILE . 605
DROP DBEFILESET . 605
DROP GROUP. 605
DROP INDEX . 605
DROP MODULE . 605
DROP PARTITION . 605
DROP PROCEDURE . 605
DROP RULE . 605
DROP TABLE . 605
DROP TEMPSPACE . 605
DROP VIEW . 605
ENABLE AUDIT LOGGING . 606
ENABLE RULES . 606
END DECLARE SECTION . 606
EXECUTE . 606
EXECUTE IMMEDIATE . 606
EXECUTE PROCEDURE. 606
FETCH. 606
GENPLAN . 607
GOTO. 607
GRANT . 607
IF . 608
INCLUDE . 608
INSERT - 1 . 608
INSERT - 2 . 609
Labeled Statement . 609
LOCK TABLE . 609
LOG COMMENT. 609
OPEN. 609
PREPARE . 610
PRINT . 610
RAISE ERROR . 610
REFETCH . 610
RELEASE . 610
REMOVE DBEFILE . 610
REMOVE FROM GROUP . 610
RENAME COLUMN. 610
27

Contents
RENAME TABLE. .610
RESET .610
RETURN. .611
REVOKE .611
ROLLBACK WORK .611
SAVEPOINT .612
SELECT .612
SET CONNECTION. .613
SET CONSTRAINTS .613
SET DEFAULT DBEFILESET .613
SET DML ATOMICITY .613
SET MULTITRANSACTION. .613
SETOPT .613
SET PRINTRULES .614
SET SESSION .614
SET TRANSACTION .615
SET USER TIMEOUT .615
SQLEXPLAIN. .615
START DBE .616
START DBE NEW .616
START DBE NEWLOG .617
STOP DBE .617
TERMINATE QUERY .617
TERMINATE TRANSACTION .617
TERMINATE USER. .618
TRANSFER OWNERSHIP .618
TRUNCATE TABLE .618
UPDATE .618
UPDATE STATISTICS .618
UPDATE WHERE CURRENT .618
VALIDATE .619
WHENEVER .619
WHILE .619

B. ISQL Syntax Summary
 .621

CHANGE .621
DO .621
EDIT .621
END. .621
ERASE .621
EXIT .621
EXTRACT .621
HELP. .621
HOLD .622
INFO .622
INPUT. .622
INSTALL. .622
LIST FILE. .622
28

Contents
LIST HISTORY . 622
LIST INSTALL . 622
LIST SET. 622
LOAD . 622
RECALL. 623
REDO. 623
RENAME. 623
SELECTSTATEMENT . 623
SET . 623
SQLGEN . 624
SQLUTIL . 624
START . 624
STORE. 624
SYSTEM . 624
UNLOAD . 624

C. Sample DBEnvironment
Installing the Files for PartsDBE . 626
Setting Up PartsDBE. 627

Using SQLSetup . 627
Creating PartsDBE . 628
Using Setup . 628

Listings of ISQL Command Files . 629
STARTDBE Command File . 630
CREATABS Command File . 631
LOADTABS Command File . 635
CREAINDEX Command File. 638
CREASEC Command File . 639
Data in the Sample DBEnvironment . 645
ManufDB.SupplyBatches Table. 646
ManufDB.TestData Table . 647
PurchDB.Inventory Table . 648
PurchDB.OrderItems Table . 650
PurchDB.Orders Table . 653
PurchDB.Parts Table . 654
PurchDB.Reports Table . 655
PurchDB.SupplyPrice Table . 656
PurchDB.Vendors Table . 659
RecDB.Clubs Table . 661
RecDB.Events Table . 662
RecDB.Members Table . 663
Sample Program Files . 664

D. Standards Flagging Support
Introduction . 665
Non-standard Statements and Extensions . 666
Non-Standard Data Types . 675
Non-Standard Expression Extensions . 676
29

Contents
Non-Standard Syntax Rules .677
30

Figures
Figure 1-1. . Components of ALLBASE/SQL . 42

Figure 1-2. . How Tables, DBEFiles, and DBEFileSets Are Related 46

Figure 1-3. . Databases and DBEFileSets . 46

Figure 1-4. . Elements of an ALLBASE/SQL DBEnvironment . 47

Figure 3-1. . Range of Complex Query Types. 116

Figure 4-1. . Referential Constraints in a Set of Tables . 142

Figure 5-1. . Transactions over Time . 168

Figure 5-2. . Multiuser DBEnvironment . 169

Figure 5-3. . Page Versus Table Level Locking . 177

Figure 5-4. . Row Versus Page Level Locking . 178

Figure 5-5. . Locks at Different Granularities . 180

Figure 5-6. . Scope and Duration of Share Locks for Different Isolation Levels 188

Figure 5-7. . Lock Requests 1: Waiting for Exclusive Lock. 190

Figure 5-8. . Lock Requests 2: Waiting for Share Locks . 190

Figure 5-9. . Lock Requests 3: Share Locks Granted . 191

Figure 5-10. . Deadlock . 196

Figure 9-1. . Logical Operations on Predicates Containing NULL Values 263

Figure C-1. . SQLSetup Menu . 627
31

Figures
32

Tables
33

Tables
34

Preface
This manual contains basic information about ALLBASE/SQL as well as in-depth
information about ALLBASE/SQL data types and statements. The first three chapters are
for all readers, including new users of ALLBASE/SQL. The remaining chapters are for
experienced SQL users and SQL application programmers. The titles of the chapters are
as follows:

• Chapter 1 , “Introduction,” presents the components of ALLBASE/SQL and introduces
fundamental ALLBASE/SQL concepts and terms.

• Chapter 2 , “Using ALLBASE/SQL,” describes basic ALLBASE/SQL usage rules.

• Chapter 3 , “SQL Queries,” presents a full treatment of queries, including the use of
subqueries, UNION, and special predicates.

• Chapter 4 , “Constraints, Procedures, and Rules,” presents data objects which provide a
high degree of data consistency and integrity inside the DBEnvironment.

• Chapter 5 , “Concurrency Control through Locks and Isolation Levels,” describes ways
of managing concurrent database transactions.

• Chapter 6 , “Names,” presents general rules for names used in ALLBASE/SQL
statements.

• Chapter 7 , “Data Types,” details the data types available in ALLBASE/SQL.

• Chapter 8 , “Expressions,” describes ALLBASE/SQL expressions.

• Chapter 9 , “Search Conditions,” presents the basic syntax of ALLBASE/SQL
predicates.

• Chapter 10 , “SQL Statements A - D,” contains an alphabetical reference of all the SQL
statements and other elements of syntax.

• Chapter 11 , “SQL Statements E - R,” contains an alphabetical reference of all the SQL
statements and other elements of syntax.

• Chapter 12 , “SQL Statements S - Z,” contains an alphabetical reference of all the SQL
statements and other elements of syntax.

The appendixes contain additional reference information as follows:

• contains an alphabetical summary of all ALLBASE/SQL statements and other
elements of syntax.

• contains an alphabetical summary of all ALLBASE/ISQL commands.

• describes the sample DBEnvironment, PartsDBE, which is supplied with the product.
An explanation is provided of how to install, and set up a copy of PartsDBE for practice
use.

• contains information about ALLBASE/SQL FIPS 127.1 compliance.

Most of the examples in this manual are based on the tables, views, and other objects in
the sample DBEnvironment PartsDBE. For complete information about PartsDBE, refer
to appendix C.
35

ALLBASE Manuals
The following is a list of the documentation titles for this MPE release of ALLBASE.

• ALLBASE/ISQL Reference Manual

• ALLBASE/NET User's Guide

• ALLBASE/SQL Advanced Application Programming Guide

• ALLBASE/SQL C Application Programming Guide

• ALLBASE/SQL COBOL Application Programming Guide

• ALLBASE/SQL Database Administration Guide

• ALLBASE/SQL FORTRAN Application Programming Guide

• ALLBASE/SQL Message Manual

• ALLBASE/SQL Pascal Application Programming Guide

• ALLBASE/SQL Performance and Monitoring Guidelines

• ALLBASE/SQL Reference Manual

• HP PC API User's Guide for ALLBASE/SQL

• Up and Running with ALLBASE/SQL

• ODBCLINK/SE Reference Manual
36

New Features in G1, G2 and G3
The following table highlights the new or changed functionality added in G1, G2 and G3
releases, and shows you where each feature is documented.

Ver. Feature (Category) Description Documented in...

G3 String Functions
(Usability)

The supported SQL syntax has
been enhanced to include the
following string manipulation
functions: UPPER, LOWER,
POSITION, INSTR, TRIM,
LTRIM, AND RTRIM . These
string functions allow you to
manipulate or examine the CHAR
and VARCHAR values within the
SQL syntax, allowing for more
sophisticated queries and
manipulation commands to be
formed.

In future version of the
ALLBASE/SQL Reference
Manual.

G2 Allow or disallow
SQLMON for users.
(Usability)

Grants or revokes the ability to
run SQLMON for specific users.
New attribute for GRANT and
REVOKE: MONITOR.

ALLBASE/SQL Reference
Manual, GRANT, REVOKE in
“SQL Statements.”

G2 Allow or disallow
authority to create
modules.
(Usability)

Grants or revokes the ability to
create modules for specific users.
New attributes for GRANT and
REVOKE: INSTALL .

ALLBASE/SQL Reference
Manual, GRANT, REVOKE in
“SQL Statements.”

G2 PC ODBC 16-bit
and 32-bit support
(Connectivity,
Client/Server)

ODBCLINK/SE allows
connectivity to ALLBASE and
IMAGE/SQL servers from a PC
running MS Windows using
ODBC.

ODBCLINK/SE Reference
Manual

G2 Year 2000 solution
(Standards)

Provides the JCW
HPSQLSPLITCENTURY to use in
setting a value between 0 and
99. This value is used to change
the century part of the DATEand
DATETIME functions to override
the default of 19.

“Date/Time Functions” in the
“Expressions” chapter of the
ALLBASE/SQL Reference
Manual.

G1 New operand to
concatenate
strings
(Standards)

Adds an operand to concatenate
character or binary strings in an
expression. New operand: ||

ALLBASE/SQL Reference
Manual, “Expressions.”
37

G1 RENAMEColumn or
Table (Usability)

Adds capability of defining a new
name for an existing table or
column in a DBEnvironment.
You cannot rename a table or
column that has check
constraints or an IMAGE/SQL
table. New commands: RENAME
COLUMN, RENAME TABLE.

ALLBASE/SQL Reference
Manual, RENAME COLUMN and
RENAME TABLE in “SQL
Statements.”

G1 CAST function
added to
Expression syntax
(Usability)

Adds the CAST function to allow
explicitly converting from one
data type to another. It allows
conversion between compatible
data types and between
normally incompatible data
types such as CHAR and
INTEGER. New Expression
function: CastFunction.

ALLBASE/SQL Reference
Manual, “Cast” in
“Expressions.”

G1 Syntax added to
VALIDATE
(Usability,
Performance)

Automates execution of COMMIT
WORK after each module or
procedures is validated when
WITH AUTOCOMMIT is used. All
sections are revalidated whether
valid or invalid when FORCE is
used. This can reduce log space
and shared memory
requirements for the VALIDATE
statement. New syntax for
VALIDATE: FORCE, WITH
AUTOCOMMIT.

ALLBASE/SQL Reference
Manual, VALIDATE in “SQL
Statements.”

G1 Syntax added to
DELETE(Usability,
Performance)

Automates execution of COMMIT
WORK at the beginning of the
DELETE and after each batch of
rows is deleted when WITH
AUTOCOMMIT is used. Reduces
log-space and shared-memory
requirements. WITH
AUTOCOMMIT cannot be used in
some cases (see the DELETE
statement). New syntax for
DELETE: WITH AUTOCOMMIT.

ALLBASE/SQL Reference
Manual, DELETE in “SQL
Statements.”

G1 Decimal
operations
(Usability)

Increases maximum precision
from 18 to 27.

ALLBASE/SQL Reference
Manual, “Decimal Operations”
in “Data Types.”

Ver. Feature (Category) Description Documented in...
38

G1 Terminate a query
(Usability,
Performance)

Allows termination of a query for
a connection or transaction. New
statement: TERMINATE QUERY.
New syntax for SET SESSION,
SET TRANSACTION.

ALLBASE/SQL Reference
Manual, TERMINATE QUERY,
SET SESSION, SET
TRANSACTION in “SQL
Statements.”

G1 Terminate a
transaction
(Usability,
Performance)

Allows stopping of a given
transaction. New statement:
TERMINATE TRANSACTION. New
syntax for SET SESSION, SET
TRANSACTION.

ALLBASE/SQL Reference
Manual, TERMINATE
TRANSACTION, SET
SESSION, SET TRANSACTION
in “SQL Statements.”

G1 Timeout enhanced
to allow specifying
what is rolled back
or terminated
(Usability,
Performance)

Allows specifying the action
when a timeout expires. New
attributes for SET SESSIONand
SET TRANSACTION:
TERMINATION AT LEVEL,
USER TIMEOUT, ON TIMEOUT
ROLLBACK.

ALLBASE/SQL Reference
Manual, in “SQL Statements.”

G1 New SQLUtil
command
CHKPTHLPreduces
time for flushing
data
(Performance)

Flushes the data in parallel to
the CHECKPOINT command in
ISQL. New SQLUtil command:
CHKPTHLP.

ALLBASE/SQL Database
Administration Guide,
CHKPTHLP in “SQLUtil”

G1 Allow or disallow
SQLMON for users.
(Usability)

Grants or revokes the ability to
run SQLMON for specific users.
New attribute for GRANT and
REVOKE: MONITOR.

ALLBASE/SQL Reference
Manual, GRANT, REVOKE in
“SQL Statements.”

G1 Allow or disallow
authority to create
modules.
(Usability)

Grants or revokes the ability to
create modules for specific users.
New attributes for GRANT and
REVOKE: INSTALL .

ALLBASE/SQL Reference
Manual, GRANT, REVOKE in
“SQL Statements.”

G1 Script for
migration to a new
release (Usability,
Tools)

Provides SQLLINSTL script for
migration to a new release of
ALLBASE/SQL. Read the
SQLINSTL file on your system
for more information.

SQLINSTL file; Communicator
3000 MPE/iX Release 5.5
(Non-Platform Software
Release C.55.00),
“ALLBASE/SQL
Enhancements”;
ALLBASE/SQL Database
Administration Guide in
‘SQLINSTL” section of the
“DBA Tasks and Tools”
chapter.

G1 GENPLAN on a
section (Usability)

Obtains an access plan of a
stored static query by specifying
the module and section number.
Changed syntax: GENPLAN.

ALLBASE/SQL Reference
Manual, GENPLAN in “SQL
Statements.”

Ver. Feature (Category) Description Documented in...
39

G1 POSIX support
(Tools)

Starting with G1, the
ALLBASE/SQL preprocessor
(PSQLCOB) supports
preprocessing and generation of
Microfocus COBOL source code
under POSIX (Portable
Operating system Interface).

Communicator 3000 MPE/iX
Release 5.5 (Non-Platform
Software Release (C.55.00),
“ALLBASE/SQL
Enhancements.”

G1 Terminate a user’s
connections
(Connectivity)

Terminates one or more
connections for a user. New
syntax for TERMINATE USER:
CID ConnectionID.

ALLBASE/SQL Reference
Manual, TERMINATE USER in
“SQL Statements.”

Run Queue
Control for
ALLBASE/NET
(Connectivity)

Allows running HPDADVR in D
queue for an MPE/iX session or
HP-UX connection or C queue for
an MPE/iX job connection. New
environment variable:
HPSQLJOBTYPE.

Communicator 3000 MPE/iX
Release 5.5 (Non-Platform
Software Release
C.55.00),”ALLBASE/SQL
Enhancements.”

PC ODBC 16-bit
and 32-bit support
(Connectivity,
Client/Server)

ODBCLINK/SE allows
connectivity to ALLBASE and
IMAGE/SQL servers from a PC
running MS Windows using
ODBC.

ODBCLINK/SE Reference
Manual

Year 2000 solution
(Standards)

Provides the JCW
HPSQLSPLITCENTURY to use in
setting a value between 0 and
99. This value is used to change
the century part of the DATEand
DATETIME functions to override
the default of 19.

“Date/Time Functions” in the
“Expressions” chapter of the
ALLBASE/SQL Reference
Manual.

Ver. Feature (Category) Description Documented in...
40

Introduction
1 Introduction

This manual describes ALLBASE/SQL, which you use to create, maintain, and access
relational database environments. SQL stands for Structured Query Language, a
language for accessing a relational database.

In order to define terms and provide an overview of the subject, this chapter includes the
following sections:

• ALLBASE/SQL Components

• ALLBASE/SQL Databases

• ALLBASE/SQL Data Access

• Using Queries

• ALLBASE/SQL Objects

• ALLBASE/SQL Users

• Using Comments within SQL Statements

• SQL Language Structure

• SQL Statement Categories

• Error Conditions in ALLBASE/SQL

• Native Language Support
Chapter 1 41

Introduction
ALLBASE/SQL Components
ALLBASE/SQL Components
ALLBASE/SQL consists of several distinct components, which are shown in Figure 1-1..

Figure 1-1. Components of ALLBASE/SQL

To access data with ALLBASE/SQL, you use ALLBASE/SQL statements, which conform to
industry standards for SQL statements for relational databases.

You can submit SQL statements interactively or in application programs as described
here:

• Interactively, you use ISQL (Interactive SQL) to key in statements at a terminal. ISQL
is the interactive interface to ALLBASE/SQL.

• Programmatically, you embed statements in a C, COBOL, FORTRAN, or Pascal
application program. Then, before compiling the program, you use an ALLBASE/SQL
preprocessor to prepare the program for run-time database access. The preprocessor
converts an embedded SQL program into a source file for input to a C, COBOL,
FORTRAN, or Pascal compiler.

As SQL statements come from ISQL or from the preprocessors, they are passed along to
the two following subsystems:

• Query Processor checks the syntax of each statement, verifies that the user has the
appropriate authorization for it, and processes queries.

• Storage Manager performs physical file management, and transaction and logging
tasks. The Storage Manager is also referred to as DBCore.
42 Chapter 1

Introduction
ALLBASE/SQL Components
Utility Programs

In addition, these utility programs help you perform the necessary maintenance tasks:

• SQLUtil assists with file maintenance, backup, and recovery.

• SQLGEN generates statements for re-creating a given DBEnvironment.

• SQLMigrate lets you move DBEnvironments between releases of ALLBASE/SQL.

• SQLCheck checks the integrity of a DBEnvironment.

• SQLMON helps you monitor DBEnvironment performance.

• SQLVer checks the version strings of the ALLBASE/SQL files.

• SQLAudit organizes audit log records for analysis of operations such as UPDATE,
INSERT, or DELETE, perhaps for security reasons.

The utility programs listed that are not included in Figure 1-1 all interact with the Storage
Manager (DBCore).

ISQL is described in the ALLBASE/ISQL Reference Manual. The preprocessors are
documented in separate ALLBASE/SQL application programming guides for each
language and the release specific ALLBASE/SQL Advanced Application Programming
Guide.

SQLUtil, SQLGEN, SQLMigrate, SQLCheck, SQLVer, and SQLAudit are documented in
the ALLBASE/SQL Database Administration Guide. SQLMON is documented in the
ALLBASE/SQL Performance and Monitoring Guidelines. The rest of this manual
describes SQL, pointing out differences between interactive and programmatic usage
when they exist. Most of the SQL statements can be executed through either interface.
Chapter 1 43

Introduction
ALLBASE/SQL Databases
ALLBASE/SQL Databases
The largest unit in ALLBASE/SQL is the DBEnvironment, which can be seen logically as
a collection of database objects or physically as a group of files. Objects are database
structures.

Logical Concepts

Logically, the DBEnvironment is a structure which contains one or more relational
databases. In ALLBASE/SQL, a database is a set of tables, views, and other objects that
have the same owner.

The data in a relational database is organized in tables. A table is a two-dimensional
structure of columns and rows:

 The Parts Table
 ----------------+------------------------------+----------
 PARTNUMBER |PARTNAME |SALESPRICE
 ----------------+------------------------------+---------- _
 1123-P-01 |Central Processor | 500.00 |
 1133-P-01 |Communication Processor | 200.00 |- rows
 1143-P-01 |Video Processor | 180.00 _|
 | | |
 +-----------------------+-----------------------+
 |
 columns

Often a table is referred to as a relation, and a row as a tuple. You can also think of a row
as a record, and a column as a field in a file, or table.

A view is a table derived by placing a “window” over one or more tables to let users or
programs view only certain data. A view derived from the Parts table shown above might
look like this:

 The PartsID View
 ----------------+------------------------------
 PARTNUMBER |PARTNAME
 ----------------+------------------------------
 1123-P-01 |Central Processor
 1133-P-01 |Communication Processor
 1143-P-01 |Video Processor

The owner of a table or view can be one of the three following entities:

1. Individual as identified by the DBEUserID, which is the login name. An individual
who logs in as WOLFGANG.ACCOUNTNAME is known to ALLBASE/SQL as
WOLFGANG@ACCOUNTNAME.

2. Authorization group, a named collection of individuals or other groups. Wolfgang
might be part of a group named Managers . A group must be created explicitly by using
the CREATE GROUP statement.

3. Class, a name that identifies a user-defined abstraction, such as a department or a
function. Wolfgang might use tables owned by a class called Marketing . A class is
44 Chapter 1

Introduction
ALLBASE/SQL Databases
created implicitly when you create objects that have a class name as owner name.

Refer to Chapter 2 , “Using ALLBASE/SQL,” in this manual and to the chapter “Logical
Design” in the ALLBASE/SQL Database Administration Guide for additional information
about authorization groups and classes.

To use data in a database, you need to specify the names of the tables and views you need.
You must also specify the owner name associated with the table or view unless you own it
(or you have used the ISQL SET OWNER command). When accessing the Composers table,
Wolfgang needs to specify only Composers. However, when accessing the quotas table, he
needs to specify Marketing.Quotas because Marketing owns the Quotas table.

You also need the proper authority to access data. An authority is a privilege given to a
user to perform a specific database operation, such as accessing certain tables and views
and creating groups or tables. ALLBASE/SQL uses authorities to safeguard databases
from access by unauthorized users. In the example above, before Wolfgang can access the
Quotas table, he must be granted the authority to do so by the owner of the table.

If you have been granted the proper authorization, you access databases by first
connecting to the DBEnvironment in which they reside:

 CONNECT TO ' DBEnvironmentName '

Physical Concepts

Physically, the DBEnvironment is a collection of files for one or more logical databases.

A DBEFile is an MPE XL file. Most files in a DBEnvironment are DBEFiles. Data in the
tables of logical databases is stored in one or more DBEFiles. Indexes are also stored in
DBEFiles; an index is a structure that ALLBASE/SQL can use to quickly find data in a
table.

A DBEFileSet is a collection of DBEFiles. You associate physical storage with a
DBEFileSet by adding DBEFiles to the DBEFileSet. Each DBEFileSet can have more than
one DBEFile, but a single DBEFile cannot contain data for more than one DBEFileSet.

When you create a table, you can specify the DBEFileSet with which the table and its
indexes will be associated. This causes physical storage space for the table and indexes to
be allocated from the DBEFiles associated with the specified DBEFileSet. Figure 1-2.
illustrates the relationships among tables, DBEFiles, and DBEFileSets.
Chapter 1 45

Introduction
ALLBASE/SQL Databases
Figure 1-2. How Tables, DBEFiles, and DBEFileSets Are Related

A DBEFileSet specifies the files that contain data for one or more tables associated with
the DBEFileSet. These tables do not have to be in the same database. Figure 1-3.
illustrates that, while a DBEFileSet can contain data for all the tables in a database, a
DBEFileSet can also contain data for some of the tables in a database, or for tables in more
than one database. Thus DBEFileSets offer a way to allocate data storage independently of
how users think about the data.

Figure 1-3. Databases and DBEFileSets
46 Chapter 1

Introduction
ALLBASE/SQL Databases
A DBEnvironment, illustrated in Figure 1-4., houses the DBEFiles for one or more
ALLBASE/SQL databases, plus the following, which contain information for all databases
in the DBEnvironment:

• A DBECon file. This file contains information about the DBEnvironment
configuration, such as the size of various buffers and other startup parameters. The
name of the DBECon file is the same as the name of the DBEnvironment.

• A system catalog. The system catalog is a collection of tables and views that contain
data describing DBEnvironment structure and activity. The parts of the system catalog
necessary for DBEnvironment startup reside in a DBEFile known by default as
DBEFile0. All system catalog DBEFiles are associated with a DBEFileSet called
SYSTEM.

• One or two log files. A log file contains a log of DBEnvironment changes.
ALLBASE/SQL uses log files to undo (roll back) or redo (roll forward) changes made
in the DBEnvironment. The log files are known by default as DBELog1 and
DBELog2.

Figure 1-4. Elements of an ALLBASE/SQL DBEnvironment

Most database users need not be concerned with the physical aspects of ALLBASE/SQL
databases beyond knowing which DBEnvironment contains the databases they want to
access.
Chapter 1 47

Introduction
ALLBASE/SQL Data Access
ALLBASE/SQL Data Access
The DBEnvironment determines both what data can be accessed in a transaction and
what data can be recovered. Following a failure, a transaction can be recovered, or all data
can be recovered, as follows:

• A transaction is one or more SQL statements that together perform a unit of work on
one or more databases in a DBEnvironment. Work done within a transaction can be
made permanent (committed) or undone (rolled back).

• After a system or hardware failure, all data within a DBEnvironment is recovered to a
consistent state. Changes performed by any transactions incomplete at failure time are
rolled back. Changes performed by transactions completed before failure time are made
permanent.

You can have more than one DBEnvironment on your system. When you connect to a
DBEnvironment, ALLBASE/SQL establishes a DBE session for you. The query processor
can process statements only when you are in a DBE session. You can access any
DBEnvironment in either of the two following modes:

• Single-user mode—only one user or program can use a DBEnvironment.

• Multiuser mode—more than one user and/or program can use a DBEnvironment at
the same time.
48 Chapter 1

Introduction
Using Queries
Using Queries
After connecting to a DBEnvironment, you use queries to retrieve data from database
tables. A query is a statement in which you describe the data you want to retrieve. In
ALLBASE/SQL, a query is performed by using the SELECT statement. For example:

 SELECT PartName, SalesPrice
 FROM PurchDB.Parts
 WHERE PartNumber = '1123-P-01'
 OR PartNumber = '1133-P-01'

The result of a query is called a query result. In the case of the query above, which
retrieves the name and selling price of two parts from the table named PurchDB.Parts, the
result is a table made up of two columns and two rows:

 PARTNAME |SALESPRICE
 ------------------------------+----------
 Central Processor | 500.00
 Communication Processor | 200.00

A detailed presentation of queries and other forms of data manipulation appears in the
“SQL Queries” chapter.
Chapter 1 49

Introduction
ALLBASE/SQL Objects
ALLBASE/SQL Objects
The following structures play a significant role in the use of an ALLBASE/SQL database
and are known as database objects:

• Tables

• Views

• Columns (in tables and views)

• Authorization groups

• Indexes (on tables)

• Hash structures (for tables)

• Constraints

• Rules (on tables)

• Procedures

• DBEFiles

• DBEFileSets

• TempSpaces

• Modules

Many of the SQL statements let you create and then create and manipulate objects as
described below:

• Data in tables and views

• Columns within tables and views

• Grant authorities to authorization groups

• Indexes for specific tables

• Hash structures for specific tables

• Constraints on specific tables, views, or columns

• Rules on specific tables

• Procedures containing SQL and control flow statements

• DBEFiles and associate them with DBEFileSets

• TempSpaces that are used for sorting

• Modules when you preprocess an application program containing SQL statements
50 Chapter 1

Introduction
ALLBASE/SQL Users
ALLBASE/SQL Users
ALLBASE/SQL users fall into the three categories as described here. One person may do
all the tasks within these categories.

• Application programmers. These users write application programs that access
ALLBASE/SQL databases. They embed SQL statements in source code to manipulate
data. Programmers then use the preprocessor that supports their programming
language. The preprocessor prepares the application program for compilation and
stores database access information in a module in the DBEnvironment; the stored
module contains optimized data access paths that are used at run time. Once the
program is compiled, authorized users can execute it.

Application programmers also use ISQL throughout program development.
DBEnvironments for testing and running applications can be created via ISQL. You can
determine the effect of many SQL statements by using ISQL.

• Database administrators. These individuals, referred to as DBAs, are responsible for
the creation and maintenance of ALLBASE/SQL DBEnvironments. They use SQL
statements, usually via ISQL, to perform the following tasks:

— Define DBEnvironments, grant and revoke authorities, add and drop DBEFiles,
alter tables, define indexes, and define views using SQL, ISQL, or preprocessed
programs.

— Alter the configuration of a DBEnvironment, move or purge DBEFiles, and back up
DBEnvironments using SQLUtil .

— Access information in the system catalog to monitor DBEnvironment usage and help
ensure efficient access to data.

— Re-create all or part of a DBEnvironment on a different system by using SQLGEN.

• End users. These users run application programs that access ALLBASE/SQL
databases. They do not need to be aware of the components of ALLBASE/SQL in many
cases. These users may occasionally use ISQL to issue simple SQL statements that
retrieve or change data. Relational databases are particularly well-suited for data
access of this nature, because you can access data without specifying specific access
paths. End users only need to know table and column names.
Chapter 1 51

Introduction
SQL Language Structure
SQL Language Structure
SQL statements begin with a verb and can include clauses or names. For example:

 SELECT PartNumber FROM PurchDB.Parts
 | | | | | |
 | | | owner | |
 | | | name | |
 | | | | |
 statement | | table |
 verb | | name |
 | | |
 column +----------------+
 name |
 |
 FROM
 clause

Statements always contain a verb, one or more words that describe the action of the
statement. A statement can also contain one or more clauses. A clause is a group of names
and keywords describing what the verb should operate on. A verb can operate on a named
object, such as a table or a column. Some statements can contain expressions or search
conditions. Expressions specify a value. Search conditions screen data against specific
criteria:

 SELECT * FROM PurchDB.Parts WHERE SalesPrice > 200.00
 | | | | |
 all | | expression |
 columns | | |
 | +-----------------+
 | | |
 | search condition |
 | |
 +-----------------------+
 |
 WHERE
 clause

The syntax of SQL is fully described in chapters 7-12 of this manual.
52 Chapter 1

Introduction
Using Comments within SQL Statements
Using Comments within SQL Statements
You can initiate comments within any SQL statement or ISQL prompt either by prefixing
each line of the comment with two hyphens or with the combination of slashes and
asterisks at the beginning and end of the comments:

 SELECT *
 FROM PurchDB.SupplyPrice
 WHERE PartNumber = '1723-AD-01'
 AND DeliveryDays < 30

 --This statement selects values from the SupplyPrice table based on
 --part number and delivery days.

 SELECT *
 FROM PurchDB.SupplyPrice
 WHERE PartNumber = '1723-AD-01'
 AND DeliveryDays < 30

 /*This statement selects values from the SupplyPrice table based on*/
 /*part number and delivery days.*/
Chapter 1 53

Introduction
SQL Statement Categories
SQL Statement Categories
Writing queries is the basis of data manipulation in ALLBASE/SQL. All users employ the
SELECT statement for this purpose. SQL has several other general-purpose statements,
and also has statements specifically for use by application programmers or database
administrators. The SQL statements are functionally summarized inTable 1-1. For the
commands in each category, refer to Table 10-1., “SQL Statement Summary.”

Table 1-1. SQL Statement Categories

Group Category Purpose

General-purpose
statements

DBEnvironment
session management

Statements for obtaining and terminating
database access.

Data definition Statements for defining tables, views, indexes,
DBEFiles, DBEFileSets, TempSpace, and other
SQL objects.

Data manipulation Statements for selecting, inserting, and
changing rows.

Transaction
management

Statements for committing or rolling back work
done within a single transaction. A transaction
is a unit of work and may consist of one or
multiple SQL statements.

Concurrency Statements for managing data contention in
multiuser mode.

Module Maintenance Statements for managing modules and
procedures.

Application
programming
statements

Single row data
manipulation

Statements for manipulating a single row with
each statement execution.

Bulk data
manipulation

Statements for manipulating multiple rows
with a single statement execution.

Cursor management Statements for manipulating individual rows
in a set of rows that satisfy a SELECT
statement.

Preprocessor directives Statements for declarations in application
programming.

Dynamically
preprocessed queries

Statements for handling statements
preprocessed at run time.

Status messages A statement for retrieving an ALLBASE/SQL
message describing the status of an SQL
statement execution.
54 Chapter 1

Introduction
SQL Statement Categories
If you are embedding SQL statements in an application program, refer to the
ALLBASE/SQL application programming guide for the language you are using. Bulk data
manipulation is not available for FORTRAN. COBOL and FORTRAN do not provide the
full set of dynamic preprocessing statements.

Database
administration
statements

Authorization Statements for controlling DBEnvironment
access.

DBEnvironment
configuration and use

Statements for controlling DBEnvironments.

Space management Statements for managing DBEFiles used for
tables and indexes; statements for managing
temporary space for sorting.

Logging Statements for managing log files.

DBEnvironment
statistics management

Statements related to the system catalog.

Procedure control flow
statements

Statements used only inside procedures.

Procedure
statements

General and Control
Flow Statements

Statements used only inside procedures.

Table 1-1. SQL Statement Categories

Group Category Purpose
Chapter 1 55

Introduction
Error Conditions in ALLBASE/SQL
Error Conditions in ALLBASE/SQL
When you issue an SQL statement, error messages are returned if the statement cannot be
carried out as intended. In an interactive session with ISQL, the messages are displayed
on your terminal. In application programs, you access the message buffer directly by using
the SQLEXPLAINstatement. The effect of an error on your session depends on three factors:

• Severity of the error

• Atomicity level set within the transaction

• Constraint checking mode set within the transaction

Severity of Errors

In general, errors result in partially or completely undoing the effects of an SQL
statement. If the error is very severe, the transaction is rolled back. When a transaction is
rolled back, ALLBASE/SQL displays a message like the following along with other
messages:

 Your current transaction was rolled back by DBCore. (DBERR 14029)

If an error is less severe, the statement is undone, but the transaction is allowed to
continue.

Atomicity of Error Checking

By default, error checking is done at the statement level. In other words, the entire
statement either succeeds or fails. This means that for set operations, the statement
succeeds for all members of the set or fails for all members of the set. For example, if there
is an error on the fifteenth row of a twenty-row BULK INSERT statement, the entire
statement has no effect, and no rows are inserted. Or if an UPDATE statement that affects
twenty rows creates a uniqueness violation for one row, the statement will fail for all rows.
This approach guarantees data integrity for the entire statement. Under special
circumstances, you can choose a different atomicity level for error checking:

• Row level

• Beyond the statement level

Setting the Atomicity to the Row Level

Sometimes statement level atomicity has drawbacks which you can correct. For example,
data manipulation statements involving large amounts of data require considerable
overhead for logging when issued at statement level, and this can impair performance. For
better performance, you can set atomicity to row level. With row level atomicity, if an error
occurs on one row, earlier rows are not undone. For example, for an error on the fifteenth
row of a twenty-row BULK INSERT, statement execution stops at the fifteenth row, but the
first fourteen rows will be processed unless you use the ROLLBACK WORKstatement. To use
row level error checking, issue the following statement:

 SET DML ATOMICITY AT ROW LEVEL
56 Chapter 1

Introduction
Native Language Support
Only DML statements can be checked for errors at the row level of atomicity. Refer to the
SET DML ATOMICITY statement in Chapter 12 , “SQL Statements S - Z,” for complete
details.

Deferring Error Checking beyond the Statement Level

Sometimes statement level atomicity is too narrow for your needs. For operations involving
more than one table, it may be useful to defer error checking until all tables are updated.
For example, if you are loading two tables that have a referential relationship that is
circular--that is, each table references a primary key element in the other table--then you
must defer constraint error checking until both tables are loaded; otherwise any attempt to
load a row would result in a constraint error. To defer referential constraint error checking
beyond the statement level, issue the following statement:

 SET REFERENTIAL CONSTRAINTS DEFERRED

After the loading of both tables is complete, issue the following statement:

 SET REFERENTIAL CONSTRAINTS IMMEDIATE

This turns on constraint error checking and reports any constraint errors that now exist
between the two tables. Only integrity constraint error checking can be deferred beyond
the statement level. For complete details, refer to the SET CONSTRAINTS statement
Chapter 12 , “SQL Statements S - Z.”

Additional Information about Errors

Refer to the “Introduction” to the ALLBASE/SQL Message Manual for a general description
of error handling. For the coding of error handling routines in application programs, refer
to the chapter “Using Data Integrity Features” in the ALLBASE/SQL Advanced
Application Programming Guide and the “Runtime Status Checking and the SQLCA”
chapter in the application programming guide for the language of your choice. For error
handling in procedures, refer to Chapter 4 , “Constraints, Procedures, and Rules.” For row
level error checking, see the SET DML ATOMICITY statement, and for deferred constraint
checking, see the SET CONSTRAINTS statement, both in Chapter 12 , “SQL Statements S -
Z.”

Native Language Support
ALLBASE/SQL lets you manipulate databases in a wide variety of native languages in
addition to the default language, known as NATIVE 3000. You can use either 8-bit or
16-bit character data, as appropriate for the language you select. In addition, you can
always include ASCII data in any database, because ASCII is a subset of each supported
character set. The collating sequence for sorting and comparisons is that of the native
language selected.
Chapter 1 57

Introduction
Native Language Support
You can use native language characters in a wide variety of places, including these:

• Character literals

• Values stored in host variables for CHAR or VARCHAR data (but not as variable names)

• ALLBASE/SQL object names

If your system has the proper message files installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select; and it displays system dates and time
according to local customs. In addition, ISQL accepts responses to its prompts in the native
language selected. However, regardless of the native language used, the syntax of ISQL
and SQL statements--including punctuation--remains in ASCII. Note that MPE XL does
not support either native language file names or DBEnvironment names.

In order to use a native language other than the default, you must follow the steps below:

1. Make sure your I/O devices support the character set you use.

2. Set the MPE job control word NLUSERANG to the number(LangNum) of the native
language you use. Use the following MPE XL command:

 SETJCW NLUSERLANG = LangNum

This language then becomes the current language. (If NLUSERLANG is not set, the
current language is NATIVE-3000.)

3. Use the LANG = LanguageName option of the START DBE NEW statement to specify the
language of a DBEnvironment when you create it. Run the MPE XL utility program
NLUTIL.PUB.SYS to determine which native languages are supported on your system
Here is a list of supported languages, preceded by the LangNum for each:

Resetting the LANGvariable while you are connected to a DBEnvironment has no effect on
the current DBE session.

0 NATIVE-3000 7 FRENCH 13 SWEDISH 71 HEBREW

1 AMERICAN 8 GERMAN 14 ICELANDIC 81 TURKISH

2 C-FRENCH 9 ITALIAN 41 KATAKANA 201 CHINESE-S

3 DANISH 10 NORWEGIAN 51 ARABIC 211 CHINESE-T

4 DUTCH 11 PORTUGEUSE 52 ARABICW 221 JAPANESE

5 ENGLISH 12 SPANISH 61 GREEK 231 KOREAN

6 FINNISH
58 Chapter 1

Using ALLBASE/SQL
2 Using ALLBASE/SQL

This chapter shows how to use SQL statements for the following basic tasks:

• Creating DBEnvironments

• Starting and Terminating a DBE Session

• Creating Physical Storage

• Defining How Data is Stored and Retrieved

• Understanding Data Access Paths

• Controlling Database Access

• Manipulating Data

• Managing Transactions

• Auditing DBEnvironments (including setting up partitions)

• Using Wrapper DBEnvironments

• Using SQLAudit

• Application Programming

• Using Multiple Connections and Transactions with Timeouts

• Administering a Database

• Understanding the System Catalog

The next chapters contain more detailed information about the following topics:

• SQL Queries

• Constraints, Procedures and Rules

• Concurrency Control

The examples in this chapter are not intended to show all the functionality of the
statements. For detailed information on ALLBASE/SQL statements, refer to the chapters
“SQL Statements” in this manual. For information about database administration, refer to
the ALLBASE/SQL Database Administration Guide.
Chapter 2 59

Using ALLBASE/SQL
Creating DBEnvironments
Creating DBEnvironments
Before you can create a database, you must first configure a DBEnvironment. You use the
START DBE NEW statement, optionally specifying startup parameters to override those
assigned by default. You can use parameters to specify the following information:

• Multiuser or single-user mode

• Single, dual, or audit logging

• Number of page and log buffers

• Maximum number of partitions and concurrent transactions

• Number of runtime control blocks

• Timeout parameters

• DBEFile0 characteristics

• DBELog1 and DBELog2 characteristics

The DBEnvironment name, SomeDBE for example, is specified within single quotation
marks in the START DBE NEW statement:

 START DBE 'SomeDBE' MULTI NEW

This statement configures a DBEnvironment named SomeDBE in your group and account.
This DBEnvironment contains the following files:

• A DBECon file named SomeDBE

• A DBEFile named DBEFile0, which is associated with a DBEFileSet named SYSTEM

• DBEFile0, containing a system catalog

• A single log file named DBELog1

The startup parameter MULTI makes this DBEnvironment accessible in multiuser mode by
default.

The DBECon file stores the startup parameters defined by the START DBE NEWstatement.
For more information on startup parameters, refer to START DBE NEWin Chapter 12 , “SQL
Statements S - Z.”

Once a DBEnvironment exists, one or more databases can be created in it. Because
databases are collections of tables and views, databases are created by defining tables and
views. The definition of tables and views is discussed later in this chapter in “Defining
How Data is Stored and Retrieved.”

Specifying a Native Language Parameter

You can specify a native language parameter in creating a DBEnvironment. Use the
LANG = LanguageName option in the START DBE NEW statement to specify a native
language other than NATIVE 3000, as in the following example:

 START DBE 'SomeDBE' NEW LANG = JAPANESE;
60 Chapter 2

Using ALLBASE/SQL
Creating DBEnvironments
If you want to specify the name of the DBEnvironment in a native language, then the
native language you specify in the LANG clause must be covered by the same character set
as the language designated as the current language at the operating system level. The
current language can be different from that of the DBEnvironment. In that case, all
processing--including comparisons and sorting--will take place in accordance with the
language of the DBEnvironment, but messages will appear in the
operating-system-designated language if the appropriate message catalog is available.
Also, scanning of user input will be in the current language. See “Native Language
Support” in Chapter 1 , “Introduction,” for information about specifying a native language
as the current language.

Initial Privileges

When a DBEnvironment is configured, ALLBASE/SQL grants the following initial
privileges:

• DBECreator status. The logon name that issues the START DBE NEWstatement is the
DBECreator. Users with this status can use all the SQLUtil statements to maintain
the DBEnvironment.

• DBA authority. The DBECreator is given DBA authority. When you have DBA
authority, you are authorized to use all the SQL statements in a DBEnvironment.

Nobody other than the DBECreator can connect to or issue SQL statements in the
DBEnvironment until the DBECreator grants the appropriate authorities.

DBA authority cannot be revoked from the DBECreator.
Chapter 2 61

Using ALLBASE/SQL
Starting and Terminating a DBE Session
Starting and Terminating a DBE Session
A DBE session is the period between establishing and terminating a connection to a
DBEnvironment by a user or a program. You must be in a DBE session to execute any of
the SQL statements except the START DBE or CONNECT statements.

You can establish either a single-user DBE session or a multiuser DBE session for a
DBEnvironment. When you have a single-user session, no other users can connect to the
DBEnvironment for the duration of that session. When you have a multiuser session,
others can access the DBEnvironment at the same time.

How you establish a DBE session depends on whether the DBEnvironment is configured to
operate in autostart mode. Autostart is ON by default, but the DBA can reset it by using
SQLUtil. Refer to the “DBA Tasks and Tools” chapter in the ALLBASE/SQL Database
Administration Guide for more information about using SQLUtil.

Sessions with Autostart

When the autostart flag for a DBEnvironment has the value of ON, users with CONNECT
authority can start a DBE session by using the CONNECT statement:

 CONNECT TO 'PartsDBEC.SomeGrp.SomeAcct'

Initiate a single-user session if the DBEnvironment is configured to operate in single-user
mode. Initiate a multiuser session if the DBEnvironment is configured for multiuser mode.

You can have up to 32 simultaneous DBEnvironment connections.

Sessions without Autostart

When the autostart flag has the value of OFF, a DBA must issue the START DBEstatement
to make a DBEnvironment accessible. For example:

 START DBE 'PartsDBE.SomeGrp.SomeAcct'

The START DBE statement illustrated above initiates a single-user session for the
DBEnvironment. To make multiuser access possible, the MULTI option is specified as
follows:

 START DBE 'PartsDBE.SomeGrp.SomeAcct

After a DBEnvironment has been started up with the MULTI option, users with CONNECT
authority can initiate multiuser sessions as in the following example:

 CONNECT TO 'PartsDBE.SomeGrp.SomeAcct'

The START DBE statement also lets the DBA temporarily override several of the DBECon
file startup parameters.

Terminating DBE Sessions

To terminate a DBE session, you simply specify the RELEASE statement as shown below:

 RELEASE
62 Chapter 2

Using ALLBASE/SQL
Creating Physical Storage
Creating Physical Storage
To create physical storage, you use data definition statements to create the following
storage areas:

• DBEFileSets

• DBEFiles

• TempSpace

File space for tables and indexes is managed by adding and dropping DBEFiles from
DBEFileSets. DBEFiles are units of physical storage and DBEFileSets are logical
collections of DBEFiles. You use the CREATE DBEFILESET statement to define a
DBEFileSet, and the CREATE DBEFILE statement to define DBEFiles. You associate
physical storage with the DBEFileSet by associating DBEFiles with it, using the ADD
DBEFILE statement.

CREATE DBEFILESET WarehFS
 CREATE DBEFILE WarehD1 WITH PAGES = 50, NAME = 'WarehD1'
 ADD DBEFILE WarehD1 TO DBEFILESET WarehFS

Once you have created DBEFileSets and added DBEFiles to them, you need to specify the
name of a DBEFileSet in your table creation statements. This then defines, for that table,
the physical files that will be used to store the data. For complete details about creating
DBEFiles and DBEFileSets, refer to the ALLBASE/SQL Database Administration Guide.

TempSpace can be optionally defined and is a specific area of storage used by the system
for performing sorts in the database. TempSpaces are created and dropped by using the
CREATE TEMPSPACEand DROP TEMPSPACEstatements. Temporary files are allocated under
the available TempSpaces as they are needed for performing a sort, and deallocated once
the sort is completed. TempSpace information is accessible through the system catalog
view SYSTEM.TEMPSPACE.A TempSpace is referred to by a unique name. If a TempSpace is
not defined, sorting is done in the current group.
Chapter 2 63

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved
Defining How Data is Stored and Retrieved
To create database objects, you use data definition statements to define the following:

• Tables

• Views

• Indexes

• Constraints

• Procedures

• Rules

Creating a Table

When you define a table, use the CREATE TABLE statement to accomplish the following
tasks:

1. Establish an automatic locking mode and default access authorities.

2. Name the table.

3. Describe the columns.

4. Identify a DBEFileSet for storage of its rows.

The following example contains numbers that refer to the list of tasks shown above:

 1 ---2---
 | | |
 CREATE PUBLIC TABLE PurchDB.Parts

 (PartNumber CHAR(16) NOT NULL, ---
 PartName VARCHAR(30), | --3
 SalesPrice DECIMAL (10,2)) ---
 IN WarehFS
 |
 4

You can also specify native language characteristics and integrity constraints at both the
table and the column level.

Choosing the Locking Mode and Default Access Authorities

ALLBASE/SQL uses one of four locking modes for controlling access to data in a table by
different transactions. A transaction is one or more SQL statements that together perform
a unit of work. The locking modes are as follows:

• PRIVATE mode allows only one transaction at a time to access a table for reading or
updating. Locking is done at the table level. PRIVATE is the default mode.

• PUBLICREAD mode allows multiple transactions to read a table, but only one to update
it. Locking is done at the table level.
64 Chapter 2

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved
• PUBLIC mode allows multiple transactions to concurrently read and update a table.
Locking is done at the page level.

• PUBLICROWmode allows multiple transactions to concurrently read and update a table.
Locking is done at the row level, which permits greater concurrency than PUBLIC mode.

ALLBASE/SQL automatically uses the locking mode in the table definition whenever you
access a table. You can use the LOCK TABLE statement to override automatic locking. You
can use the ALTER TABLE statement to permanently change the implicit locking mode.

Tables created with PUBLICREAD, PUBLIC, and PUBLICROWoptions also have the following
initial authorities associated with them:

• A PUBLICREAD table can be read by anyone who can start a DBE session.

• A PUBLICROWor PUBLIC table can be read and updated by anyone who can start a DBE
session.

A DBA or the table's owner can use the GRANT and REVOKE statements to change these
authorities.

The choice of PUBLICROWrather than PUBLIC mode may result in a transaction's obtaining
more locks, since each row must be locked individually. For more information about the
quantity of locking in PUBLIC and PUBLICROW tables, refer to the section “Effects of Page
and Row Level Locking” in the “Physical Design” chapter of the ALLBASE/SQL Database
Administration Guide.

Naming the Table and Columns

The name you assign to a table or column can be up to 20 bytes long and is governed by the
rules in Chapter 6 , “Names.”

Defining the Columns

You enclose the column definitions in parentheses, separating multiple column definitions
with a comma. At least one column must be defined. Each column is defined by a name and
a data type.

Specifying Data Types

Data types describe the kind of data that can be stored in a column. ALLBASE/SQL has
five numeric data types, two string data types, four date/time data types, and four binary
data types as follows:

• Numeric data types:

DECIMAL

FLOAT

REAL

INTEGER

SMALLINT
Chapter 2 65

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved
• Character string data types:

CHAR(n)

VARCHAR(n)

• Date/time data types:

DATE

TIME

DATETIME

INTERVAL

• Binary string data types:

BINARY(n)

VARBINARY(n)

LONG BINARY(n)

LONG VARBINARY(n)

When you define a column to be of a certain data type, ALLBASE/SQL ensures that each
value stored in the column is in the range for the data type. Some data types (CHAR(n),
VARCHAR(n), BINARY(n), VARBINARY(n), LONG BINARY(n) and LONG VARBINARY(n))
require a column length. CHAR(n) has a default length of 1; VARCHAR(n) does not. Other
data types allow the specification of a precision (DECIMAL, FLOAT) and a scale (DECIMAL) .
Data types also affect the operations you can perform on data. Chapter 7 , “Data Types,”
defines the attributes of each data type as well as how the type affects various operations.

Specifying Column Options

You can also specify a NOT NULL, DEFAULT, native language, or constraints option for each
column. The native language and constraint options are discussed in separate sections
below.

When you define a column as NOT NULL, ALLBASE/SQL ensures that it contains no null
values. NULL is a special data type that indicates the absence of a value.

The DEFAULT option allows you to specify a default value for a column. If the DEFAULT
option is defined for a column and a value is not specified when an INSERT statement is
executed, ALLBASE/SQL inserts the default value. Default values are of the following
types:

• Constant

• NULL

• Current date and/or time

The following example specifies column options:

CREATE TABLE PurchDB.Parts
 (Column 1 char(20),
 Column 2 DEFAULT NULL)
66 Chapter 2

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved
You cannot use the DEFAULT option for a LONG data type column.

Specifying a DBEFileSet

The table rows are stored in the DBEFiles previously associated with the DBEFileSet
named in the IN clause of the CREATE TABLE statement. If you do not specify a
DBEFileSet, rows for the table are stored in the SYSTEM DBEFileSet. For best
performance, explicitly specify a DBEFileSet other than the SYSTEM DBEFileSet.

Specifying Native Language Tables and Columns

Use the LANG = TableLanguageName option in the CREATE TABLE statement to specify a
language other than the DBEnvironment's language. You can only specify NATIVE 3000
or the current native language of the DBEnvironment.

CREATE TABLE NewTable
 LANG = "NATIVE 3000"
 (Column1 char(20),
 Column2 char(10))

You must use double quotes around the name “NATIVE 3000” because it contains a
hyphen. Normally, native language names do not require quotes. For more information on
naming rules, refer to the “Names” chapter.

Use the LANG = ColumnLanguageName option in the column definitions of the CREATE
TABLE statement to specify a column with a language different from that of the table as a
whole. For example:

CREATE TABLE NewTable
 (Column1 char(20) LANG = "NATIVE 3000",
 Column2 char(20))

Sorting and pattern matching follow the rules of the column language. In order to
maintain ASCII performance as much as possible, NATIVE 3000 column sorting and
matching are done in ASCII.

By default, the language of a new table is the language of the DBEnvironment, and the
language of a new column is the language of the table it belongs to.

Creating a View

A view is a table derived by placing a “window” over one or more tables to let users or
programs see only certain data. Views are useful for limiting data visibility; they are also
useful for pulling together data from various tables for easier use. The tables from which
data for the view is derived are called base tables.

You define a view with the CREATE VIEW statement. The following are components of a
view definition:

1. Name of the view

2. Name of its columns

3. Definition of how to derive data for the view
Chapter 2 67

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved
4. Specification of WITH CHECK OPTION, if desired

The following example contains numbers that refer to the view components listed above:

 1
 |
 CREATE VIEW HiPrice
 (PartNum, Price) --2
 AS SELECT PartNumber, SalesPrice ---
 FROM PurchDB.Parts |--3
 WHERE SalesPrice > 1000 ---

View names are governed by the same rules as table names.

The columns in a view can have the same names as the columns in the table(s) they are
based on, or they can have different names. You only need to include column names in a
view definition if you are using multiple base tables which have duplicate column names or
if you want to rename the columns. You enclose the names in parentheses, but omit data
types, which depend on the types of the columns in the base tables.

The derivation of the view is a SELECT statement. In the previous example, the view is
derived from the PurchDB.Parts table. Each row in the view contains a part number and a
price; only rows for parts costing more than $1000 can be accessed through this view.

Unlike a table definition, a view definition does not require that you specify where to store
rows. A view is a SELECTstatement stored in the system catalog, not a physical copy of the
data; ALLBASE/SQL extracts data from physical tables at the time you use the view.
Views can be used for both retrieving and modifying data. Refer to “Updatability of
Queries” in Chapter 3 , “SQL Queries,” for restrictions governing the use of a view to
change data in a base table.

The WITH CHECK OPTION for views is described in Chapter 4 , “Constraints, Procedures,
and Rules.”

Creating Indexes

You can create an index on one or more columns in a query. An index can provide quick
access to the data in your tables. For information on indexes, refer to section
“Understanding Data Access Paths” later in this section.

Specifying Integrity Constraints

Using integrity constraints helps to ensure that a database contains only valid data.
Integrity constraints provide a way to check data within the database system rather than
by coding elaborate validation checks within application programs. An integrity constraint
is either a unique constraint, a referential constraint, or a check constraint. These
constraints are described in Chapter 4 , “Constraints, Procedures, and Rules.”

Creating Procedures

You can define procedures to enforce relationships among database tables or to automate
nearly any operation in the DBEnvironment. The following example shows creating a
procedure to perform deletions from the SupplyPrice table in the sample DBEnvironment
68 Chapter 2

Using ALLBASE/SQL
Defining How Data is Stored and Retrieved
PartsDBE:

CREATE PROCEDURE PurchDB.DelSupply(Part CHAR(16) NOT NULL) AS
 BEGIN
 DELETE FROM PurchDB.SupplyPrice
 WHERE PartNumber = :Part;
 END

The procedure definition includes a parameter declaration. The parameter Part accepts a
value into the procedure at run time. You execute the procedure with a statement like the
following example:

EXECUTE PROCEDURE PurchDB.DelSupply ('1123-P-01')

The effect of the procedure is to delete all rows in the SupplyPrice table whose part
number is 1123-P-01. For detailed information about creating and using procedures, refer
to Chapter 4 , “Constraints, Procedures, and Rules.”

Creating Rules

Once a table is defined, you can create a rule that will execute a procedure whenever a
specific firing condition is met. For example, you can define a rule that will execute a
procedure to delete rows from the SupplyPrice table whenever a specific part is dropped
from the Parts table in the sample DBEnvironment PartsDBE:

CREATE RULE PurchDB.RemovePart AFTER DELETE FROM PurchDB.Parts
 EXECUTE PROCEDURE PurchDB.DelSupply (PartNumber)

Once the rule exists, you activate it by performing a DELETE:

DELETE FROM PurchDB.Parts
 WHERE PartNumber = '1123-P-01'

For detailed information about creating and using rules, refer to the “Constraints,
Procedures, and Rules” chapter.
Chapter 2 69

Using ALLBASE/SQL
Understanding Data Access Paths
Understanding Data Access Paths
In creating a database, you must consider not only the arrangement of data, but also the
ways in which the data will be accessed during data manipulation operations. The four
following access methods are supported directly by ALLBASE/SQL:

• Serial access

• Indexed access

• Hashed access

• TID access

For indexed access, you must create a named index, or unique or referential constraint on
a table. Unique and referential constraints are supported by constraint indexes, which are
similar to B-tree indexes. For information on B-trees, refer to the section “Designing
Indexes” in the chapter “Logical Design” of the ALLBASE/SQL Database Administration
Guide

For hashed access, you must define a hash structure as you create the table.

By default, you do not explicitly choose an access method when you issue a query;
ALLBASE/SQL does this for you in a process known as optimization. Optimization
determines the best access path to the data for the query you have submitted. If a choice is
available among the different access methods--for example, if serial, indexed, and hashed
access are all possible for the same query--then the optimizer picks the best path. If no
other choice is available, the optimizer chooses serial access, also known as a sequential or
table scan. Serial access is always possible.

To override the access method chosen by the optimizer, use the SETOPT statement.

Serial Access

Serial access does not require the existence of any special object in addition to the table
itself. If ALLBASE/SQL chooses serial access when you issue a query, it starts reading
data from the first page in the table and continues to the end. Serial access is probably the
best access method when you intend to read all the data in the table. For example, an
application that updates every row in a table in exactly the same way would perform best
using a serial scan.

Indexed Access

Indexed access requires the use of a named index defined on specific columns in the table
to be accessed. Indexes can be plain, or they can be unique and/or clustering. Tables having
a unique index cannot have duplicate data values in the key column(s). A clustering
index causes rows with similar key values to be stored near to each other on disk when
this is possible. A table that is to use a clustering index should be loaded in the key order
specified by the clustering index. A clustering index can be defined on a unique or
referential constraint.

Whenever you issue a query, the query processor checks to see if an index exists for one or
70 Chapter 2

Using ALLBASE/SQL
Understanding Data Access Paths
more of the columns in the query. If an index is available and if the optimizer decides that
using the index is the fastest way to access the data, ALLBASE/SQL looks up the key
values in the index first, then goes directly to the pages containing table data.

For example, in the following query, assume that PurchDB.Parts contains a large number
of rows and that a unique index exists on the PartNumber column:

isql=> SELECT PartName, SalesPrice FROM PurchDB.Parts
 > WHERE PartNumber = '1323-D-01';

The optimizer would probably choose this unique index for access to the single row because
the alternative choice--a serial scan--would require reading each page in the table until the
qualifying row is reached.

You define an index with the CREATE INDEX statement. The components of an index
definition are as follows:

1. Type of the index (optional)

2. Name of the index

3. Table on which the index operates

4. Key column(s)

The following example contains numbers that refer to the index components listed above:

1
 |
 CREATE UNIQUE INDEX
 PartIndex --2
 ON PurchDB.Parts --3
 (Partno) --4

ALLBASE/SQL can choose to use an index when processing the SELECT, UPDATE, or
DELETE statements if the following criteria are satisfied:

• The statement contains a WHERE clause, which consists of one or more predicates. A
predicate is a comparison of expressions that evaluates to a value of True or False.
Refer to the “Search Conditions” chapter for more information on predicates.

• The statement contains explicit join syntax.

• Predicates are optimizable, which means that the use of an index is considered in
choosing an access path for the data. The following predicates are optimizable when all
the data types within them are the same; in the case of DECIMAL data, the precisions
and scales of the values must be the same:

— WHEREColumn1 ComparisonOperator Column2 , in which
ComparisonOperator is one of the following: =, >, >=, <, or <=. An index may be
used if Column1 and Column2 are in different tables and an index exists on either
column. For example:

WHERE PurchDB.Parts.PartNumber = PurchDB.SupplyPrice.PartNumber

— WHEREColumn1 ComparisonOperator (Constant or HostVariable) , in
which ComparisonOperator is as defined above. An index may be used if one exists
on Column1 ; however, an index may be used if a host variable appears in the
Chapter 2 71

Using ALLBASE/SQL
Understanding Data Access Paths
predicate only if the comparison operator is =, >, >=, <, or <= . For example:

WHERE SupplyPrice = :SupplyPrice

— WHEREColumn1 BETWEEN(Column2 or Constant or HostVariable) AND
(Column2 or Constant or HostVariable). For example:

WHERE OrderNumber BETWEEN '1123-P-01' AND '1243-MU-01'

• Some queries which use the MIN or MAX aggregate function on an indexed column as
follows are optimizable:

— MIN/MAX column is the first column of a nonhashed index.

— MIN/MAX indexed column on a single table with or without predicates.

— MIN/MAX indexed column on the outermost table of a nested loop join query.

— Single MIN/MAX within one query.

• ALLBASE/SQL does not use an index in the following types of queries:

— The query contains a WHERE clause using a not-equal (<>) arithmetic operator, such
as, WHEREColumn1 <> (Column2 or Constant or Host Variable). For example:

WHERE VendorState <> :VendorState

— The query contains a predicate using an arithmetic expression. For example:

WHEREColumn1 > Column2 *: HostVariable

— MIN or MAX is used with the GROUP BY, ORDER BY, or HAVING clause.

— A MIN or MAX indexed column exists in the inner table of a nested-loop, join query.

— A MIN or MAX indexed column exists on all tables of a sort-merge, join query.

— MIN or MAX is used with an expression.

— One query contains multiple MINs or MAXs.

— A LIKE predicate contains a host variable.

If other predicates are used, then an index is considered in choosing an access path.

For more information about indexes, refer to the “Designing Indexes” section in the
“Logical Design” chapter of the ALLBASE/SQL Database Administration Guide.

Hashed Access

Hashed access requires you to specify hashing when you create the table, before loading
data. Because a hash structure is specified as part of the table definition, you do not assign
a name to it, as you do with an index. However, you must identify specific key columns and
a number of primary pages for data storage. ALLBASE/SQL determines the placement of
rows based on specific unique key values. You can define one hash structure per table at
table creation time; and if a hash is defined, you cannot define a clustering index on the
table. You can define a multiple-column key for a hash structure; up to 16 columns are
permitted in the key.

A hash structure is a group of designated pages in a DBEFile that are set aside for the
storage of tuples according to the values in a unique hash key. The key enforces
72 Chapter 2

Using ALLBASE/SQL
Understanding Data Access Paths
uniqueness; duplicate values cannot exist in the hash key column(s). A well-chosen hash
key, like a good index key, provides the optimizer with the choice of a potentially faster
data access method than a serial scan.

Create a hash structure at the time you create a table. In addition to the components of a
table definition, a hash structure definition includes:

1. Columns that define the hash key

2. Number of primary pages

The reference numbers in the following example refer to the table definition components
listed above:

CREATE PUBLIC TABLE PurchDB.Vendors
 (VendorNumber INTEGER NOT NULL,
 VendorName CHAR(30) NOT NULL,
 ContactName CHAR(30),
 PhoneNumber CHAR(15),
 VendorStreet CHAR(30) NOT NULL,
 VendorCity CHAR(20) NOT NULL,
 VendorState CHAR(2) NOT NULL,
 VendorZipCode CHAR(10) NOT NULL,
 VendorRemarks VARCHAR(60))

 UNIQUE HASH ON (VendorNumber) -- 1
 PAGES = 101 -- 2

 IN PurchFS

Use the UNIQUE HASH clause or the HASH ON CONSTRAINT clause to specify one or more
columns for a hash key. Use the PAGES= clause to define a number of primary pages in
which to store the data in the table. This is different from ordinary data storage, which
does not require a number of primary pages.

Based on the key and the number of primary pages you specify, ALLBASE/SQL calculates
a page number for each row before insertion into the table. The page number depends
directly on the data in the key. Because a specific number of primary pages is specified, you
must create the hash structure as you create the table; you cannot modify a table from
normal to hash storage at a later time.

The optimizer can decide to use hashed access provided the statement contains a WHERE
clause with an EQUAL factor for each column in the hash key. This makes hashing
especially useful for tables on which you need quick random access to a specific row.

For example, assuming you have defined a hash key on VendorNumber, the optimizer
might choose hashed access for the following:

isql=> SELECT * FROM PurchDB.Vendors
 > WHERE VendorNumber = 9002;

However, it would not consider hash access for the following:

isql=> SELECT * FROM PurchDB.Vendors
 > WHERE VendorNumber > 9002
 > ORDER BY VendorName;
Chapter 2 73

Using ALLBASE/SQL
Understanding Data Access Paths
Hash structures operate like unique indexes; that is, they enforce the uniqueness of each
key in the table. If you attempt to insert a duplicate key, ALLBASE/SQL will return an
error message.

Differences between Hashed and Indexed Access

Hashing may provide faster access than B-tree lookups for many types of common queries,
and it does not require the overhead of additional file space required by B-tree indexes. In
addition, hashing is not subject to the overhead of updating index pages when you insert or
modify rows. However, updating key values in a hash table requires you to delete the row
containing the key value and then insert a row containing the new value. This means that
you should choose a non-volatile key for hashing whenever possible.

When to Use a Hash Structure

Hashing offers high performance when you need essentially random access to individual
tuples. It is not appropriate for applications that require sorting of the query result. In
cases where both random access and sorting are required at different times, you can define
a B-tree index as well as a hashing structure. This allows the optimizer the choice of the
most efficient method for the specific query.

The best candidates for the use of hash structures are applications in which the following
occur:

• Keys are not frequently updated. Remember that you cannot use the UPDATEstatement
on hash key columns. This means that you must delete and then insert rows that
contain changes to key values.

• Most queries contain EQUAL factors on hash key columns.

• Tuples are of fixed size, with a minimum of VARCHARS and NULL values.

You should not use a hash structure if your queries need to scan large areas, for instance,
with BETWEEN clauses or with predicates containing <> factors.

TID Access

Each row of a table has a unique address called the tuple identifier, or TID. TID
functionality provides the fastest possible data access to a single row. You can obtain the
TID of any row with the SELECT statement. For more information on TID access refer to
the ALLBASE/SQL application programming manual for the language you are using.
74 Chapter 2

Using ALLBASE/SQL
Controlling Database Access
Controlling Database Access
ALLBASE/SQL uses authorities to determine who can issue which SQL statements and
who can execute programs that access databases in a DBEnvironment. For complete
details about security schemes refer to the ALLBASE/SQL Database Administration
Guide.

Authorities

ALLBASE/SQL has the following several kinds of authorities:

• Table and view authorities are the following privileges used to access data in a
specific table or through a specific view and to add columns and indexes, and create
foreign keys referencing a specific table:

SELECT retrieve rows

INSERT insert rows

DELETE delete rows

UPDATE change one or more columns in a row

ALTER add new columns to a table

INDEX create an index for the table

REFERENCES refer to one or more columns when defining a foreign key in a
referencing table

• RUN authority is the privilege to execute a specific program module that accesses a
DBEnvironment.

EXECUTE execute a procedure

• Special authorities are the following privileges:

CONNECT connect to a DBEnvironment

RESOURCE create tables and authorization groups

DBA issue all SQL statements and to execute any program that accesses an
ALLBASE/SQL DBEnvironment

• OWNER authority controls specific programs, tables, views, or authorization groups.

Obtaining Authorization

You obtain authority by the following methods:

• Configuring a DBEnvironment and automatically becoming a DBA.

• Being granted one or more specific authorities.

• Owning a table, view, module, or group.
Chapter 2 75

Using ALLBASE/SQL
Controlling Database Access
DBA Authority

When a DBEnvironment is configured, DBA authority is automatically given to the login
name of the DBECreator.

A user with DBA authority (also referred to as the DBA) has extensive control over data in
a DBEnvironment. The DBA can issue almost all the SQL statements and execute all the
programs that access the DBEnvironment. The two SQL statements that only a
DBECreator can issue are, START DBE NEWLOG and START DBE RECOVER. Some SQL
statements only a DBA can issue. Most of these statements are DBEnvironment-wide in
scope. For example, only DBAs can grant the special authorities (CONNECT, RESOURCE,and
DBA) and define DBEFiles and DBEFileSets. In addition, only a DBA can issue statements
that control objects owned by a class name; for example, only DBAs can drop or issue
grants for a table owned by a class name.

Grants

All authorities except OWNER authority can be granted by using the GRANT statement. The
GRANT statement gives authorities to individual users, to authorization groups, or to all
users.

The following grants authorize a user with a logOn name of WOLFGANG@DBMS to start
a DBE session and to retrieve rows from the table named Quotas. Wolfgang can also create
his own database because he is also granted RESOURCE authority.

GRANT CONNECT TO WOLFGANG@DBMS
 GRANT SELECT ON Marketing.Quotas TO WOLFGANG@DBMS
 GRANT RESOURCE TO WOLFGANGg@DBMS

The following grants authorize the group named Managers to start a DBE session and all
users to retrieve rows from the table Forecast:

GRANT CONNECT TO Managers
 GRANT SELECT ON Marketing.Forecast TO PUBLIC

The REVOKE statement is used to eliminate authorities:

REVOKE RESOURCE FROM WOLFGANG@DBMS

DBAs can grant or revoke authorities. The only individuals entitled to grant and revoke
authorities are users or members of groups that own tables, views, or modules, or those
who have received grantable privileges, as described below. Individuals or members of
groups that own tables, views, or modules can issue grants for objects they own.

Grantable Privileges

If a grantor specifies the WITH GRANT OPTIONclause when issuing the GRANTstatement on
table and view authorities, the grantee receives not only the privilege, but the authority to
grant that same privilege, with or without the WITH GRANT OPTION, to another user. The
grantee is also entitled to revoke authorities he or she granted. This kind of privilege is
called a grantable privilege. The use of grantable privileges can result in chains of grants.

A cycle in a chain of grants is not allowed; that is, a user cannot be granted the same
authority more than once on an object. If a grant of authority causes a cycle, you will
receive an error message. The WITH GRANT OPTION clause cannot be specified when the
76 Chapter 2

Using ALLBASE/SQL
Controlling Database Access
grantee is a group. The following statement grants UPDATE authority to Amanda, who can
then grant that authority to individual users or a class:

GRANT UPDATE ON Marketing.Forecast TO AMANDA@DBMS WITH GRANT OPTION;

Users with a grantable privilege can only revoke privileges they have granted and chains
they have caused. To revoke the privilege given to the grantee and any subsequent
grantees in a chain, the grantor must use the CASCADE option of the REVOKE statement.

Owners can revoke any privilege on their object, but to revoke a privilege that has been
given to subsequent grantees, the CASCADEoption must be used. The DBA does not have to
use the CASCADEoption to revoke a grantable privilege from a user. However, if CASCADEis
not used, that privilege is removed from the specified grantee only, not from the
subsequent chain of grants. Then, an orphaned privilege is created. An orphaned privilege
can be given a parent by the DBA with the BY clause of the GRANT statement. For more
information on orphaned privileges, refer to “Using the WITH GRANT OPTION Clause” in
the chapter “Database Creation and Security” in the ALLBASE/SQL Database
Administration Guide.

Ownership

The following six objects have owners associated with them:

• Tables

• Views

• Authorization groups

• Modules

• Procedures

• Rules

These objects can be owned by an individual, an authorization group, or a class; but an
object can have only one owner at a time.

An owner becomes associated with an object in one of several ways:

• When an individual creates one of the five objects, that individual becomes its owner.
The owner name is derived from the individual's login name. To create a table or group,
you need DBA or RESOURCE authority. To create a module, you need DBA or CONNECT
authority. To create a view, you need DBA, SELECT , or OWNER authority for the tables
and views it is based on.

• A DBA or the owner of an object can transfer ownership of the object to another
individual, a group, or a class by using the TRANSFER OWNERSHIP statement. The
ownership of modules cannot be transferred. WOLFGANG@DBMS can transfer
ownership of his Composers table to Wendy as follows:

TRANSFER OWNERSHIP OF TABLE Composers TO WENDY@ROBERTS

• A DBA can create any of these objects and name the owner in the statement that
creates the object. Other users can name any group as owner when creating an object if
they are a member of that group. With the following statements, a DBA creates a group
called Managers; a DBA or a member of Managers can assign ownership of the table
Chapter 2 77

Using ALLBASE/SQL
Controlling Database Access
named Salary to that group when creating the table:

CREATE GROUP Managers
 CREATE TABLE Managers.Salary...

When you refer in an SQL statement to a table, a view, a module, or an authorization
group, you specify both the owner's name and the name of the object. If you own the object,
however, you can omit the owner's name. When WOLFGANG@DBMS retrieves
information from the Parts table, for example, he must specify the owner name. For
example:

SELECT PartNumber FROM PurchDB.Parts

The system views belong to special owners named SYSTEM and CATALOG. Therefore
when you refer to one of the system views, you must specify that name:

SELECT * FROM System.Table
or

 SELECT * FROM Catalog.Table

Default Owner Rules

In several statements, when a name is specified, such as table name, rule name, group
name, or index name, specification of the owner name is optional. The method of
determining the default owner when no owner is specified is as follows:

• If the name is within a CREATE PROCEDURE statement (except for the procedure name
itself), and it is not within a CREATE SCHEMA statement in that procedure, then the
default owner is the procedure's owner.

• If the name is within a CREATE SCHEMA statement and it is not within a CREATE
PROCEDURE statement in that schema, then the default owner name is the
authorization name of that schema.

• If you have specified an owner using the ISQL SET OWNER command, everything you
create will be owned by the owner specified in that command.

• If you use the -o option to specify an alternate DBEUserID prior to preprocessing an
application containing embedded SQL statements, then the owner specified is the
default owner of the module.

• If none of the above apply, then the default owner name is the current DBEUserID. The
DBEUserID is the logon name concatenated with ‘@’ and concatenated with the group
name.

In CREATE INDEX, CREATE RULE, DROP INDEX, DROP RULE , the default owner for the
index or rule name, respectively, has additional possible values which are described with
those statements.

Ownership Privileges

The following summarizes the privileges that extend to users or members of groups that
own objects:

• Group owners can add members to and remove them from their group as well as drop
the group.
78 Chapter 2

Using ALLBASE/SQL
Controlling Database Access
• Group members have ownership privileges over all objects owned by their group.

• Group members have all privileges granted to the group.

• Table owners can add columns to the table or drop the table.

They can add and drop constraints.

They can create and drop indexes for the table. They can grant and revoke authorities
for the table, and transfer their ownership to another owner. They can retrieve data
from the table, change the data, update statistics, lock the table, and create views on
the table. Transferring ownership of a table transfers the ownership of indexes,
constraints, and rules defined on the table. And grantor of privileges by owner also
changes.

• Index owners can drop their indexes. The index owner must be the same as the owner
of the table the index is defined upon. Index ownership is transferred along with the
ownership of the table the index is defined upon.

• View owners can drop their view. They can grant and revoke authorities for the view
and transfer their ownership to another owner. They can also access data through their
views.

• Module owners can execute, validate, and drop their modules. They can grant and
revoke RUN authority for their modules. Ownership of modules cannot be transferred.

• Procedure owners can drop their procedures. They can grant and revoke EXECUTE
authority for their procedures, and they can transfer ownership to another owner.

• Rule owners can drop their rules. The rule owner must be the same as the owner of
the table the rule is defined upon. Rule ownership is transferred along with the
ownership of the table the rule is defined upon.

Authorization Groups

An authorization group is a named collection of users or other groups. The CREATE GROUP
statement is used to define groups, and the ADD TO GROUP statement is used to associate
individuals or other groups with the group. The GRANT statement assigns authorities to a
group. All three statements are used in the following example:

CREATE GROUP PurchManagers
 ADD MARGUERITE@RYAN, RON@HART, SHARON@MULDOON TO GROUP PurchManagers
 GRANT SELECT on PurchDB.Parts TO PurchManagers

Any member of the group PurchManagers can select data from table PurchDB.Parts.
Authorization groups have several advantages as described here:

• Groups simplify authorization. They make it possible to grant authorities to multiple
users or groups with one GRANT statement. In addition, as new users need authorities,
the DBA can simply add them to a group already possessing the appropriate
authorization.

• Groups make control over the type of data access independent of control over who can
access data. For example, the owner of a table can grant different types of access
(SELECT, UPDATE , etc.) to a group; but who belongs to the group is controlled by the
DBA or the group's owner, not by the table's owner.
Chapter 2 79

Using ALLBASE/SQL
Controlling Database Access
Classes

A class is a special category of owner that is neither a conventional DBEUserID nor a
group. You may wish to assign ownership of objects to a class when you do not want any
individual or group to have automatic access to them. With class ownership, the DBA
controls all authorities, because objects that belong to a class can be created and
maintained only by the DBA. For a class to be useful, its class name must be different from
the name of any existing DBEUserID or group name.

A DBA can create a class by doing one of the following:

• Creating a table or view with the class name as owner name.

• Preprocessing an application with the class name as owner name.

• Transferring ownership of an object to a class name.

For example, the sample DBEnvironment contains several tables owned by the class
PurchDB. The table PurchDB.Parts was created with the following statement:

CREATE TABLE PurchDB.Parts
 (PartNumber CHAR(16) NOT NULL,
 PartName CHAR(30),
 SalesPrice DECIMAL(10,2))
 IN WarehFS;

After creating objects owned by the class, you must grant the specific authorities you wish
users or groups to have. Suppose you have a group PurStaff consisting of DBEUserIDs for
members of the Purchasing department. You could grant authorities to the group as
follows:

GRANT SELECT, UPDATE ON PurchDB.Parts to PurStaff;

Differences between Groups and Classes

You create a group explicitly by using the CREATE GROUP statement. You create a class
implicitly by creating objects that use the class name as the owner name.

A group has members, all of which have the privileges the group has. For example, if a user
is a member of the group Sales, then that user can drop or alter objects owned by Sales.

A class does not have members, nor can it use any authorities, although you can grant
them if you wish. This can be useful in a scenario in which you want to preassign
ownership of objects to a DBEUserID which has no logon ID on your system.
80 Chapter 2

Using ALLBASE/SQL
Manipulating Data
Manipulating Data
Most users of ALLBASE/SQL are primarily interested in manipulating data in
DBEnvironments. Data manipulation consists of following operations:

• Selecting data

• Inserting data into tables

• Updating rows in tables

• Deleting rows

In order to select data, you create queries, which are fully described in the next chapter.
The other types of data manipulation are presented briefly in the next sections. For
complete information, refer to the descriptions of the SELECT, INSERT, UPDATE , and
DELETE statements in the “SQL Statements” chapter.

Inserting Data

You use the INSERT statement to add rows to a table, specifying the following information:

1. A table or view name

2. Column names

3. Column values

The following example contains numbers that refer to the items in the list above:

 1
 |
 INSERT INTO PurchDB.Parts
 (PartNumber, PartName) --2
 VALUES ('9999-AJ','Interface Engine')
 | |

 |
 3

Only a single table name or view name can be specified. Only certain views can be used to
insert rows into a base table, as described under “Updatability of Queries” in Chapter 3 ,
“SQL Queries.”

The column names can be omitted if you are going to put a value into every column in the
row. Otherwise, you name the columns you want to assign values to, enclosing the column
names in parentheses and separating multiple column names with commas. Columns not
named are assigned their default values. If no default exists for a column, it is assigned the
null value. If you define a column as NOT NULL when you create a table, then you must
assign a non-null value or specify a default value to the column.

The column values are also enclosed in parentheses and separated by commas. Character
data is delimited with single quotation marks. The value NULLcan be entered into columns
that permit null values.
Chapter 2 81

Using ALLBASE/SQL
Manipulating Data
You can copy rows from one or more tables or views into another table by using a form of
the INSERT statement (often called a type 2 Insert) in which you specify the following
items:

1. A table or view name

2. A SELECT statement

Note that the numbers in the next example refer to the items listed above:

1
 |
 INSERT INTO PurchDB.Drives
 SELECT * FROM PurchDB.Parts -- 2
 WHERE PartName LIKE 'Drives%'

The rows in the query result produced by the SELECT statement are inserted into
PurchDB.Drives. The SELECT statement cannot contain an ORDER BY clause and cannot
name the target table in the FROM clause. The target table must exist prior to an INSERT
operation.

Updating Data

You change data in one of more columns by using the UPDATE statement. These are the
components of the UPDATE statement:

1. The name of a table or a view

2. A SET clause

3. A WHERE clause

The following example illustrates the UPDATEstatement and its components; the reference
numbers identify the components listed above.

UPDATE PurchDB.Parts --1
 SET SalesPrice = 15.95 --2
 WHERE PartNumber = '9999-AJ' --3

Only a single table name or view name can be specified. Only certain views can be used to
update, as described under “Updatability of Queries” in Chapter 3 , “SQL Queries.” For
each column to be updated, you specify a column name and value in the SETclause. NULL is
a valid value for columns that can contain null values. Unless you specify a WHERE clause,
all rows of the named table or view are updated. A search condition in this clause
describes which rows to update. The search condition in the previous example specifies
that the row(s) to be updated must name PartNumber 9999-AJ.

Deleting Data

You use the DELETE statement to delete entire rows. This statement has two components
as follows:

1. A table or view name

2. A WHERE clause
82 Chapter 2

Using ALLBASE/SQL
Managing Transactions
The following example illustrates the DELETE statement and its two components:

DELETE FROM PurchDB.Parts --1
 WHERE PartNumber = '9999-AJ' --2

Only a single table name or view name can be specified. Only certain views can be used to
delete rows, as described under “Updatability of Queries” in Chapter 3 , “SQL Queries.”

The WHERE clause is optional. You omit it if you want to delete all the rows in a table or
view. Otherwise, you use it to specify a search condition for which row(s) to delete.

Managing Transactions
A transaction is a logical unit of work that changes the database. All actions within this
logical unit of work must succeed, or all of them must fail. When a transaction completes
successfully, it is said to commit. Should a transaction fail, none of the changes it
generates are recorded in the database, and the transaction aborts.

A transaction is bounded by the BEGIN WORK and COMMIT WORK statements. One or more
SQL statements, and any number of programming language statements can be contained
within a transaction. An example of a simple transaction is as follows:

BEGIN WORK

 UPDATE PurchDB.Parts
 SET PartName = 'Defibrillator'
 WHERE PartNumber = '1152-DE-95683'

 COMMIT WORK

The SQL statements used in transaction management are as follows:

BEGIN WORK Starts the transaction.

COMMIT WORK Terminates a successful transaction.

ROLLBACK WORK Undoes any changes made by the current transaction.

SAVEPOINT Permits partial rollback of a transaction.

Objectives of Transaction Management

The objectives of transaction management are related to one another. Data integrity is
enforced by proper transaction management, but must be balanced by the need for high
concurrency. The use of transactions facilitates the recovery of data after a crash,
maintaining data integrity.

Ensuring Logical Data Integrity

The data in the database must be accurate and consistent. For example, adding a part to
the warehouse inventory entails inserting a row into three tables: PurchDB.Parts,
PurchDB.SupplyPrice, and PurchDB.Inventory. All three inserts must succeed, or else the
Chapter 2 83

Using ALLBASE/SQL
Managing Transactions
database is left in an inconsistent state. To enforce data integrity, the three inserts are
contained in a single transaction. If any one insert fails, then the entire transaction fails
and none of the other inserts takes effect. The following example shows how this
transaction might be coded:

BEGIN WORK
 INSERT INTO PurchDB.Parts ...

If the insert into PurchDB.Parts fails then
 ROLLBACK

else
 INSERT INTO PurchDB.SupplyPrice ...

If the insert into PurchDB.SupplyPrice fails then
 ROLLBACK

else
 INSERT INTO PurchDB.Inventory ...

If the insert into PurchDB.Inventory fails then
 ROLLBACK

else
 COMMIT WORK

endif
endif

endif

Maximizing Concurrency

Concurrency is the degree to which data can be accessed simultaneously by multiple users.
For example, an application that allows one hundred users to access a table
simultaneously has higher concurrency, and therefore better performance, than an
application that allows only one user at a time to access the table. Locking regulates the
simultaneous access of data. For example, if one user updates a row, the row is locked and
other users cannot access the row until the first user is finished. Locking the row enforces
data integrity, but reduces concurrency because other users are forced to wait. The
isolation level specified in a BEGIN WORK statement affects the duration and types of locks
held within a transaction. Isolation levels are fully discussed in Chapter 5 , “Concurrency
Control through Locks and Isolation Levels.” Well-managed transactions balance the
conflicting requirements of minimal lock contention and maximum concurrency.

Facilitating Recovery

When a soft crash occurs, incomplete transactions are automatically rolled back when the
DBEnvironment is restarted. If archive logging is in effect when a hard crash occurs,
committed transactions are applied to the database during rollforward recovery. In both
cases, only those transactions that were uncommitted when the crash occurred need to be
redone.
84 Chapter 2

Using ALLBASE/SQL
Managing Transactions
Starting Transactions

A transaction is initiated with either an implicit or explicit BEGIN WORK statement. An
implicit BEGIN WORK statement is issued by ALLBASE/SQL when any SQL statement is
executed, except for the following:

Explicit BEGIN WORK statements are recommended, for the following reasons:

• Explicit BEGIN WORK statements make your code easier to read.

• You must use an explicit BEGIN WORKstatement to specify a non-default isolation level
or transaction priority.

• You might unintentionally lock out other users by the default isolation level of an
implicit BEGIN WORK.

Since nested transactions are not allowed, an error is generated if a session with an active
transaction issues a BEGIN WORKstatement. The first transaction must end before another
transaction can begin.

Ending Transactions

A transaction ends when either a COMMIT WORK or a ROLLBACK WORK statement is issued.
All locks held by the session are released when the transaction ends, except those held by a
kept cursor.

Using COMMIT WORK

Issue the COMMIT WORK statement when the transaction is successful and you want the
changes made permanent. Unlike the BEGIN WORK and ROLLBACK WORK statements, the
COMMIT WORK statement is never issued automatically by ALLBASE/SQL. You must issue
the COMMIT WORK explicitly for each transaction. The COMMIT WORK statement causes the
contents of the log buffer to be written to a log file. If rollforward recovery is needed at a
later time, the transactions recorded in the log file are applied to the database.

ASSIGN BEGIN ARCHIVE BEGIN DECLARE SECTION

BEGIN WORK CHECKPOINT COMMIT ARCHIVE

COMMIT WORK CONNECT DECLARE VARIABLE

DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING END DECLARE SECTION

GOTO IF INCLUDE

PRINT RAISE ERROR RELEASE

RESET RETURN ROLLBACK TO SAVEPOINT

ROLLBACK WORK SET SESSION EX SET TIMEOUT

SET TRANSACTION START DBE STOP DBE

SQLEXPLAIN TERMINATE USER WHENEVER

WHILE
Chapter 2 85

Using ALLBASE/SQL
Managing Transactions
Using ROLLBACK WORK

The ROLLBACK WORK statement ends the transaction and undoes all data modifications
made since the BEGIN WORK statement, unless it references a savepoint. (See the
discussion of savepoints in the following section.) The ROLLBACK WORKstatement is issued
automatically by ALLBASE/SQL under the following conditions:

• A non-archive log file becomes full.

• A RELEASE statement is issued before the end of the transaction.

• A system failure occurs. When the system is up again, and a START DBE statement is
issued, incomplete transactions are rolled back.

• ALLBASE/SQL chooses the transaction as the victim when breaking a deadlock.

• The session is terminated by a TERMINATE USER command.

The ROLLBACK WORK statement should be issued explicitly to maintain data integrity. You
may want to issue a ROLLBACK WORK in an application program when any of the following
situations arise:

• The transaction contains more than one SQL statement and one of the statements
generates an error. For example, if your transaction contains three INSERT statements,
and the second INSERT fails, you should rollback the entire transaction.

• An INSERT, UPDATE , or DELETE statement that affects multiple rows generates an
error after some of the rows have been modified. You should rollback the transaction if
the partial changes will leave your database in an inconsistent state.

• The end user provides input indicating that he or she does not want to commit the
transaction.

Using SAVEPOINT

The SAVEPOINTstatement allows you to rollback part of a transaction. Multiple savepoints
are permitted within a transaction anywhere between the BEGIN WORK and COMMIT WORK
statements. Each SAVEPOINT statement places a unique marker, called a savepoint
number, within the transaction. When a subsequent ROLLBACK references the savepoint
number, only those database changes made after the savepoint are rolled back. Rolling
back to a savepoint does not end the transaction, but it does release locks obtained after
the savepoint was issued.

In the following ISQL example, the number identifying the savepoint marker is 6. The
update performed after the SAVEPOINT statement is undone by the ROLLBACK statement,
but any database changes made before savepoint 6 are unaffected.

isql=> SAVEPOINT;

Savepoint number is 6. Use this number to do ROLLBACK WORK to 6.

 isql=> UPDATE PurchDBParts
 > SET SalesPrice = 244.00
 > WHERE PartNumber = '1243-MU-01';

 isql=> ROLLBACK WORK to 6;
86 Chapter 2

Using ALLBASE/SQL
Managing Transactions
After a rollback to a savepoint has been executed, use the COMMIT WORKstatement to make
the changes that were not rolled back permanent. If you want to rollback the entire
transaction, issue the ROLLBACK statement without a savepoint.

Savepoints are suitable for transactions that perform several operations, any of which may
need to be rolled back. In the following example, a travel agency is booking tour
reservations for 15 people. When the first attempt to make a hotel reservation fails, only
that part of the transaction is rolled back. The car reservations are unaffected by the roll
back because they were made prior to the savepoint.

BEGIN WORK

Make 15 car reservations.

 SAVEPOINT

Savepoint number is 1. An attempt to make 15 hotel reservations fails because the
designated hotel is full.

 ROLLBACK WORK TO 1
 SAVEPOINT

Savepoint number is 2. Make 15 hotel reservations at another hotel.

 COMMIT WORK

Scoping of Transaction and Session Attributes

A set of attributes is associated with each transaction and user session. This section
discusses the statements used to specify the following transaction and session attributes:

• priority

• isolation level

• label

• fill option

• constraint checking mode

• DML atomicity level

Each attribute can be specified in one or more of the statements listed in Table 2-1. You
can issue such statements at any point in an application or ISQL session (with the
exception of BEGIN WORKwhich cannot be issued within a transaction). However they may
not take effect immediately, and the duration of their effect differs as described in the
following paragraphs. Chapter 10 , “SQL Statements A - D,” and Chapters 11 and 12
contains complete syntax for each statement.

When beginning a transaction, attributes specified in a BEGIN WORK statement take effect
immediately and remain in effect until the transaction ends, unless reset by a SET
TRANSACTION, SET CONSTRAINTS, or SET DML ATOMICITY statement within the
transaction.

Within a transaction, the attributes specified in a SET TRANSACTION, SET CONSTRAINTS,
or SET DML ATOMICITY statement take effect immediately and remain in effect until the
transaction ends, unless subsequently reset by such a statement. A SET SESSION
Chapter 2 87

Using ALLBASE/SQL
Managing Transactions
statement issued within a transaction has no effect on the present transaction, instead it
takes effect for the next transaction and remains in effect for the duration of the session,
unless reset by a subsequent BEGIN WORK, SET TRANSACTION, SET CONSTRAINTS, SET
DML ATOMICITY, or SET SESSION statement.

Outside of a transaction, the attributes specified in a SET TRANSACTION or SET SESSION
statement take effect for the next transaction, unless subsequently reset by such a
statement or by a BEGIN WORKstatement. The SET TRANSACTION, SET CONSTRAINTS, and
SET DML ATOMICITYstatements remain in effect for the duration of the transaction, unless
subsequently reset. The SET SESSION statement remains in effect for the duration of the
session, unless subsequently reset.

Table 2-1. shows these statements, the attributes associated with each, when each
statement goes into effect after being issued and the scope of each statement's attributes if
not reset by a subsequent statement:

For example, you might write an application containing several transactions. Each
transaction contains one or more SELECT statements. You want to ensure that all data

Table 2-1. Transaction Attribute Scope

Statement Attributes When Effective Duration of
Attribute
Setting

Begins a
Transaction if
None Already
Begun

SET SESSION a

a. Note that SET SESSION issued within a transaction is not savepoint sensitive.

isolation level
priority
label
constraint checking
mode
DML atomicity level
fill option

for the next
transaction

until the
session ends

no

SET
TRANSACTION

isolation level
priority
label
constraint checking
mode
DML atomicity level

for the next or
current
transaction

until the
transaction
ends

no

SET
CONSTRAINTS

constraint checking
mode

for the current
transaction

until the
transaction
ends

yes

SET DML
ATOMICITY

DML atomicity level for the current
transaction

until the
transaction
ends

yes

BEGIN WORK isolation level
priority
label
fill option

when the
transaction
begins

until the
transaction
ends

yes
88 Chapter 2

Using ALLBASE/SQL
Managing Transactions
selected has been committed to the database. You know that the default isolation level for
a session is RR, but RR does not provide the concurrency you need. At the beginning of the
session, you set the isolation level to RC (read committed) for all transactions in the
session, as follows:

.
 .
 .
 SET SESSION ISOLATION LEVEL RC
 .
 .
 .

Note that each transaction starts implicitly. In this example, there is no need for any
BEGIN WORK statements. However, you might choose to include BEGIN WORK statements to
make your code more readable or to set a different isolation level for a particular
transaction.

 SELECT * FROM PurchDB.OrderItems
 WHERE VendPartNumber = '2310'
 COMMIT WORK
 .
 .
 .
 SELECT * FROM PurchDB.Vendors
 WHERE VendorNumber = 1234
 COMMIT WORK
 .
 .
 .
 SELECT * FROM PurchDB.SupplyPrice
 WHERE VendorNumber = 1234 AND VendPartNumber = '2310'
 COMMIT WORK
 .
 .
 .

For more information on isolation levels, refer to Chapter 5 , “Concurrency Control
through Locks and Isolation Levels,” in this manual.

Transaction Limits and Timeouts

The maximum number of concurrent transactions is determined by the MaxTransactions
parameter of the DBECon file. Use either the START DBEstatement or the SQLUtil ALTDBE
command to set MaxTransactions . The SQLUtil SHOWDBE command displays the current
setting of MaxTransactions in the DBECon file. If a session attempts to start a
transaction, but the maximum number of concurrent transactions has already been
reached, the new transaction is placed in the throttled wait queue. The transaction must
wait until it reaches the head of the queue and one of the active transactions terminates.
The throttled wait queue is serviced on a first in, first out basis. The transaction priority
parameter of the BEGIN WORKstatement determines which transaction is aborted to break
a deadlock, not the transaction's position on the throttled wait queue.

If the transaction is still waiting when its timeout limit is reached, the transaction is
Chapter 2 89

Using ALLBASE/SQL
Managing Transactions
aborted. The timeout action can also be set to abort the command being processed instead
of the entire transaction. Set the timeout limit for the DBEnvironment with the STARTDBE
statement or the SQLUtil ALTDBE command. To specify a timeout limit for a particular
session, use the SET USER TIMEOUT statement. Both SET SESSION and SET TRANSACTION
have parameters to specify which action the system should take when a timer expires. The
setting of timeout values is also incorporated into these commands. The SQLUtil SHOWDBE
command displays the current, default, and maximum values of the timeout parameter in
the DBECon file.

Monitoring Transactions

The SYSTEM.TRANSACTIONpseudo-table contains the user identifier, connection-id, session
identifier, transaction identifier, transaction priority, and isolation level of every current
transaction. To view this information with ISQL, issue the following statement:

isql=> SELECT * FROM System.Transaction;

To identify the transactions on the throttle wait queue, query the SYSTEM.CALL
pseudo-table as follows:

isql=> SELECT * FROM System.Call WHERE Status = 'Throttle wait';

For more information on transaction activity, consult Load subsystem in SQLMON, the
ALLBASE/SQL on-line monitoring tool. SQLMON provides the following transaction
information:

• total number of active and waiting transactions in the DBEnvironment

• total number of BEGIN WORK, COMMIT WORK, and ROLLBACK WORKstatements executed
in the DBEnvironment

• maximum number of transactions configured

• which sessions have active or waiting transactions

• which sessions have executed BEGIN WORK, COMMIT WORK, and ROLLBACK WORK
statements

See the ALLBASE/SQL Performance and Monitoring Guidelines for more information on
SQLMON.

Tips on Transaction Management

Keep transactions short. As the length of a transaction increases, so does the chance that
other transactions are forced to wait for the locks it holds. In addition to increasing
concurrency, short transactions minimize the amount of data that must be re-entered after
a system crash. When archive logging is in effect, changes made to the database are
written to the log file whenever a COMMIT WORK is issued. If the system crashes during a
long transaction, a large number of uncommitted changes will be rolled back.

To shorten a transaction, place program statements not essential to the logical unit of
work outside of the transaction. Retrieve all user input before the start of a transaction, to
ensure that locks are not held if the user walks away from the terminal. Because terminal
writes can also be time consuming, they should not be performed within a transaction.
90 Chapter 2

Using ALLBASE/SQL
Auditing DBEnvironments
Careful use of savepoints can decrease the amount of time locks are held, and reduces the
need to resubmit transactions because part of a transaction was unsuccessful.

Set the maximum number of transactions (MaxTransactions) and timeout limit
parameters correctly. If MaxTransactions is too low, transactions will wait for no reason.
However, the overall throughput of the DBEnvironment may be reduced if
MaxTransactions is too high. If the timeout limit is too low, transactions will abort, but if
set too high, the session might wait indefinitely for a transaction slot.

Auditing DBEnvironments
Audit DBEnvironments are created with SQL statements that allow you to generate audit
log records. Audit log records contain information that allows you to group log records for
analysis with SQLAudit . The database operations you might analyze are UPDATE, INSERT,
or DELETE operations, perhaps for security reasons.

Audit log records contain identifiers such as table names in contrast to non-audit database
log records which contain identifiers such as page references and data. Audit log records
are generated in addition to non-audit database log records.

A unique audit name specifies an audit DBEnvironment. Audit elements indicate which
ALLBASE/SQL statement types generate audit log records. By default, statements that
change data generate audit log records (INSERT, UPDATE, and DELETE statements); this
default can also be specified explicitly by the DATA AUDIT ELEMENTS parameter. You can
also optionally specify that log comment, data definition, authorization, or section
statements (creation and deletion of sections) generate audit log records.

The Audit Tool, SQLAudit , is introduced below. SQLAudit is fully described in the
ALLBASE/SQL Database Administration Guide. The ALLBASE/SQL Database
Administration Guide describes how to create audit DBEnvironments and how to select
records for audit. Chapter 10 , “SQL Statements A - D,” and Chapters 11 and 12 of this
manual contain the detailed syntax to create audit DBEnvironments and partitions.

Partitions in Audit DBEnvironments

Partitions are divisions of DBEnvironments that contain one or more tables processed by
SQLAudit as a unit. Partitions are specified in CREATE PARTITION, CREATE TABLE , and
ALTER TABLE statements. In addition, default partition and comment partition numbers
can optionally be specified.
Chapter 2 91

Using ALLBASE/SQL
Using Wrapper DBEnvironments
Using Wrapper DBEnvironments
A wrapper DBEnvironment is a DBEnvironment created to wrap around the log files
orphaned after a hard crash of a DBEnvironment. Wrapping log files means associating
the files with a wrapper DBEnvironment. After a DBEnvironment becomes inaccessible,
its log files are not associated with any DBEnvironment. These orphaned log files are then
also inaccessible.

Wrapper DBEnvironments are usually used with inaccessible audit DBEnvironments,
but they can be used to retrieve the log files of any inaccessible DBEnvironment.

After you wrap the log files, you can then try to extract audit information from the audit
log records in the wrapped log files with SQLAudit by partition number.

Access to wrapped log files avoids having a gap in the ongoing record of audit information.
The use of archive logging facilitates wrapper DBEnvironment use, but nonarchive logging
does not prevent use of wrapper DBEnvironments.

To wrap log files, the orphaned log files marked Usable are first displayed and selected.
Then, it must be ensured that each log file is inactive. A DBEnvironment is then created
with the START DBE NEW statement and the new DBEnvironment is converted to a
wrapper DBEnvironment with the SQLUtil WRAPDBE command.

NOTE Recovery of the database itself is a separate operation. It is recommended
that the log files be wrapped before recovery operations.

For detailed information on database recovery and wrapper DBEnvironments, refer to the
ALLBASE/SQL Database Administration Guide.

Using SQLAudit
SQLAudit is an ALLBASE/SQL utility program that can be used in conjunction with audit
DBEnvironments to view the changes that have been made to the DBEnvironment. You
use SQLAudit to audit only committed transactions. For security reasons, you need DBA
authorization to use SQLAudit.

Refer to the “DBA Tasks and Tools” chapter of the ALLBASE/SQL Database
Administration Guide for a full description of SQLAudit.
92 Chapter 2

Using ALLBASE/SQL
Application Programming
Application Programming
To use SQL statements in an application program, you embed the statements in source
code, then use the ALLBASE/SQL preprocessor that supports the source language.

Preprocessor

The ALLBASE/SQL preprocessor performs the following tasks:

• Checks the syntax of SQL statements embedded in an application program.

• Translates embedded SQL statements into compilable C, FORTRAN, COBOL, or Pascal
constructs that call ALLBASE/SQL external procedures at run time.

• Stores a module in the DBEnvironment.

A module contains a group of sections. A section consists of ALLBASE/SQL instructions
for executing an SQL statement at run time. ALLBASE/SQL ensures that any objects
referenced in the section exist and that current authorization criteria are satisfied. The
optimal data access path is determined at preprocessing time rather than at run time
which enhances runtime performance.

When an application program becomes obsolete, you can use the DROP MODULE statement
to delete its module from the DBEnvironment and thus ensure the program can no longer
operate on the databases in the DBEnvironment. For example:

DROP MODULE MyProgram

ALLBASE/SQL has the following statements that create modules when the information
for an SQL statement cannot be completely defined in advance. These dynamic
preprocessing statements are used in both programmatic and interactive environments:

PREPARE
 EXECUTE
 EXECUTE IMMEDIATE

In addition to the above statements, ALLBASE/SQL includes the following statements
which cannot be used interactively:

BEGIN DECLARE SECTION CLOSE CURSOR DECLARE CURSOR
 DELETE WHERE CURRENT DESCRIBE END DECLARE SECTION
 FETCH INCLUDE OPEN
 REFETCH SQLEXPLAIN UPDATE WHERE CURRENT
 WHENEVER

Preprocessed programs receive messages from ALLBASE/SQL through the SQL
Communication Area, called the SQLCA. Information is sent to ALLBASE/SQL through
the SQL Description Area, called the SQLDA. These structures and the above
statements are explained in detail along with examples in the ALLBASE/SQL application
programming guides.
Chapter 2 93

Using ALLBASE/SQL
Application Programming
Authorization

ALLBASE/SQL authorization governs who can preprocess and execute a program that
accesses a DBEnvironment as described here:

• To preprocess a program, you need DBA or CONNECT authority and the authorities
needed to execute all activities against the database that are executed by the program.
The module stored for the program is owned by the login name of the individual who
invokes the preprocessor. A DBA, however, can associate the module with a different
owner at preprocessing time. Other users can assign a group name as the module owner
if they belong to the group.

• To run a program, you need either RUN authority or OWNER authority for the stored
module. You also need the authority to start the DBE session as it is started in the
program.

DBEnvironment Changes

Certain DBEnvironment changes can affect preprocessed programs. For example, one of
the tables used by the program can be dropped from a database, or the authorities held by
the module's owner can change. When you run a preprocessed program, ALLBASE/SQL
automatically determines whether changes such as these have occurred. If any have,
ALLBASE/SQL attempts to revalidate the affected sections. The only SQL statements that
are executed at run time are those that operate on existing objects and those which the
module's owner is authorized to execute.

Some changes do not affect successful execution of the program, but others can. If, for
example, the owner of the program had SELECT and UPDATE authority for a table updated
by the program and the UPDATEauthority is later revoked, the program is no longer able to
update that table. But if SELECT authority is revoked instead, the UPDATE statements for
the table can still execute successfully.

Host Variables

Data is passed back and forth between a program and ALLBASE/SQL in host variables.
SQL statements use both input and output host variables. Input host variables are used to
transfer data into ALLBASE/SQL from the application. Output host variables move
information from ALLBASE/SQL into the application.

An indicator variable is a special type of host variable. In the SELECT, FETCH, UPDATE,
UPDATE WHERE CURRENT, and INSERT statements, the indicator variable is an input host
variable whose value depends on whether an associated host variable contains a null
value. If the indicator variable contains a negative number, then the associated host
variable is null. If it contains a zero or positive number, the value in the host variable is
not null.

In the SELECTand FETCHstatements the indicator variable can be an output host variable
and indicate that a value in the associated host variable is null or a column value is
truncated. Host variable names are prefixed with a colon (:) when embedded in an SQL
statement.

:PartNumber
 :PartName
94 Chapter 2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
 :PartNameInd

When host variables are used in an application outside of an embedded SQL statement,
the host variable name is not prefixed by a colon.

Multiple-Row Manipulations

Programmatic SELECTs and INSERTs can operate only on a row at a time unless you use a
cursor or the BULK option of the SELECT, INSERT , or FETCH statement.

A cursor is a pointer that you advance one row at a time. The BULK option is used to
manipulate multiple rows with a single execution of the SELECT, INSERT , or FETCH
statements. When you do bulk manipulations, input and output host variables must be
arrays.

Using Multiple Connections and Transactions with
Timeouts
A maximum of 32 simultaneous database environment connections can be established by
means of an application program or ISQL. When accessing more than one
DBEnvironment, there is no need to release one before connecting to another. Performance
is greatly improved using this method rather than connecting to and releasing each
DBEnvironment sequentially.

This multi-connect functionality is available in either of two modes. Single-transaction
mode (the default) is standards compliant and allows one transaction at a time to be active
across the currently connected set of DBEnvironments. Multi-transaction mode can be set
to allow multiple, simultaneous transactions across the currently connected set of
DBEnvironments.

Both local and remote DBEnvironments are accessible via multi-connect functionality.
Remote connections require the installation of ALLBASE/NET on the client and on each
related server.

 The following sections discuss how to use multi-connect features:

• Connecting to DBEnvironments

• Setting the Current Connection

• Setting Timeout Values

• Setting the Transaction Mode

• Disconnecting from DBEnvironments

The sample DBEnvironment, PartsDBE, and three hypothetical DBEnvironments,
SalesDBE, AccountingDBE, and BankDBE are used to provide examples in this section.

The ALLBASE/SQL Advanced Application Programming Guide contains further
application programming information regarding multi-connect functionality.)
Chapter 2 95

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
Connecting to DBEnvironments

With multi-connect functionality, you can specify a connection name each time you connect
to a DBEnvironment by means of one of the following statements:

• CONNECT

• START DBE

• START DBE NEW

• START DBE NEWLOG

For example, in ISQL, the following CONNECT statement establishes a connection to
PartsDBE and assigns a connection name for this connection:

isql=> CONNECT TO 'PartsDBE' AS 'Parts1';

In an application program, you can use either a string or, as in the following example, a
host variable:

CONNECT TO 'PartsDBE' AS :Parts1

The connection name is used when setting the current connection, as described in the next
section. It must be unique within an application and be assigned by means of either a
character host variable or a string literal.

Which of the above statements you choose for assigning the connection name depends on
the needs of your application. See Chapter 10 , “SQL Statements A - D,” and Chapters 11
and 12 for the complete syntax of each statement.

Setting the Current Connection

Within an application or ISQL, the current connection is set by the most recent statement
that connects to or sets the connection to a DBEnvironment. In order for a multi-connect
transaction to execute, the current connection must be set to the DBEnvironment in which
the transaction will execute.

To change the current connection within a set of connected DBEnvironments, use a SET
CONNECTION statement to specify the applicable connection name, as in the following
example for ISQL:

isql=> SET CONNECTION 'Parts1';

In an application program, you can use either a string literal or, as in the following
example, a host variable:

SET CONNECTION :Parts1

Remember, any SQL statement issued applies to the current connection.

NOTE Following a RELEASE or DISCONNECT CURRENT command, there is no current
connection until a SET CONNECTION command is used to set the current
connection to another existing connection, or a new connection is established
by using the CONNECT, START DBE, START DBE NEW, or START DBE NEW LOG
commands.
96 Chapter 2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
Setting Timeout Values

Be sure to set a timeout value when using multiple connections to avoid undetected
deadlocks and undetected wait conditions. An undetected deadlock is possible when
multi-transaction mode is used in conjunction with more than one DBEnvironment with
multiple applications accessing the same DBEnvironments at the same time. An
undetected wait condition is possible when multi-transaction mode is used with multiple
connections to the same DBEnvironment within a single ISQL session or application.

A timeout value can be set with any of the following:

• START DBE

• START DBE NEW

• START DBE NEWLOG

• SQLUtil ALTDBE

• SET USER TIMEOUT

• SET SESSION USER TIMEOUT

• SET TRANSACTION USER TIMEOUT

The first four methods provide a means of setting timeout values at the DBEnvironment
level. The SET USER TIMEOUT statement provides a way of setting transaction, session, or
application specific timeout values. The range of possible values is zero (no wait) to the
specified maximum in the DBECon file for a given DBEnvironment.

For a multi-connect application operating in multi-transaction mode, it is essential to
use the SET USER TIMEOUTstatement to avoid an undetectable deadlock or wait condition.
For information regarding transaction modes, see the following section, “Setting the
Transaction Mode.”
Chapter 2 97

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
The following general example shows how to set user timeout values:

1. Put multi-transaction mode in effect.

 SET MULTITRANSACTION ON

2. Connect to the PartsDBE DBEnvironment.

 CONNECT TO 'PartsDBE' AS 'Parts1'

3. Set the timeout value for the PartsDBE connection to an appropriate number of
seconds. In this case, the application will wait five minutes for system resources when
accessing the PartsDBE DBEnvironment.

 SET USER TIMEOUT 300 SECONDS

4. Connect to the SalesDBE DBEnvironment.

 CONNECT TO 'SalesDBE' AS 'Sales1'

5. Set the timeout value for the SalesDBE connection to an appropriate number of
seconds. In this case, your application will wait 30 seconds for system resources when
accessing the SalesDBE DBEnvironment.

 SET USER TIMEOUT 30 SECONDS

6. Set the current connection to Parts1.

 SET CONNECTION 'Parts1'

7. Begin a transaction for PartsDBE. If this transaction waits for system resources more
than five minutes, it will time out and return an error message.

 BEGIN WORK RC

 SELECT PartNumber, PartName, SalesPrice
 FROM PurchDB.Parts
 WHERE PartNumber BETWEEN 20000 AND 21000

If DBERR 2825 is returned, the transaction has timed out, and your application must
take appropriate action.

.

.

.

8. Set the current connection to Sales1.

 SET CONNECTION 'Sales1'

9. Begin a transaction for SalesDBE. If this transaction waits for system resources more
than 30 seconds, it will timeout and return an error message to the application.

 BEGIN WORK RC

 BULK SELECT PartNumber, Sales
 FROM Owner.Sales
 WHERE PartNumber = '1123-P-20'
 AND SaleDate BETWEEN '1991-01-01' AND '1991-06-30'
98 Chapter 2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
 .
 .
 .

If DBERR 2825 is returned, the transaction has timed out, and you must take
appropriate action.

Further discussion of timeout functionality is provided in the ALLBASE/SQL Advanced
Application Programming Guide.

Setting the Transaction Mode

The SET MULTITRANSACTION statement allows you to switch between single-transaction
mode and multi-transaction mode. Single-transaction mode implies sequential execution of
transactions across a set of DBEnvironment connections. When your application requires
multiple, simultaneous transactions, you must choose multi-transaction mode.

WARNING When using multi-transaction mode, be sure the current timeout
value for all connections is set to a value other than NONE (infinity).
This eliminates the possibility of an infinite wait if an undetectable
deadlock or wait condition occurs.

Using Single-Transaction Mode

If your application contains queries for two or more databases and you want to
sequentially execute a single transaction against each database, you can use
single-transaction mode. This mode is the default and is standards compliant. The
following example illustrates the use of single-transaction mode in ISQL:

1. Put single-transaction mode in effect.

isql=> SET MULTITRANSACTION OFF;

2. Connect to two DBEnvironments.

isql=> CONNECT TO 'PartsDBE' AS 'Parts1';
 isql=> CONNECT TO 'SalesDBE' AS 'Sales1';

3. Set the current connection to Parts1.

isql=> SET CONNECTION 'Parts1';

4. Begin a transaction for PartsDBE.

isql=> BEGIN WORK RC;

 isql=> SELECT PartNumber, PartName, SalesPrice
 > FROM PurchDB.Parts
 > WHERE PartNumber BETWEEN 20000 AND 21000;

 .
 .
 .
Chapter 2 99

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
5. End the PartsDBE transaction.

isql=> COMMIT WORK;

6. Set the current connection to Sales1.

isql=> SET CONNECTION 'Sales1';

7. Begin a transaction for SalesDBE.

isql=> BEGIN WORK RC;

 isql=> SELECT PartNumber, Sales
 > FROM Owner.Sales
 > WHERE PartNumber = '1123-P-20';
 .
 .
 .

8. End the SalesDBE transaction.

isql=> COMMIT WORK;

Using Multi-Transaction Mode with Multiple DBEnvironments

The SET MULTITRANSACTION ON statement enables multiple implied or explicit BEGIN
WORK statements across the set of currently connected database environments, with a
maximum of one active transaction per database connection. While in multi-transaction
mode, an application can hold resources in more than one DBEnvironment at a time.

Suppose your application is querying one DBEnvironment and inserting the query result
into another DBEnvironment. You decide to use bulk processing with multi-transaction
functionality. The DBEnvironments could be on different systems (using ALLBASE/NET)
or on the same system, as in the following example using host variables:

1. Put multi-transaction mode in effect.

SET MULTITRANSACTION ON

 DECLARE PartsCursor
 CURSOR FOR
 SELECT OrderNumber, VendorNumber, OrderDate
 FROM PurchDB.Orders
 WHERE OrderDate > Yesterday

2. Connect to two DBEnvironments and set an appropriate timeout value for each.

CONNECT TO 'PartsDBE' AS 'Parts1'
 SET USER TIMEOUT 180 SECONDS

 CONNECT TO 'Part2DBE' AS 'Parts2'
 SET USER TIMEOUT 30 SECONDS

3. Set the current connection to Parts1.

SET CONNECTION 'Parts1'
100 Chapter 2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
4. Begin a transaction for PartsDBE.

BEGIN WORK RC

 OPEN PartsCursor

 BULK FETCH PartsCursor
 INTO :PartsArray, :StartIndex, :NumberOfRows

5. If there are qualifying rows, set the current connection to Parts2.

SET CONNECTION 'Parts2'

6. Begin a transaction for Parts2DBE.

BEGIN WORK RC

At this point, there are two active transactions.

BULK INSERT
 INTO PurchDB2.Orders2
 VALUES (:PartsArray, :StartIndex, :NumberOfRows)

7. Test the sqlcode field of the sqlca. If it equals -2825, a timeout has occurred, and the
transaction was rolled back. Take appropriate action.

8. End the transaction.

COMMIT WORK

There is now one open transaction holding resources in PartsDBE.

9. Set the current connection to Parts1.

SET CONNECTION 'Parts1'

10.If there are more rows to fetch, loop back to execute the FETCH statement again.
Otherwise, end the fetch transaction.

COMMIT WORK
 .
 .
 .

Note that in multi-transaction mode, the SET MULTITRANSACTION OFF statement is valid
only if no more than one transaction is active. In addition, if an active transaction exists, it
must have been initiated in the current connection, otherwise the SET MULTITRANSACTION
OFF statement returns an error (DBERR 10087).

Using Multi-Transaction Mode with One DBEnvironment

Even when your application connects to just one DBEnvironment, you might require
multiple, simultaneous transactions to be active. This technique involves connecting to one
DBEnvironment multiple times and specifying a unique connection name each time. In
this case, you issue a SET CONNECTION statement for the appropriate connection name
before beginning each transaction. Note that just one transaction can be active per
connection.

For example, suppose you want to keep a record of each time access to a particular table is
Chapter 2 101

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
attempted. From a menu, the user chooses to view account information and specifies an
account number. Before giving this information, the application logs the fact that the user
is requesting it. The following pseudocode example illustrates how you might code two
simultaneous transactions, each one accessing BankDBE using host variables:

1. Put multi-transaction mode in effect.

SET MULTITRANSACTION ON

 DECLARE BankCursor
 CURSOR FOR
 SELECT TransactionType,
 DollarAmount,
 BankNumber
 FROM Accounts
 WHERE AccountNumber = :AccountNumber

2. Connect two times to BankDBE. Be sure to specify an appropriate timeout value for
each connection.

 CONNECT TO 'BankDBE' AS 'Bank2'
 SET USER TIMEOUT 30 SECONDS

 CONNECT TO 'BankDBE' AS 'Bank1'
 SET USER TIMEOUT 30 SECONDS

The user enters an account number.

3. Begin a transaction for the Bank1 connection.

 BEGIN WORK RC

 .
 .
 .

4. Execute the following security audit subroutine:

Set the current connection to Bank2.

 SET CONNECTION 'Bank2'

Begin a second transaction for BankDBE.

 BEGIN WORK RC

A security audit trail record is written whether or not the query in the first transaction
completes.

 INSERT INTO BankSecurityAudit
 VALUES (:UserID, :AccountNumber, CURRENT_DATETIME)

Test the sqlcode field of the sqlca. If it equals -2825, a timeout has occurred, and the
transaction was rolled back. Take appropriate action.

End the transaction.

 COMMIT WORK
102 Chapter 2

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
Set the current connection to Bank1.

 SET CONNECTION 'Bank1'

5. Return from the subroutine to complete the open transaction:

 .
 .
 .
 OPEN BankCursor

 BULK FETCH BankCursor
 INTO :BankArray, :StartIndex, :NumberOfRows
 .
 .
 .

Disconnecting from DBEnvironments

The DISCONNECTstatement provides a means of closing one or all active connections within
an application. An active connection is a connection established within the application that
has not been released, stopped, or disconnected.

Your application might require that all connections be terminated when the application
completes. In some cases, it might be desirable to terminate a specific connection at
another point in the application.

In the following example, three database connections are established, and one is
terminated immediately after a transaction completes:

1. Put multi-transaction mode in effect.

SET MULTITRANSACTION ON

2. Connect three times and set a timeout value for each connection. In this case, the
DBEnvironment names and the connection names are specified as host variables.

CONNECT TO 'PartsDBE' AS 'Parts1'
 SET USER TIMEOUT 60 SECONDS

 CONNECT TO 'SalesDBE' AS 'Sales1'
 SET USER TIMEOUT 60 SECONDS

 CONNECT TO 'AccountingDBE' AS 'Accounting1'
 SET USER TIMEOUT 60 SECONDS

 SET CONNECTION 'Parts1'

3. Begin a transaction for PartsDBE.

BEGIN WORK RC

 .
 .
 .
Chapter 2 103

Using ALLBASE/SQL
Using Multiple Connections and Transactions with Timeouts
4. End the transaction that was initiated for the Parts1 connection and terminate the
connection.

COMMIT WORK
 DISCONNECT 'Parts1'

5. Set the current connection to 'Sales1'.

SET CONNECTION 'Sales1'

6. Begin transaction for SalesDBE.

BEGIN WORK RC

 .
 .
 .

7. Set the current connection to Accounting1.

SET CONNECTION 'Accounting1'

8. Begin transaction for Accounting1.

BEGIN WORK RC

 .
 .
 .

9. End both open transactions and disconnect the two active connections. Note that the
COMMIT WORK statement is issued for the current connection's transaction.

COMMIT WORK

 SET CONNECTION 'Sales1'
 COMMIT WORK

 DISCONNECT ALL

Note that following the execution of a DISCONNECT CURRENT statement, no current
connection exists. To establish a current connection following a DISCONNECT CURRENT
statement, you must either establish a connection or set the connection.
104 Chapter 2

Using ALLBASE/SQL
Administering a Database
Administering a Database
Activities that protect and maintain a DBEnvironment and its databases are collectively
referred to as database administration. Several of the SQL statements are used in the
following database administration activities:

• Security management

• Restructuring

• Space management

• Logging

• Recovery

• DBEnvironment management

• DBEnvironment statistics maintenance

Refer to the ALLBASE/SQL Database Administration Guide for full details on these and
other matters of database administration. That manual provides full information on
SQLUtil, which is the primary tool for DBEnvironment reconfiguration and backup.

Understanding the System Catalog
The system catalog is a collection of tables and views that contain data about the following:

• Tables and views in a DBEnvironment

• Any indexes, hash structures, constraints, and rules defined for tables

• DBEFiles and DBEFileSets in the DBEnvironment

• Specific authorities granted to each user

• Programs that can access data in the DBEnvironment

• Current DBEnvironment statistics

• Temporary space for sorts

• Procedures

ALLBASE/SQL uses the system catalog to maintain data integrity and to optimize data
access. The system views are primarily a tool for the DBA. Initially, only the DBA can
access these views. Other users need to be granted SELECT authority by the DBA to
access them. Users without SELECTauthority can retrieve descriptions of database objects
they own from the CATALOG views. For information on system and catalog views, refer to
chapter “System Catalog” in the ALLBASE/SQL Database Administration Guide.

When a DBEnvironment is first configured, the information in the system catalog
describes the system tables and views themselves. As database objects are defined, their
Chapter 2 105

Using ALLBASE/SQL
Understanding the System Catalog
definitions are stored in the system catalog. As database activities occur, most of the
information in the catalog is updated automatically, so the system catalog provides an
up-to-date source of information on a DBEnvironment.

Immediately following an UPDATE STATISTICSstatement, the views in the system catalog,
summarized in Table 2-2, are a source of up-to-date information on a DBEnvironment and
the structure and use of its databases. Refer to the ALLBASE/SQL Database
Administration Guide for additional information on the system catalog.

Table 2-2. System Views

View Name Purpose

SYSTEM.ACCOUNT Identifies the I/O usage of current database sessions.

SYSTEM.CALL Identifies current internal calls.

SYSTEM.CHECKDEF Contains the search condition defined for each table check
constraint. Contains the column name for each column check
constraint.

SYSTEM.COLAUTH Identifies users and groups and their column update and
reference authorities.

SYSTEM.COLDEFAULT Describes the default value of each column defined with a
non-NULL default.

SYSTEM.COLUMN Contains the definition of each column in each table and view.

SYSTEM.CONSTRAINT Contains information on integrity constraints.

SYSTEM.CONSTRAINTCOL Contains information on the columns within unique and
referential constraints.

SYSTEM.CONSTRAINTINDEX Describes each unique and referential constraint index.

SYSTEM.COUNTER Describes the status of internal system counters.

SYSTEM.DBEFILE Describes the characteristics of each DBEFile.

SYSTEM.DBEFILESET Describes the characteristics of each DBEFileset.

SYSTEM.GROUP Describes each authorization group.

SYSTEM.HASH Describes each hash structure.

SYSTEM.IMAGEKEY Describes each Master and Detail Dataset key associated with
TurboIMAGE databases attached to the DBE.

SYSTEM.INDEX Describes each index.

SYSTEM.INSTALLAUTH Identifies users and authorization groups that have been granted
INSTALL authority.

SYSTEM.MODAUTH Identifies users and groups and the programs they can run.

SYSTEM.PARAMDEFAULT Describes the default value of each parameter defined with a
non-NULL default.

SYSTEM.PARAMETER Describes each parameter of each procedure.
106 Chapter 2

Using ALLBASE/SQL
Understanding the System Catalog
SYSTEM.PARTITION Contains partition information.

SYSTEM.PLAN Stores the result of one GENPLAN for each session.

SYSTEM.PROCAUTH Identifies users and groups and the procedures they can execute.

SYSTEM.PROCEDURE Describes each procedure.

SYSTEM.PROCEDUREDEF Contains the definition of each procedure.

SYSTEM.PROCRESULT Describes procedure result columns.

SYSTEM.RULE Describes each rule.

SYSTEM.RULECOLUMN Describes columns an update rule checks for.

SYSTEM.RULEDEF Contains the referencing, WHERE, and EXECUTE PROCEDURE
clause of each rule.

SYSTEM.SECTION Describes stored modules and views.

SYSTEM.SETOPTINFO Contains SETOPT settings for optimizing specific stored sections.

SYSTEM.SPACEAUTH Identifies users and groups and what DBEFileSets they can use
when creating tables, or stored sections.

SYSTEM.SPACEDEFAULT Identifies the default DBEFileSet to use for a new table or stored
section.

SYSTEM.SPECAUTH Identifies users and groups who have special authorities.

SYSTEM.TABAUTH Identifies users and groups and table/view operations they can
perform.

SYSTEM.TABLE Contains a description of each table and view in the
DBEnvironment, including size, owner, and associated
DBEFileSet.

SYSTEM.TEMPSPACE Defines the TempSpace locations.

SYSTEM.TPINDEX Describes third-party indexes used in TurboIMAGE databases
attached to the DBE.

SYSTEM.TRANSACTION Identifies transactions.

SYSTEM.USER Identifies users currently using the database.

SYSTEM.VIEWDEF Contains the SELECTstatement that created each view defined in
the system.

Table 2-2. System Views

View Name Purpose
Chapter 2 107

Using ALLBASE/SQL
Understanding the System Catalog
108 Chapter 2

SQL Queries
3 SQL Queries

This chapter describes SQL queries, through which you access the data in database tables.
The following sections are presented:

• Using the SELECT Statement

• Simple Queries

• Complex Queries

• Using GENPLAN to Display the Access Plan

• Updatability of Queries

The other kinds of data manipulation, using the INSERT, UPDATE, and DELETEstatements,
were presented in the chapter “Using ALLBASE/SQL.”
Chapter 3 109

SQL Queries
Using the SELECT Statement
Using the SELECT Statement
Use the SELECT statement to compose queries. The SELECT statement consists of the
following components:

1. Select list

2. INTO clause

3. FROM clause

4. WHERE clause

5. GROUP BY clause

6. HAVING clause

7. ORDER BY clause

The select list and FROM clause are required; all other components of this statement are
optional. The following example does not contain an INTO clause. Note the reference
numbers identifying the above components:

 1
 |
 _______________|_____________
 | |
 | |
 SELECT PartNumber, COUNT(VendorNumber)
 FROM PurchDB.SupplyPrice ---3
 WHERE DeliveryDays < 25 ---4
 GROUP BY PartNumber ---5
 HAVING COUNT(VendorNumber) > 2 ---6
 ORDER BY PartNumber ---7

The result is presented in the form of a table, called a query result. The result table
(shown next) for this example has two columns: part numbers and a count of vendors who
supply each part. The query result has rows only for parts that can be delivered in fewer
than 25 days by more than two suppliers. The rows are ordered in ascending order by
PartNumber.

 ----------------+-----------
 PARTNUMBER |(EXPR)
 ----------------+-----------
 1123-P-01 | 4
 1133-P-01 | 3
 1243-MU-01 | 3
 1323-D-01 | 3
 1353-D-01 | 3
 1433-M-01 | 3

 .
 .
 .
110 Chapter 3

SQL Queries
Using the SELECT Statement
The select list identifies the columns you want in the query result. In the above example,
the (EXPR) column contains the vendor count specified as COUNT(VendorNumber) in the
select list. Computations of this kind are called aggregate functions, which are defined
in the “Expressions” chapter. The count function counts rows, in this case rows that satisfy
the conditions set up in the SELECT statement clauses.

This example contains no INTO clause because host variables are not being used. The INTO
clause is used in application programs to identify host variables for storing the query
result. For more information on host variables, refer to the appropriate ALLBASE/SQL
application programming guide.

The FROMclause identifies tables and views from which data is to be retrieved, in this case,
PurchDB.SupplyPrice.

The WHERE clause specifies a search condition for screening rows. Search conditions are
comparisons and other operations you can have ALLBASE/SQL perform in order to screen
rows for your query result. The “Search Conditions” chapter defines the ALLBASE/SQL
search conditions. In this case, the search condition states that rows in the query result
must contain information for parts that can be delivered in fewer than 25 days.

The GROUP BY clause tells ALLBASE/SQL how to group rows before performing an
aggregate function in the select list. The rows that satisfy the WHEREclause are grouped. In
this example, the rows are grouped by PartNumber. Then ALLBASE/SQL counts the
number of vendors that supply each part. The result is a vendor count for each part
number.

The HAVINGclause screens the groups. In the above example, data for only groups having a
vendor count greater than two becomes part of the query result.

The ORDER BYclause sorts the query result rows in order by specified column, in this case,
PartNumber.
Chapter 3 111

SQL Queries
Simple Queries
Simple Queries
A simple query contains a single SELECTstatement and typically has a simple comparison
predicate in the WHERE clause. The SELECT statement can be used to retrieve data from
single tables or from multiple tables. To retrieve data from multiple tables, you join the
tables on a common column value. In the following example, ALLBASE/SQL joins rows
from the PurchDB.SupplyPrice and PurchDB.Parts tables that have the same
PartNumber, as specified in the WHERE clause:

SELECT PartName, VendorNumber
 FROM PurchDB.SupplyPrice, PurchDB.Parts
 WHERE PurchDB.SupplyPrice.PartNumber =
 PurchDB.Parts.PartNumber

The query result is as follows:

-------------------------------|------------
PARTNAME	VENDORNUMBER
 Central Processor | 9002
 Central Processor | 9003
 Central Processor | 9007
 Central Processor | 9008
 .
 .
 .

The following statement, using the explicit JOIN syntax, produces the same query result as
the statement above.

SELECT PartName, VendorNumber
 FROM PurchDB.SupplyPrice
 JOIN PurchDB.Parts
 ON PurchDB.SupplyPrice.PartNumber =
 PurchDB.Parts.PartNumber

The same query result is also obtained using the following statement:

SELECT PartName, VendorNumber
 FROM PurchDB.SupplyPrice
 JOIN PurchDB.Parts
 USING (PartNumber)

The following NATURAL JOIN syntax would also produce the same result:

SELECT PartName, VendorNumber
 FROM PurchDB.SupplyPrice
 NATURAL JOIN PurchDB.Parts

In the four examples above, if a SELECT * is used instead of explicitly naming the
displayed columns in the select list, the query result shows some differences. For the first
two examples, the PartNumber column is displayed twice, once for each of the tables from
which it is derived. For the last two examples, where the USING(ColumnList) clause or the
NATURAL JOIN are used, the common columns are coalesced into a single column in the
query result.
112 Chapter 3

SQL Queries
Simple Queries
ALLBASE/SQL creates a row for the query result whenever a part number in table
PurchDB.Parts matches a part number in table PurchDB.SupplyPrice, for example:

PurchDB.Parts:
 PARTNUMBER PARTNAME SALESPRICE
 --
 1123-P-01 Central processor 500.00

 .
 .
 .

PurchDB.SupplyPrice:
 PARTNUMBER VENDORNUMBER ... DISCOUNTQTY
 --
 1123-P-01 9002 1
 1123-P-01 9003 5
 1123-P-01 9007 3
 1123-P-01 9008 5

 .
 .
 .

Any row containing a null part number is excluded from the join, as are rows that have a
part number value in one table, but not the other.

You can also join a table to itself. This type of join is useful when you want to compare data
in a table with other data in the same table. In the following example, table
PurchDB.Parts is joined to itself to determine which parts have the same sales price as
part 1133-P-01:

SELECT q.PartNumber, q.SalesPrice
 FROM PurchDB.Parts p,
 PurchDB.Parts q
 WHERE p.SalesPrice = q.SalesPrice
 AND p.PartNumber = '1133-P-01'

The same query result is obtained from the following explicit join syntax:

SELECT q.PartNumber, q.SalesPrice
 FROM Purchdb.Parts p
 JOIN Purchdb.Parts q
 ON p.SalesPrice = q.SalesPrice
 AND p.PartNumber = '1133-P-01'

To obtain the query result, ALLBASE/SQL joins one copy of the table with another copy of
the table, as follows, using the join condition specified in the WHERE clause or the ON
SearchCondition3 clause:

• You name each copy of the table in the FROM clause by using a correlation name. In
this example, the correlation names are p and q. You use the correlation names to
qualify column names in the select list and other clauses in the query.

• The join condition in this example specifies that for each sales price, the query result
should contain a row only when the sales price matches that of part 1133-P-01.
Chapter 3 113

SQL Queries
Simple Queries
ALLBASE/SQL joins a row in q.PurchDB.Parts to a row in p.PurchDB.Parts having a
part number of 1133-P-01 whenever the SalesPrice value in q.PurchDB.Parts matches
that for 1133-P-01.

The query result for this self-join appears as follows:

 ----------------------|--------------
PARTNUMBER	SALESPRICE
 1133-P-01 | 200.00
 1323-D-01 | 200.00
 1333-D-01 | 200.00
 1523-K-01 | 200.00

For a two or more table join, if you do not use a join predicate in the ONSearchCondition3
clause or the WHEREclause, or if there are no common columns with which to join the tables
in a natural join, the result of the join is the Cartesian product. In the simplest case, for
a two table join, the Cartesian product is the set of rows which contains every possible
combination of each row in the first table concatenated with each row in the second table.

As an example, consider the simple Parts and Colors tables:

Parts Colors

 PartNumber PartName PartNumber Color
 --------------------- -----------------------
 1 Widgit NULL Red
 NULL Thing 2 NULL

3 NULL 3 Green

The following query generates the Cartesian product:

SELECT p.PartNumber, PartName, c.PartNumber, Color FROM Parts p, Colors c

The Cartesian product is shown in the query result:

SELECT p.PartNumber, PartName, c.PartNumber, Color FROM Parts p, Colors c
 ---------------+------------+----------------+-------------------
 PARTNUMBER |PARTNAME |PARTNUMBER |COLOR
 ---------------+------------+----------------+-------------------
 1 |Widgit | NULL|Red
 1 |Widgit | 2|NULL
 1 |Widgit | 3|Green
 NULL |Thing | NULL|Red
 NULL |Thing | 2|NULL
 NULL |Thing | 3|Green
 3 |NULL | NULL|Red
 3 |NULL | 2|NULL

3 |NULL | 3|Green

The same algorithm is used to form the Cartesian product for a three or more table join.
Thus, it can be said that the Cartesian product of a set of n tables is the table consisting of
all possible rows r , such that r is the concatenation of a row from the first table, a row from
the second table,..., and a row from the nth table.

As you can see, the Cartesian product for even a small two table join is much larger than
the source tables. For a three or more table join of several large tables, the Cartesian
product can be so large as to cause you to run out of memory and generate an error.
Therefore it is important to be sure that you include the appropriate join predicate in your
queries and to be sure that you specify columns common to the tables being joined.
114 Chapter 3

SQL Queries
Simple Queries
In the example above, NULLs are included in the tables to show the difference between the
behavior of NULLs in the production of the Cartesian product and the behavior of NULLs
when a common column is specified in the WHERE clause join predicate.

Consider the following query:

 SELECT p.PartNumber, PartName, c.PartNumber, Color
 FROM Parts p, Colors c
 WHERE p.PartNumber = c.PartNumber

The query result for the query is as follows:

SELECT p.PartNumber, PartName, c.PartNumber, Color FROM Parts p, Colors c....
 ---------------+------------+----------------+-------------------
 PARTNUMBER |PARTNAME |PARTNUMBER |COLOR
 ---------------+------------+----------------+-------------------
 3 |NULL | 3|Green

The only rows selected for the query result are those rows for which the join predicate
(p.PartNumber = c.PartNumber) evaluates to true. Because NULL has an undetermined
value, for the cases where the values of the predicate are NULL = NULL , the value of the
predicate is undetermined, and the row is not selected.

However, for the Cartesian product shown in the prior example, due to the absence of a
join predicate, rows with NULLs in the common column are selected because the operation
is the simple concatenation of the rows, regardless of value.
Chapter 3 115

SQL Queries
Complex Queries
Complex Queries
In addition to the simple queries shown in the previous section, you can create complex
queries, which may contain more than one SELECTstatement. At the highest level, a query
is a SELECTstatement, which consists of a query expression followed by an optional ORDER
BY clause. At the next lower level, you can combine different query blocks into a single
query expression with the UNION operator. Lower still, inside each query block is an
optional search condition, which can contain predicates that incorporate subqueries. A
subquery is always a single query block (SELECT) that can contain other subqueries but
cannot contain a UNION. A query expression can contain a maximum of 16 query blocks
from all sources, including UNION, subqueries, and the outer query block.

Figure 3-1. shows the range of possibilities for complex queries.

Figure 3-1. Range of Complex Query Types
116 Chapter 3

SQL Queries
Complex Queries
You can create a complex query by using the following:

• UNION operator, which allows you to take the union of all rows returned by several
query blocks in one SELECT statement.

• Subqueries (also known as nested queries), which allow you to embed a query block
within the search condition of an outer SELECT statement.

• Special predicates, such as ANY, ALL, SOME, EXISTS , and IN, which allow you to
compare the value of an expression with the value of special structures and subqueries.

The next sections describe each type of complex query with examples.

UNION Queries

A SELECT statement can consist of several query blocks connected by UNION or UNION ALL
statements. Each individual SELECT statement returns a query result which is a set of
rows selected from a specified table or tables. The union of these query results is presented
as a table that consists of all rows appearing in one or more of the original query results.

If only the UNION statement is used, all duplicate rows are removed from the final set of
rows. In this case, the maximum size of a tuple in the query result is given by the following
formula:

(SelectListItems +1)*2 + (SumListLengths) <= 4000

where:

SelectListItems is the number of items in the select list.

SumListLengths is the sum of the lengths of all the columns in the select list.

At compile time, SumKeyLengths is computed assuming columns of NULL and VARCHAR
contain no data. At run time, the actual data lengths are assumed.

If the UNION ALL operator is used, duplicates are not removed. Candidates for duplicate
removal are evaluated by comparing entire tuples, not just a single field. Only if two or
more rows are entirely alike are the duplicates removed. In the case of the UNION ALL
operator, the maximum size of a tuple in the query result is 3996 bytes, as it is for a
non-UNION query expression. You cannot use LONG columns in a UNION statement.

Suppose you wanted to find out the part number for all parts that require 30 days or more
for delivery, or are supplied by the vendor whose number is 9002. The following query
delivers this information using the UNION form of the SELECT statement:

SELECT PartNumber
 FROM PurchDB.SupplyPrice
 WHERE DeliveryDays >= 30

 UNION

 SELECT PartNumber
 FROM PurchDB.SupplyPrice
 WHERE VendorNumber = 9002
Chapter 3 117

SQL Queries
Complex Queries
ORDER BY PartNumber

 PARTNUMBER

 1123-P-01
 1133-P-01
 1143-P-01
 1153-P-01
 1223-MU-01
 1233-MU-01
 1323-D-01
 1333-D-01
 1343-D-01
 1523-K-01
 1623-TD-01
 1823-PT-01

Note that no rows are duplicated. When the UNION statement is not qualified by the ALL
statement, all duplicate rows are removed from the query result. Notice that the ORDER BY
clause must be at the end of the SELECT statement. It cannot be included in the separate
query expressions that make up the overall statement. Only the final query result can be
ordered.

If the UNION ALLstatement is used in the previous query, the result can contain duplicate
rows. The following example flags duplicate rows with two types of arrows that are
described below:

 PARTNUMBER

 1123-P-01
 1123-P-01 <----
 1123-P-01 <---+
 1133-P-01
 1133-P-01 <---+
 1143-P-01
 1143-P-01 <----
 1153-P-01
 1153-P-01 <---+
 1223-MU-01
 1233-MU-01 <----
 1323-D-01
 1333-D-01
 1343-D-01
 1523-K-01
 1623-TD-01
 1823-PT-01

In the above example, rows are duplicated for the following:

• More than one vendor supplies some parts (these duplicates are indicated by <----)

• Vendor 9002 supplies some parts that take 30 or more days to deliver (these duplicates
are indicated by <---+)
118 Chapter 3

SQL Queries
Complex Queries
Note that you could get the same information in other ways. For example, you could use
two separate queries. Alternatively, you could use two predicates in the search condition
joined by the OR operator as follows:

 SELECT PartNumber
 FROM PurchDB.Supplyprice
 WHERE DeliveryDays >= 30 OR
 VendorNumber = 9002
 ORDER BY PartNumber

This query still contains duplicate rows where more than one vendor supplies a given part;
but no duplicates are caused by vendor 9002 supplying some parts, and that some of these
take 30 or more days to deliver. The duplicates could be eliminated by using the SELECT
DISTINCT instead of SELECT statement.

Using Character Constants with UNION

If you want to see which SELECTstatement in the UNIONstatement contributed each row to
the query result, you can include character constants in your SELECTstatements. A second
column is then generated that shows the originating query block for each row, as in this
example:

SELECT PartNumber, 'deliverydays >= 30'
 FROM PurchDB.SupplyPrice
 WHERE DeliveryDays >= 30

 UNION ALL
SELECT PartNumber, 'supplied by 9002 '

 FROM PurchDB.SupplyPrice
 WHERE VendorNumber = 9002

 ORDER BY PartNumber

 ----------------+------------------
 PARTNUMBER |(CONST)
 ----------------+------------------
 1123-P-01 |deliverydays >= 30
 1123-P-01 |deliverydays >= 30 <----
 1123-P-01 |supplied by 9002
 1133-P-01 |supplied by 9002
 1133-P-01 |deliverydays >= 30
 1143-P-01 |deliverydays >= 30
 1143-P-01 |deliverydays >= 30 <----
 1153-P-01 |deliverydays >= 30
 1153-P-01 |supplied by 9002
 1223-MU-01 |deliverydays >= 30
 1233-MU-01 |deliverydays >= 30
 1323-D-01 |deliverydays >= 30
 1333-D-01 |deliverydays >= 30
 1343-D-01 |deliverydays >= 30
 1523-K-01 |deliverydays >= 30
 1623-TD-01 |deliverydays >= 30
 1823-PT-01 |supplied by 9002
 1923-PA-01 |supplied by 9002
Chapter 3 119

SQL Queries
Complex Queries
The indicated duplicate rows would have been removed if the example contained the UNION
statement instead of UNION ALL.

Subqueries

A subquery, also known as a nested query, is a query block that is completely embedded in
a predicate. A subquery may appear within the search condition which is a part of the
WHEREor HAVINGclause of a SELECT, INSERT, UPDATEor DELETEstatement. It is like any
other query expression, except that it cannot contain a UNIONoperator. A subquery may be
used only in the following types of predicates:

• Comparison predicate

• EXISTS predicate

• IN predicate

• Quantified predicate

Subqueries can be used to arrive at a single value that lets you determine the selection
criteria for the outer query block. In the following simple example, the subquery (in
parentheses) is evaluated to determine a single value used in selecting the rows for the
outer query:

SELECT *
 FROM PurchDB.SupplyPrice
 WHERE PartNumber = (SELECT PartNumber
 FROM PurchDB.Parts
 WHERE PartName = 'Cache Memory Unit')

Subqueries are most frequently found within special predicates, which are described fully
in the next section. Additional examples of subqueries can be found there.

Special Predicates

The three types of special predicate are listed here:

• The quantified predicate (ALL, ANY , or SOME), used to compare the value of an
expression with some or all of the values of an operand.

• The IN predicate, used to check for inclusion of an expression in a set of values.

• The EXISTS predicate, used to check for the existence of a value in an operand.

With all these types, subqueries may be used; for ALL, ANY, SOME , and IN predicate,
additional forms allow the use of a value list in place of a subquery. For each type of special
predicate the examples in the next sections show both subquery and non-subquery forms
of the predicate whenever both possibilities exist.

Quantified Predicate

A quantified predicate compares a value with a number of other values that are either
contained in a value list or derived from a subquery. The quantified predicate has the
following general form:

Expression ComparisonOperator Quantifier {ValueListSubQuery }
120 Chapter 3

SQL Queries
Complex Queries
The comparison operators shown here are allowable:

 = <> < > <= >=

The quantifier is one of these three keywords:

 ALL ANY SOME

The value list is of this form:

 (Val1 , Val2 , ..., Valn)

Using the ANY or SOME Quantifier with a Value List

With the ANY or SOME quantifier (ANY and SOME are synonymous), the predicate is true if
any of the values in the value list or subquery relate to the expression as indicated by the
comparison operator.

Suppose you have a list of the part numbers for parts you have been buying from vendor
9011. You would like to start obtaining those parts from other vendors. The following
example shows how you would find the part number and vendor number for all parts
supplied by vendor 9011 that are also supplied by some other vendor:

SELECT PartNumber, VendorNumber
 FROM PurchDB.SupplyPrice
 WHERE PartNumber = ANY
 ('1343-D-01', '1623-TD-01', '1723-AD-01', '1733-AD-01')
 AND NOT VendorNumber = 9011

 ----------------+------------
 PARTNUMBER |VENDORNUMBER
 ----------------+------------
 1343-D-01 | 9001
 1623-TD-01 | 9015
 1723-AD-01 | 9004
 1723-AD-01 | 9012
 1723-AD-01 | 9015
 1733-AD-01 | 9004
 1733-AD-01 | 9012

The quantifier ANYis used to determine whether PurchDB.SupplyPrice contains any of the
part numbers in the value list. If so, the query returns the part number and vendor
number of vendors supplying that part. The final predicate eliminates all instances where
the part is supplied by vendor 9011. Note that SOME could be used in place of ANY, because
SOME and ANY are synonyms.
Chapter 3 121

SQL Queries
Complex Queries
Using ANY or SOME with a Subquery

You can also use the subquery form of the quantified predicate. If you wanted to distribute
some of the business you have been giving vendor 9004, you might want to find vendor
numbers for each vendor supplying at least one part supplied by vendor 9004. The
following query returns this information:

SELECT DISTINCT VendorNumber
 FROM PurchDB.SupplyPrice
 WHERE PartNumber = ANY (SELECT PartNumber
 FROM PurchDB.SupplyPrice
 WHERE VendorNumber = 9004)

 VENDORNUMBER

 9004
 9007
 9008
 9009
 9011
 9012
 9015

The subquery obtains the part numbers for all parts supplied by vendor 9004. The
quantifier ANY is then used to determine if PartNumber is the same as any of these parts.
If so, the vendor number supplying that part is returned in the query result.

Some queries may require you to use ANY and SOME constructs in a manner that is not
intuitive. Consider the following query:

SELECT T1.SalesPrice
 FROM T1
 WHERE T1.PartNumber <> ANY (SELECT T2.PartNumber
 FROM T2)

The inexperienced SQL user might think that this means, “Select the sales price of parts
from table T1 whose numbers are not equal to any part numbers in table T2.” However,
the actual meaning is, “Select the sales price of parts from T1 such that the part number
from T1 is not equal to at least one part number in T2.” This query returns the sales
price of all the parts in T1 if T2 has more than one part.

A less ambiguous form using EXISTS is as follows:

SELECT T1.SalesPrice
 FROM T1
 WHERE EXISTS (SELECT T2.PartNumber
 FROM T2
 WHERE T2.PartNumber <> T1.PartNumber)

Using the ALL Quantifier

With the ALL quantifier, the predicate is true only if all of the values in the value list or
subquery relate to the expression as indicated by the comparison operator.

Assume you have been buying parts from vendor 9010. To get a discount from this vendor,
you have been required to purchase parts in larger quantities than you would like. To
122 Chapter 3

SQL Queries
Complex Queries
avoid large stockpiles of these parts, you want to find vendors whose discount is not
dependent on the purchase of such large quantities. The following query uses two
subqueries and an ALL quantifier to retrieve the information you want:

SELECT VendorNumber, PartNumber, DiscountQty
 FROM PurchDB.SupplyPrice
 WHERE DiscountQty < ALL (SELECT DiscountQty
 FROM PurchDB.SupplyPrice
 WHERE VendorNumber = 9010)
 AND PartNumber IN (SELECT PartNumber
 FROM PurchDB.SupplyPrice
 WHERE VendorNumber = 9010)

 ------------+----------------+-----------
 VENDORNUMBER|PARTNUMBER |DISCOUNTQTY
 ------------+----------------+-----------
 9006|1423-M-01 | 1
 9007|1433-M-01 | 15

The first subquery obtains the number of parts needed to qualify for a discount for each
part supplied by vendor 9010. Using the quantifier ALL, rows are selected only when the
quantity needed for a discount is less than that needed for any part supplied by 9010. The
second subquery limits the selection to only those part numbers supplied by vendor 9010.
Thus, the query result shows every part supplied by vendor 9010 which can be obtained
from another vendor in smaller quantities with a discount.

IN Predicate

An IN predicate compares a value with a list of values or a number of values derived by the
use of a subquery. The IN predicate has the following general form:

Expression [NOT] IN {ValueList SubQuery }

The ValueList and SubQuery forms of the IN predicate are described separately in the
following sections.

Note that IN is the same as = ANY.
Chapter 3 123

SQL Queries
Complex Queries
Using the IN Predicate with a Value List

If you wanted to obtain the numbers of all vendors who supplied a given list of parts, the
following query could be used:

SELECT DISTINCT VendorNumber
 FROM PurchDB.SupplyPrice
 WHERE PartNumber
 IN ('1143-P-01', '1323-D-01', '1333-D-01', '1723-AD-01',
 '1733-AD-01')

 VENDORNUMBER

 9004
 9007
 9008
 9009
 .
 .
 .

Using the IN Predicate with a Subquery

If you wanted a list of all the vendors who supply the same parts that vendor 9004
supplies, the following query could be used:

SELECT DISTINCT VendorNumber
 FROM PurchDB.SupplyPrice
 WHERE PartNumber IN (SELECT PartNumber
 FROM PurchDB.SupplyPrice
 WHERE VendorNumber = 9004)

 VENDORNUMBER

 9004
 9007
 9008
 9009
 .
 .
 .

The subquery determines the part number of every part supplied by vendor 9004. The
outer query selects every vendor who supplies one or more of those parts. DISTINCT
removes duplicates from the final query result, as many vendors supply more than one
such part.

EXISTS Predicate

The EXISTS predicate, also known as the existential predicate, tests for the existence of a
row satisfying some condition. It has the following general format:

 EXISTS Subquery

EXISTS is true only if the query result of the subquery is not empty; that is, a row or rows
are returned as a result of the subquery. If the query result is empty, the EXISTS predicate
124 Chapter 3

SQL Queries
Complex Queries
is false.

In the following example, suppose you need to determine the names of all vendors who
currently supply parts:

SELECT v.VendorName
 FROM PurchDB.Vendors v
 WHERE EXISTS (SELECT *
 FROM PurchDB.SupplyPrice sp
 WHERE sp.VendorNumber = v.VendorNumber)

 VENDORNAME

 Remington Disk Drives
 Dove Computers
 Space Management Systems
 Coupled Systems
 Underwood Inc.
 Pro-Litho Inc.
 Eve Computers
 Jujitsu Microelectronics
 Latin Technology
 KellyCo Inc.
 Morgan Electronics
 Seminational Co.
 Seaside Microelectronics
 Educated Boards Inc.
 Proulx Systems Inc.

In this example, v and sp are correlation names, which enable ALLBASE/SQL to
distinguish the two VendorNumber columns in the predicate without requiring you to
repeat each table name in full.

You can also use the NOT EXISTS form of the existential predicate. If you wanted to find
those vendors who are not currently supplying you with parts you could use a query of the
form shown here:

 SELECT v.VendorName
 FROM PurchDB.Vendors v
 WHERE NOT EXISTS (SELECT *
 FROM PurchDB.SupplyPrice sp
 WHERE sp.VendorNumber = v.VendorNumber)

 VENDORNAME

 Covered Cable Co.
 SemiTech Systems
 Chocolate Chips
Chapter 3 125

SQL Queries
Complex Queries
Correlated Versus Noncorrelated Subqueries

In many cases, it is possible to execute the subquery just once, and obtain a result which is
passed to the outer query for its use. Here is an example:

SELECT *
 FROM PurchDB.SupplyPrice

WHERE PartNumber = (SELECT PartNumber
 FROM PurchDB.Parts
 WHERE PartName = 'Cache Memory Unit')

This kind of subquery is a noncorrelated subquery.

In other cases, however, it is necessary to evaluate a subquery once for every row in the
outer query, as in the following:

SELECT v.VendorName
 FROM PurchDB.Vendors v
 WHERE NOT EXISTS (SELECT *
 FROM PurchDB.SupplyPrice sp
 WHERE sp.VendorNumber = v.VendorNumber)

The predicate in the subquery references the column value v.VendorNumber, which is
defined by the outer query block. When this type of relationship exists between a column
value in the subquery and a column value in an outer query block, the query is called a
correlated subquery.

Recognizing correlated subqueries is important when performance is a priority. Correlated
subqueries require the optimizer to use an outer loop join algorithm rather than a
sort-merge join. Because a sort-merge join is orders of magnitude faster than an outer loop
join, correlated subqueries pay a performance penalty. In addition, when the ANY, SOME,
ALL, or IN predicate makes use of subqueries, the queries are converted into correlated
subqueries using the EXISTS predicate. Therefore, if at all possible, queries using ANY,
SOME, ALL, IN , or the correlated form of the EXISTS predicate should be done as joins of
two or more tables rather than by using subqueries if performance is an issue. In fact, it is
possible to state a query as a join as well as in a form using subqueries; non-correlated
subqueries are faster than sort-merge joins. Sort-merge joins are faster than correlated
subqueries which use an outer loop join.

Outer Joins

An inner join returns only tuples for which matching values are found between the
common columns in the joined tables. A natural inner join specifies that each pair of
common columns is coalesced into a single column in the query result. The term join has
become synonymous with the term natural inner join because that type of join is used so
frequently.

To include in the query result those tuples from one table for which there is no match in
the common columns of the other table you use an outer join. The term natural, when
applied to an outer join, has the same meaning as with an inner join. Common columns are
coalesced into a single column in the query result. No duplicate columns are returned.
126 Chapter 3

SQL Queries
Complex Queries
Outer Joins Using Explicit JOIN syntax

Outer joins may be constructed using the explicit JOIN syntax of the SELECT statement
(see the “SELECT” section of the “SQL Statements” chapter). In a two table outer join, the
first table listed in the FROM clause of the SELECT statement is considered the left hand
table and the second is considered the right hand table.

The set of rows in the result may be viewed as the union of the set of rows returned by an
inner join (the inner part of the join) and the set of rows from one table for which no match
is found in the corresponding table (the outer part of the join).

If the unmatched rows from both tables being joined are preserved, the join is a
symmetric outer join. If the rows are preserved from only the left hand table, the join is
a left asymmetric outer join. (The word asymmetric is usually omitted.) If the rows are
preserved from only the right hand table, the join is a right outer join. The current
syntax will allow you to specify either a left outer join or a right outer join, but not a
symmetric outer join. A technique for creating a symmetric outer join using the UNION
operator is described later in the section, “Symmetric Outer Joins Using the UNION
Operator.”

A left outer join obtains the rows from both tables for which there is a matching value in
the common column or columns (the inner part) and the rows from the left hand table for
which there is no match in the right hand table (the outer part). Each unmatched row from
the left hand table is extended with the columns coming from the right hand table. Each
column in that extension has a null value.

A right outer join obtains the rows from both tables for which there is a matching value in
the common column or columns, and the rows from the right hand table for which there is
no match in the left hand table. The unmatched rows from the right hand table are
extended with the columns coming from the left hand table, with null column values
returned in that extension for every result row which has no match in the left hand table.

For example, the following right outer join is between the SupplyPrice and the Vendors
tables. For all vendors who supply parts, it returns the Part Number, Vendor Name and
Vendor City. For all vendors who do not supply parts, it returns just the Vendor Name and
Vendor City.

SELECT PartNumber, VendorName, VendorCity
 FROM Purchdb.SupplyPrice sp
 RIGHT JOIN PurchdB.Vendors v
 ON sp.VendorNumber = v.VendorNumber
 ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...
----------------+----------------------------+--------------------------

 PARTNUMBER |VENDORNAME |VENDORCITY
----------------+----------------------------+--------------------------

|Chocolate Chips |Lac du Choc <--Unmatched
|SemiTech Systems |San Jose <--rows from
|Kinki Cable Co. |Bakersfield <--Vendors table

1943-FD-01 |Eve Computers |Snake River
1933-FD-01 |Remington DiskDrives |Concord
1933-FD-01 |Educated Boards Inc. |Phoenix
1933-FD-01 |Latin Technology |San Jose
1933-FD-01 |Space Management Systems |Santa Clara
1933-FD-01 |Eve Computers |Snake River
1923-PA-01 |Jujitsu Microelectronics |Bethesda
Chapter 3 127

SQL Queries
Complex Queries
.

.

.

Number of rows selected is 16
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

When you use the ON clause of the JOIN syntax, it must contain, at a minimum, the
predicate which specifies the join condition. Other predicates may be placed within the
SELECT statement, but their location is critical as the following examples show.

Additional predicates may be placed in the ON clause. These predicates limit the rows
participating in the inner join associated with the ON clause. All rows excluded by such
predicates participate in the outer part of the associated join. The following query returns
(in the inner part of the join) Part Numbers for all vendors who supply parts and are
located in California (italics). It also returns, without the Part Number (in the outer part
of the join) all vendors who do not supply parts (BOLD), and all vendors who do supply
parts, but are not located in California.

SELECT PartNumber, VendorName, VendorCity
 FROM Purchdb.SupplyPrice sp
 RIGHT JOIN PurchdB.Vendors v
 ON sp.VendorNumber = v.VendorNumber
 AND VendorState = 'CA'
 ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...
---------------+------------------------------+--------------------
PARTNUMBER |VENDORNAME |VENDORCITY
---------------+------------------------------+--------------------

|Underwood Inc. |Atlantic City
|Remington Disk Drives |Concord
|Coupled Systems |Puget Sound
|Kinki Cable Co. |Bakersfield
|Jujitsu Microelectronics |Bethesda
|Dove Computers |Littleton
|SemiTech Systems |San Jose
|KellyCo Inc. |Crabtree
|Educated Boards Inc. |Phoenix
|Chocolate Chips |Lac du Choc
|Morgan Electronics |Braintree
|Eve Computers |Snake River

1933-FD-01 | Latin Technology | San Jose
1933-FD-01 | Space Management Systems | Santa Clara

First 16 rows have been selected.
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

In the above example, the rows participating in the inner join are further restricted by
adding to the ON clause, AND VendorState = 'CA'. All vendors that are not in California are
placed in the outer part of the join.

If you move the limiting predicate from the ON clause to the WHERE clause, the query
returns a different result. In the following query, the inner part of the join still contains all
vendors who supply parts and are located in California. However, in the outer part of the
join, only those vendors who do not supply parts and are in California are included.
128 Chapter 3

SQL Queries
Complex Queries
SELECT PartNumber, VendorName, VendorCity
 FROM Purchdb.SupplyPrice sp
 RIGHT JOIN PurchdB.Vendors v
 ON sp.VendorNumber = v.VendorNumber
 WHERE VendorState = 'CA'
 ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...
----------------+------------------------------+--------------------
 PARTNUMBER |VENDORNAME |VENDORCITY
----------------+------------------------------+--------------------

|SemiTech Systems |San Jose
|Kinki Cable Co. |Bakersfield

1933-FD-01 |Latin Technology |San Jose
1933-FD-01 |Space Management Systems |Santa Clara

 .
 .
 .

 First 16 rows have been selected.
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

In the above example, the WHERE clause is applied to all the rows returned, regardless of
whether they are in the inner or outer part of the join. Thus no rows are returned unless
the vendor is located in California.

If you want the inner part of the query to contain all vendors who do supply parts and are
located in California while the outer part contains all vendors who do not supply parts,
regardless of location, use the query shown below.

SELECT PartNumber, VendorName, VendorCity
 FROM Purchdb.SupplyPrice sp
 RIGHT JOIN PurchdB.Vendors v
 ON sp.VendorNumber = v.VendorNumber
 WHERE VendorState = 'CA'
 OR VendorState <> 'CA' AND PartNumber IS NULL
 ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp
RIGHT...

----------------+------------------------------+--------------------
PARTNUMBER |VENDORNAME |VENDORCITY

----------------+------------------------------+--------------------
|SemiTech Systems |San Jose
|Chocolate Chips |Lac du Choc
|Kinki Cable Co. |Bakersfield

1933-FD-01 |Latin Technology |San Jose
1933-FD-01 |Space Management Systems |Santa Clara
1923-PA-01 |Seminational Co. |City of Industry
1833-PT-01 |Seminational Co. |City of Industry
1833-PT-01 |Seaside Microelectronics |Oceanside
1823-PT-01 |Seaside Microelectronics |Oceanside

 .
 .
 .

 First 16 rows have been selected.
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

If all common columns between the tables being joined are to be used for the join, the
Chapter 3 129

SQL Queries
Complex Queries
keyword NATURALmay be used so long as the specification of the ONclause join predicate is
omitted. This technique may be used when joining more than two tables, as in the query
shown below:

SELECT PartName, DeliveryDays, VendorName
 FROM PurchDB.Parts
 NATURAL RIGHT JOIN PurchDB.SupplyPrice
 NATURAL RIGHT JOIN PurchDB.Vendors
 ORDER BY PartName DESC

SELECT PartName, DeliveryDays, VendorName FROM PurchDB.Parts NATURAL RIGHT...
 ------------------------------+------------+-------------------------

PARTNAME |DELIVERYDAYS|VENDORNAME
 ------------------------------+------------+-------------------------

| |SemiTech Systems
| |Kinki Cable Co.
| |Chocolate Chips

Winchester Drive | 20|Remington Disk Drives
Winchester Drive | 30|Morgan Electronics
Video Processor | 20|Latin Technology
Video Processor | 30|Jujitsu Microelectronics
Video Processor | 15|Eve Computers

 .
 .
 .

 First 16 rows have been selected.
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

Outer Joins Using the UNION Operator

An outer join can also be created by using the UNION operator.

Suppose you want to create a list of vendors who either supply some part with a unit price
less than $100 or else do not supply any parts at all. To do this, merge two separate queries
with a UNION ALL statement, as in the following examples.

The first query shown here selects the names of vendors who do not supply parts:

 SELECT v.VendorName
 FROM PurchDB.Vendors v
 WHERE NOT EXISTS (SELECT *
 FROM PurchDB.SupplyPrice sp
 WHERE sp.VendorNumber = v.VendorNumber)

Notice that a second query block is embedded within the first query expression. It creates a
temporary table containing the names of all vendors who do supply parts. Then note the
special predicate EXISTS, which is negated in this case. The outer SELECT statement
allows us to identify the name of each vendor in the Vendors table. Each VendorName is
compared against the list of vendors who do supply parts. If the VendorName from the
outer SELECT statement is not found in the temporary table created by the subquery, the
outer VendorName is returned to the query result, providing us a list of all the Vendors
who do not supply parts.

The second query shown here defines the vendors who supply at least one part with a unit
price under $100:
130 Chapter 3

SQL Queries
Complex Queries
 SELECT DISTINCT v.VendorName
 FROM PurchDB.Vendors v, PurchDB.SupplyPrice sp
 WHERE v.VendorNumber = sp.VendorNumber
 AND sp.UnitPrice < 100.00

The next example shows this query joined to the previous one by the UNION ALLstatement.
It also shows the use of character constants to indicate which rows result from which
query block.

 SELECT DISTINCT v.VendorName, 'supplies parts under $100'
 FROM PurchDB.Vendors v, PurchDB.SupplyPrice sp
 WHERE v.VendorNumber = sp.VendorNumber
 AND sp.UnitPrice < 100.00

 UNION ALL

 SELECT v.VendorName, 'none supplied'
 FROM PurchDB.Vendors v
 WHERE NOT EXISTS (SELECT *
 FROM PurchDB.SupplyPrice sp
 WHERE sp.VendorNumber = v.VendorNumber)

 ------------------------------+-------------------------+
 VENDORNAME |(CONST) |
 ------------------------------+-------------------------+
 Dove Computers |supplies parts under $100|
 Educated Boards Inc. |supplies parts under $100|
 Jujitsu Microelectronics |supplies parts under $100|
 Proulx Systems Inc. |supplies parts under $100|
 Seaside Microelectronics |supplies parts under $100|
 Seminational Co. |supplies parts under $100|
 Underwood Inc. |supplies parts under $100|
 Covered Cable Co. |none supplied |
 SemiTech Systems |none supplied |
 Chocolate Chips |none supplied |

Symmetric Outer Join Using the UNION Operator

Since the syntax does not support a symmetric outer join, you might try to simulate a
symmetric outer join using the left outer join syntax in combination with the right outer
join syntax. Intuitively, the following query might seem correct:

SELECT PartName, PartNumber, VendorName, VendorCity
 FROM Purchdb.Parts
 NATURAL LEFT JOIN Purchdb.SupplyPrice
 NATURAL RIGHT JOIN Purchdb.Vendors
 ORDER BY PartName, VendorName

This three table outer join does a left outer join between the Parts and the SupplyPrice
tables. The result of that join is then used as the left hand table in a right outer join with
the Vendors table.

It would seem as though the result first displays all parts supplied by a vendor, then all
parts for which there is no supplier, followed by all vendors who do not supply parts.
Chapter 3 131

SQL Queries
Complex Queries
But, the action of the query is subtle. The natural left join preserves the parts from the
Parts table that is not supplied by any vendor. This supplies the left hand component for
the simulated symmetric outer join. However, although the natural right join preserves
the three vendors from the vendors table who do not supply parts (the right hand
component for the simulated symmetric outer join), it eliminates the unmatched parts
from the Parts table. This happens because the natural right join only preserves
unmatched rows from the right hand table, eliminating the row from the Parts table.

NOTE If you test the next query on the sample database, you must first use the
following ISQL INSERT statement to add a row with no vendor to the Parts
table.

INSERT INTO PurchDB.Parts
 (PartNumber, PartName)
 VALUES ('XXXX-D-LO', 'test part');

To preserve all the unmatched rows from both sides, thus generating a full symmetric
outer join, you must use the following syntax:

SELECT PartName, PartNumber, VendorName
 FROM PurchDB.Parts
 NATURAL LEFT JOIN PurchDB.SupplyPrice
 NATURAL LEFT JOIN PurchDB.Vendors
 UNION
 SELECT PartName, PartNumber, VendorName
 FROM PurchDB.Parts
 NATURAL RIGHT JOIN PurchDB.SupplyPrice
 NATURAL RIGHT JOIN PurchDB.Vendors
 UNION
 SELECT PartName, PartNumber, VendorName
 FROM PurchDB.Parts
 NATURAL RIGHT JOIN PurchDB.SupplyPrice
 NATURAL LEFT JOIN PurchDB.Vendors
 ORDER BY PartName DESC, PartNumber;

The result from the natural left join...natural left join preserves the unmatched part from
Parts. The natural right join...natural right join preserves the unmatched vendors from
Vendors. The natural right join...natural left join would preserve all unmatched rows from
SupplyPrice if there were any (in this example there are none). The union operation
combines the three results, preserving the unmatched rows from all joins. There are three
complete sets of rows that satisfy the inner join, but the union operation eliminates the
duplicate rows unless UNION ALL is specified.
132 Chapter 3

SQL Queries
Complex Queries
The result of the above query follows:

SELECT PartName, PartNumber, VendorName FROM PurchDB.Parts NATURAL LEFT...
 ------------------------------+----------------+---------------------

PARTNAME |PARTNUMBER |VENDORNAME
 ------------------------------+----------------+---------------

| |Kinki Cable Co.
| |SemiTech Systems
| |Chocolate Chips
|XXXX-D-LO|

Winchester Drive |1343-D-01 |Remington Disk Drives
Winchester Drive |1343-D-01 |Morgan Electronics
Video Processor |1143-P-01 |Eve Computers
Video Processor |1143-P-01 |Coupled Systems

 .
 .
 .
Chapter 3 133

SQL Queries
Using GENPLAN to Display the Access Plan
Using GENPLAN to Display the Access Plan
When a statement is executed in ISQL or is preprocessed in an application program, the
optimizer attempts to generate the most efficient path to the desired data. Taking into
account the available indexes, the operations that must be executed, and the clauses in the
predicates that may increase the selectivity of the statement, the optimizer decides what
indexes to use and the proper order of the needed operations. The result of this evaluation
process is an access plan produced by the optimizer.

In most cases, the optimizer chooses the best plan. But, there are times when you may
want to display the access plan chosen by the optimizer. You may then evaluate that plan
in light of your specific knowledge of the database and decide if the optimizer has
generated the optimum access plan for your situation.

If you want to override the access plan chosen by the optimizer, issue the SETOPT
statement.

The statements used to generate and display the access plan are the GENPLAN statement
and a SELECT on the pseudotable SYSTEM.PLAN.

Generating a Plan

Suppose you want to generate the access plan for the query shown below.

isql=> GENPLAN FOR

 > SELECT p.PartName, p.PartNumber, v.VendorName,
 > s.UnitPrice, i.QtyOnHand
 > FROM PurchDb.Parts p, PurchDB.Inventory i,
 > PurchDB.SupplyPrice s, PurchDB.Vendors v
 > WHERE p.PartNumber = i.PartNumber
 > AND s.PartNumber = p.PartNumber
 > AND s.VendorNumber = v.VendorNumber
 > AND p.PartNumber = '1123-P-01';

The access plan will then be placed in the system pseudotable, SYSTEM.PLAN, but will
not be displayed until you do a SELECT from SYSTEM.PLAN. You can also generate the
access plan for a query that is stored in the database as a stored section. For example:

 isql=> GENPLAN FOR MODULE SECTION MyModule(10);

Displaying a Query Access Plan

To display the access plan generated by the optimizer, showing the columns in the order most useful
to you, execute the following statement:

isql=> SELECT Operation, TableName, IndexName, QueryBLock, Step, Level
 > FROM System.Plan;
134 Chapter 3

SQL Queries
Using GENPLAN to Display the Access Plan
SELECT Operation, TableName, IndexName, QueryBlock, Step, Level FROM System.Plan
-----------------+------------+----------------+-----------+--------+--------
OPERATION |TABLENAME |INDEXNAME |QUERYBLOCK |STEP |LEVEL
-----------------+------------+----------------+-----------+--------|--------
index scan |INVENTORY |INVPARTNUMINDEX | 1| 1| 4
index scan |PARTS |PARTNUMINDEX | 1| 2| 4
merge join | | | 1| 3| 3
serial scan |SUPPLYPRICE | | 1| 4| 3
nestedloop join | | | 1| 5| 2
index scan |VENDORS |VENDORNUMINDEX | 1| 6| 2
nestedlopp join | | | 1| 7| 1

Number of rows selected is 7
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >r

Interpreting a Display

The information from the columns in SYSTEM.PLAN helps you to understand the access
plan generated by the optimizer. The columns are discussed in the order most useful to
you.

OPERATION shows each operation being executed to obtain the data. Because your
greatest concern is usually whether indexes are being used effectively, you
should look at this column first. For each index scan operation, indexes are
being used to access the data.

If there is no limiting predicate in the WHERE clause of the statement, or
if the predicate will cause the selection of a large percentage of the rows
from the table, a serial scan will be chosen instead of an index scan.

When a join is specified, you can look at the join chosen to see if it is the
most appropriate type of join, considering the specific data in your
database.

For more information, see the “Understanding Data Access Paths” section
of Chapter 2 , “Using ALLBASE/SQL.”

TABLENAME shows the table upon which an operation is being executed. Thus, you can
see the tables for which indexes are being used, and the tables which are
participating in various joins.

INDEXNAME shows which specific index is being used to access data in a particular
table. This may be useful if multiple indexes exist for a given table.

QUERYBLOCK shows the block in which a given operation is taking place. A simple
statement will have only one query block. More complex statements will be
broken into additional blocks to simplify processing.

STEP shows the order in which operations are executed within a given
queryblock. From this information you can determine the order of
operations.

LEVEL shows the hierarchy of the operations so you can easily graph the
operations as an execution tree. This is normally necessary only when
your HP Service Representative is evaluating a query.
Chapter 3 135

SQL Queries
Updatability of Queries
Updatability of Queries
INSERT, UPDATE and DELETE operations may be performed through views or as qualified
by search conditions provided the views or search conditions are based on updatable
queries. UPDATE WHERE CURRENT and DELETE WHERE CURRENT operations may be
performed through cursors provided the cursors are based on updatable queries.

Queries that underlie views and cursors are called updatable queries when they conform
to all of the following updatability criteria:

• No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT
statement; and no aggregate is specified in the outermost select list.

• The FROM clause specifies exactly one table, either directly or through a view. If the
FROM clause specifies a view, the view must be based on an updatable query.

• For INSERT and UPDATE through views, the select list in the view definition must not
contain any arithmetic expressions. It must contain only column names.

• For UPDATE WHERE CURRENT and DELETE WHERE CURRENT operating on cursors, the
cursor declaration must not include an ORDER BY clause, and the query expression
must not contain subqueries, the UNION or UNION ALL statement, or any
nonupdatable views.

• The target table of an INSERT, UPDATE, or DELETEoperation is the base table to which
the changes are actually being made.

• For noncursor INSERT, UPDATE , or DELETE operations, the view definition must not
include any subqueries which contain the target table in their FROM clause; and if a
search condition is given, it must not include any subqueries which contain the target
table in their FROM clause.

If a query is updatable by the previous rules, then the underlying table is an updatable
table. Otherwise it is considered a read-only table and is locked accordingly. This means
that in cursor operations, SIX, IX, and X locks are not used unless the query that underlies
the cursor matches the updatability criteria and was declared with columns for UPDATE.
In noncursor view operations, SIX, IX, and X locks are not obtained unless the table
underlying the view is updatable. Refer to Chapter 5 , “Concurrency Control through
Locks and Isolation Levels,” for a complete explanation of SIX, IX, and X locks.
136 Chapter 3

Constraints, Procedures, and Rules
Using Integrity Constraints
4 Constraints, Procedures, and Rules

In addition to the basic tables and indexes in a DBEnvironment, ALLBASE/SQL lets you
create database objects known as constraints, procedures, and rules, which provide for a
high degree of data consistency and integrity inside the DBEnvironment without the need
for extensive application programming. Constraints define conditions on the rows of a
table; procedures define sequences of SQL statements that can be stored in the
DBEnvironment and applied as a group either through rules or through execution by
specific users; and rules let you define complex relationships among tables by tying specific
procedures to particular kinds of data manipulation on tables. Together, these tools let you
store many of your organization's business rules in the DBEnvironment itself, reducing
the need for application code.

This chapter presents the following topics:

• Using Integrity Constraints

• Using Procedures

• Using Rules

Using Integrity Constraints
Using integrity constraints helps to ensure that a database contains only valid data.
Integrity constraints provide a way to check data within the database system rather than
by coding elaborate validation checks within application programs. An integrity constraint
is either a unique constraint, a referential constraint, or a check constraint. All of these
constraints are described in this section.

When a table is created, integrity constraints can be defined at the column level or at the
table level. A constraint can be placed on an individual column (at the column or table
level) or on a combination of columns (at the table level).

Unique Constraints

A unique constraint requires that no two rows in a table contain the same value in a given
column or list of columns. You can create a unique constraint at either the table level or
the column level. Unique constraints can be defined as either UNIQUE or PRIMARY KEY.
The two types of unique constraints differ in that if a PRIMARY KEY is placed on a
column or column list, the column name(s) can be omitted from the referential constraint
syntax in the definition of the referencing table. A given column upon which a unique or
primary constraint has been defined need not be referenced by a referential constraint; but
a referential constraint can only refer to a column upon which a unique or primary key
constraint has been defined. Referential constraints are discussed below.

Additionally, PRIMARY KEY can be specified only once per table. Duplicate unique
Chapter 4 137

Constraints, Procedures, and Rules
Using Integrity Constraints
constraints are not allowed. Neither UNIQUE nor PRIMARY KEY columns can contain
null values--they must be defined as NOT NULL.

The following syntax is used to define a unique constraint on an individual column or
column list at the table level:

{UNIQUE PRIMARY KEY} (ColumnName [,...]) [CONSTRAINT ConstraintID]

ConstraintID is the name of the constraint. It is not necessary to name the constraint. If
it is not named, ALLBASE/SQL names it SQLCON_uniqueid , where uniqueid is a
unique string. The constraint names are maintained in the system catalog table
SYSTEM.CONSTRAINT.

A column list cannot contain a column more than once. In the example below, a constraint
is placed on a column at the table level:

CREATE PUBLIC TABLE RecDB.Clubs
 (ClubName CHAR(15) NOT NULL,
 UNIQUE (ClubName) CONSTRAINT ClubConstrnt)
 IN RecFS;

The syntax for defining a unique constraint at the column level is part of the column
definition. NOT NULL and either UNIQUE or PRIMARY KEY are included along with the
other column parameters. In the example below, one column is defined with a unique
constraint:

CREATE PUBLIC TABLE RecDB.Clubs
 (ClubName CHAR(15) NOT NULL UNIQUE CONSTRAINT ClubConstrnt)
 IN RecFS;

A table defined with a PRIMARY KEY followed by a column list is shown in the section
“Examples of Integrity Constraints.”

Referential Constraints

A referential constraint requires that the value in a column or columns of the referencing
table, must either be null or match the value of a column or columns of a unique constraint
in the referenced table. To establish a referential constraint, a unique or primary key
constraint must first be defined on the referenced table's column or column list and then a
referential constraint must be defined on the referencing table's column or column list.

The Referenced Table

The referenced table must contain a unique constraint created with either a UNIQUE or
PRIMARY KEY clause on a column or column list:

CREATE PUBLIC TABLE RecDB.Clubs
 (ClubName CHAR(15) NOT NULL

PRIMARY KEY CONSTRAINT Clubs_PK, -- column level constraint
 ClubPhone SMALLINT,
 Activity CHAR(18))

IN RecFS;

The referenced table must be created before the referencing table unless the referenced
and referencing tables are created within a CREATE SCHEMAstatement or if both the tables
are created in the same transaction, the SET REFERENTIAL CONSTRAINTS DEFERRED
statement has been executed and is still in effect.
138 Chapter 4

Constraints, Procedures, and Rules
Using Integrity Constraints
The Referencing Table

A referential constraint is placed on columns which are dependent on other columns (in
the referenced table). You can create a referential constraint at either the table level or the
column level. Referencing columns need not be NOT NULL.

The following syntax is used to define a referential constraint at the table level in the
CREATE TABLE statement for a referencing table:

FOREIGN KEY(FKColumnName [,...])

REFERENCESRefTableName [(RefColumnName [,...])] [CONSTRAINT ConstraintID]

FOREIGN KEY identifies a referencing column or column list. REFERENCES identifies
the referenced table and referenced column list. The order and number of referencing
columns in the FOREIGN KEY clause must be the same as that of the referenced columns
in the REFERENCES clause. The referenced table cannot be a view.

The syntax for defining a referential constraint at the column level for a referencing
column is shown here:

REFERENCESRefTableName [(RefColumnName)] [CONSTRAINT ConstraintID]

Only one RefColumnName is possible.

Note in the following example that the table's column definitions and table level
constraints can be in any order within the parentheses and are separated from each other
with commas:

CREATE PUBLIC TABLE RecDB.Members
 (MemberName CHAR(20) NOT NULL, column definition
 Club CHAR(15) NOT NULL,
 MemberPhone SMALLINT,
 FOREIGN KEY (Club) table level
 REFERENCES Clubs (ClubName)) referential constraint
 IN RecFS;

If the REFERENCES clause does not specify a RefColumnName , then the table definition
referenced must contain a unique constraint that specifies PRIMARY KEY. The primary
key column list is the implicit RefColumnName list. It must have the appropriate number of
columns.

The owner of the table containing referencing columns must have the REFERENCES
authority on referenced columns, have OWNER authority on the referenced table, or have
DBA authority, for the duration of the referential constraint.

Check Constraints

A check constraint specifies a condition which must be upheld for an insert or update to be
successfully performed on a table or view. A table check constraint must not be false for
any row of the table on which it is defined. A view check constraint must be true for the
condition in the SELECT statement that defines the view.

A table check constraint is defined in the CREATE TABLE or ALTER TABLE statement with
the following syntax:

CHECK(SearchCondition) [CONSTRAINT ConstraintID]
Chapter 4 139

Constraints, Procedures, and Rules
Using Integrity Constraints
If a check constraint is added to an existing table, data already in the table is verified to
ensure that the check constraint is satisfied. A constraint error occurs if the constraint is
not satisfied; the ALTER TABLE statement adding the constraint fails.

The check is also performed when the INSERT or UPDATE statement is executed. A DELETE
statement never causes a check constraint error.

The check search condition must not contain a subquery, aggregate function, TID function,
local variable, procedure parameter, dynamic parameter, current function, USER, or host
variable. The search condition expression also cannot contain a LONG column unless it is
within a long column function. When adding a new column, the columns specified in the
search condition must be defined in the same CREATE TABLEor ALTER TABLE ADD COLUMN
statement. For the ALTER TABLE ADD COLUMNstatements, the check constraint can only be
specified for the column being added. When adding a constraint, columns specified in the
check constraint search condition must already exist in the table.

The search condition is a boolean expression which must not be false for a table check
constraint to be satisfied. If any value specified in the search condition expression is
NULL, the result of the expression may be the boolean unknown value rather than true or
false. The check constraint is satisfied if the result is true or unknown.

For example, consider the following check constraint:

 CHECK (NumParts > 5)

If NumParts is 5, the result is false and the check is not satisfied. If NumParts is 10, the
result is true and the check constraint for this row is satisfied. If NumParts is NULL, the
result is unknown and the check constraint is also satisfied for this row.

A table check constraint can be defined at a column level or a table level. A check
constraint defined on a column is specified before the comma that ends the column
definition as shown below. A table constraint can be placed anywhere-- before, after, or
among the column descriptions. These rules apply for columns defined with either the
CREATE TABLE or ALTER TABLE statements.

For example, a column level check constraint on the Date column is defined as follows:

CREATE PUBLIC TABLE RecDB.Events
 (SponsorClub CHAR(15),
 Event CHAR(30),
 Date DATE DEFAULT CURRENT_DATE No comma here

 (CHECK (Date >= '1990-01-01'),
 Constraint Check_No_Old_Events),

 Time TIME,
 Coordinator CHAR(20),
 FOREIGN KEY (Coordinator, SponsorClub)
 REFERENCES RecDB.Members (MemberName, Club)
 CONSTRAINT Events_FK)
 IN RecFS;
140 Chapter 4

Constraints, Procedures, and Rules
Using Integrity Constraints
However, the same constraint defined at the table level is defined as follows:

CREATE PUBLIC TABLE RecDB.Events
 CHECK (Date >= '1990-01-01') Check Constraint
 CONSTRAINT Check_No_Old_Events
 (SponsorClub CHAR(15),
 Event CHAR(30),
 Date DATE DEFAULT CURRENT_DATE,
 Time TIME,
 Coordinator CHAR(20),
 FOREIGN KEY (Coordinator, SponsorClub)
 REFERENCES RecDB.Members (MemberName, Club)
 CONSTRAINT Events_FK)

 IN RecFS;

This table level constraint could also be defined after the Date or Time column, or at any
point in the parenthesized list. There is one difference between table and column level
check constraints: a column level check constraint must reference only the column on
which it is defined.

A check constraint that references more than one column must be defined at the table
level. For example, the constraint CHECK (Date >= '1990-01-01' AND Time > '00:00.000')
must be defined at the table level because both the Date and Time columns are specified in
the check constraint.

A view check constraint is defined with the CREATE VIEW statement using the following
syntax at the end of the view definition:

 WITH CHECK OPTION [CONSTRAINT ConstraintID]

The conditions of the SELECT statement defining the view become the view check
constraint search conditions when the WITH CHECK OPTION clause is specified. A view
can have only one WITH CHECK OPTION. This check constraint checks all of the
conditions which are included in the SELECT statement. These SELECT statement
conditions serve two purposes. First, they originally define the view. They also define the
conditions of the check constraint that is applied when the underlying base table is
modified through the view. When a table is modified through a view, the view check
constraint is checked along with any table constraints. The view check constraint must be
true (not unknown) to ensure that all changes made through a view can still be displayed.
All underlying views are also checked, whether or not they are defined with check options.
Unique and referential constraints cannot be defined on views.

See Chapter 10 , “SQL Statements A - D,” for the check constraint syntax, within the
syntax of CREATE TABLE, ALTER TABLE , or CREATE VIEW statements.

Examples of Integrity Constraints

The schema example in this section shows the constraints among three tables: Clubs,
Members, and Events. The tables are created as PUBLIC so as to be accessible to any user
or program that can start a DBE session.

Constraints are placed on the tables to ensure that:

1. Events are coordinated by club members who are listed in the Members table
Chapter 4 141

Constraints, Procedures, and Rules
Using Integrity Constraints
2. Clubs sponsoring the events are listed in the Clubs table

3. Events cannot be scheduled earlier than the current date.

CREATE PUBLIC TABLE RecDB.Clubs
 (ClubName CHAR(15) NOT NULL
 PRIMARY KEY CONSTRAINT Clubs_PK,
 ClubPhone SMALLINT,
 Activity CHAR(18))
 IN RecFS;

 CREATE PUBLIC TABLE RecDB.Members
 (MemberName CHAR(20) NOT NULL,
 Club CHAR(15) NOT NULL,
 MemberPhone SMALLINT,
 PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
 FOREIGN KEY (Club) REFERENCES RecDB.Clubs
 CONSTRAINT Members_FK)
 IN RecFS;

 CREATE PUBLIC TABLE RecDB.Events
 (Event CHAR(30),
 Coordinator CHAR(20),
 SponsorClub CHAR(15),
 Date DATE DEFAULT CURRENT_DATE,
 CHECK (Date >= '1990-01-01'),
 Time TIME,
 FOREIGN KEY (Coordinator, SponsorClub)
 REFERENCES RecDB.Members
 CONSTRAINT Events_FK)
 IN RecFS;

Note that updating the Members table before the Clubs table could cause a referential
constraint error when error checking is at statement level. The RecDB.Members.Club
column references the RecDB.Clubs.ClubName column which is not yet updated. However,
if you deferred referential checking to the end of the transaction, no error would occur. A
value could then be inserted into the RecDB.Clubs.ClubName column that would resolve
the reference. When a COMMIT WORK statement is executed, no constraint errors will exist.

The illustration in Figure 4-1. shows the referential constraints based on this sample
schema. The arrows point to the columns with unique constraints.

Figure 4-1. Referential Constraints in a Set of Tables
142 Chapter 4

Constraints, Procedures, and Rules
Using Integrity Constraints
The Events table contains information about events. The combination of values in the
Coordinator and SponsorClub columns of the Events table must be either be null or match
the combination of values in the MemberName and Club columns of the Members table, as
shown by the Events_FK constraint.

The Members table contains the names of members and clubs. A member can be in more
than one club. For every Coordinator/SponsorClub pair of values exists a corresponding
MemberName/Club match.

The Clubs table contains information about clubs. For every club entry in the Members
table, a corresponding entry must exist in the Clubs table, as shown by the Members_FK
constraint.

Inserting Rows in Tables Having Constraints

There are two ways you can insert data in tables having constraints. You can insert values
in referenced columns before inserting values in referencing columns, or you can defer
constraint error checking in a transaction until all constraints referring to each other have
been resolved.

With the first method, using the tables defined in the previous example, the Clubs data
should be loaded first, then the Members data, because the MemberName column is
dependent on the ClubName column. The Events table should be loaded last as the
Coordinator and SponsorClub columns are dependent on the MemberName and Club
columns of the Members Table.

If the Clubs, Members, and Events tables were empty and you attempted to insert the
values in the order shown below, you would receive the following corresponding results:

Order Table Values Result

1 Members 'John Ewing', 'Energetics', 6925 Violates Members_FK because
'Energetics' club does not exist in
the ClubName column of the
Clubs table

2 Members 'John Ewing', NULL, 6925 Violates NOT NULL on
Members_PK columns

3 Clubs 'Energetics', 1111, 'aerobics' Valid

4 Clubs 'Windjammers', 2222, 'sailing' Valid

5 Clubs 'Energetics', 3333,' lo-impact' Violates Clubs_PK because
'Energetics' is already in the
ClubName column of the Clubs
table (entries must be unique in a
primary key column)

6 Members 'John Ewing', 'Energetics', 6925 Valid

7 Events 'Energetics', 'advanced stretching',
'1986-12-04', '15:30:00', 'Martha
Mitchell'

Valid
Chapter 4 143

Constraints, Procedures, and Rules
Using Integrity Constraints
Values cannot be inserted into Members or Events without the references being satisfied.
To insert rows, either NULLs must be inserted and then the tuples updated after the
referenced rows are inserted, or the referenced rows must be inserted first. Note that a
NULL cannot be inserted into the Members_FK column Club because that column also
participates in Members_PK -- and therefore was declared NOT NULL.

With the second method, you can also perform these inserts in one transaction, deferring
constraint checking to the end of the transaction. While you are inserting data, constraint
error violations are not reported because they will be resolved by the time the COMMIT
WORK statement is executed. Use a SET CONSTRAINTS statement after a BEGIN WORK
statement to defer constraint checking, as follows:

BEGIN WORK

 SET REFERENTIAL CONSTRAINTS DEFERRED

Modify all tables that refer to each other.

 COMMIT WORK

You can issue the SET CONSTRAINTS statement to defer several types of operation at one
time. Refer to Chapter 12 , “SQL Statements S - Z,” for the syntax of the SET CONSTRAINTS
statement.

How Constraints are Enforced

Constraints are controlled and checked by ALLBASE/SQL once they are defined. Once a
constraint is placed on a column, ALLBASE/SQL performs the necessary checks each time
a value is inserted, altered, or deleted. By default, integrity constraints are enforced on a
statement level basis. That is, if an integrity constraint is not satisfied after the execution
of an INSERT, UPDATE, or DELETE statement, then the statement has no effect on the
database and an error message is generated.

You can, however, use the SET CONSTRAINTS DEFERRED statement to defer constraint
enforcement until either the end of a transaction or a SET CONSTRAINTS IMMEDIATE
statement is encountered. Deferred constraint enforcement avoids concern over the order
of inserting or updating when a foreign key and primary key exist in the same table or
different tables. The table can be modified without constraint violations being reported
until either the end of a transaction or SET CONSTRAINTS IMMEDIATE statement is
encountered. While a constraint check is deferred, you are responsible for ensuring that
data placed in the database is free of constraint errors.

8 Members 'Martha Mitchell', 'Energetics', 1605 Valid

9 Events 'Energetics', 'advanced stretching',
'1986-12-04', '15:30:00', 'Martha
Mitchell'

Violates check constraint which
states that an event's date must
be later or the same as January 1,
1990

10 Events 'Energetics', 'advanced stretching',
'1990-01-01','15:30:00','Martha
Mitchell'

Valid

Order Table Values Result
144 Chapter 4

Constraints, Procedures, and Rules
Using Procedures
In addition, you can temporarily use the SET DML ATOMICITY statement to set the DML
error checking level to row level. However, you must handle partially processed statements
yourself, as statements that get errors will not undo their partial execution.

Constraint error checking is part of general error checking but you can override the
checking level by setting constraint checking to deferred. However, when you set
constraint checking back to IMMEDIATE, the level of constraint checking returns to the
current level specified by the most recent SET DML ATOMICITY statement.

Refer to Chapter 12 , “SQL Statements S - Z,” for detailed information on the SET DML
ATOMICITY and SET CONSTRAINTS statements.

Using Procedures
An ALLBASE/SQL procedure consists of control flow and status statements together with
SQL statements that are stored as sections in the system catalog for later execution at the
user's request or through the firing of a rule. You can create a procedure through ISQL or
through an application program; and you can execute the procedure through ISQL,
through an application program, or through rules that are created separately. For more
information about rules, refer to the section “Using Rules,” later in this chapter.

Procedures offer the following features:

• They reduce communication between applications and the DBEnvironment, thereby
improving performance.

• They provide additional security by controlling exactly which operations users can
perform on database objects.

• Along with rules, they enable you to store business rules in the database itself rather
than coding them in application programs.

• They let you protect application programs from changes in the database schema.

Often, procedures are built to accommodate a set of rules defined on particular tables.
Although you can use procedures without rules, rules always operate in conjunction with
procedures. When you create a rule, the referenced procedure must already exist. So you
must create procedures first, then rules.

The following sections describe the use of procedures:

• Understanding Procedures

• Creating Procedures

• Executing Procedures

• Procedures and Transaction Management

• Using SQL Statements in Procedures

• Queries inside Procedures

• Using a Procedure Cursor in ISQL
Chapter 4 145

Constraints, Procedures, and Rules
Using Procedures
• Error Handling in Procedures

• Using RAISE ERROR in Procedures

• Recommended Coding Practices for Procedures

Understanding Procedures

Procedures (defined either in ISQL or through applications) can include many of the
operations available inside application programs. Within a procedure, you can use local
variables, issue most SQL statements, create looping and control structures, test error
conditions, print messages, and return data or status information to the caller. You can
pass data to and from a procedure through parameters. You create a procedure with the
CREATE PROCEDURE statement and execute it using an EXECUTE PROCEDURE statement.
When it is no longer needed, you remove a procedure from the DBEnvironment with the
DROP PROCEDURE statement. You cannot execute a procedure from within another
procedure; however, a procedure can contain a statement that fires a rule that executes
another procedure. This is called chaining of rules. Refer to “Using Rules,” below.

To create a procedure, you must have RESOURCE or DBA authority. In order to invoke a
procedure, you need EXECUTE or OWNER authority for the procedure or DBA authority.
If the procedure is invoked through a rule, the rule owner needs EXECUTE or OWNER
authority for the procedure or DBA authority.

Creating Procedures

The following is a very simple example of procedure creation:

CREATE PROCEDURE ManufDB.FailureList
 (Operator CHAR(20) NOT NULL,
 FailureTime DATETIME NOT NULL,
 BatchStamp DATETIME NOT NULL) AS
 BEGIN
 INSERT INTO ManufDB.TestMonitor
 VALUES (:Operator, :FailureTime,
 :BatchStamp);
 END;

This example shows the definition of a procedure named FailureList owned by user
ManufDB. This procedure enters a row into the ManufDB.TestMonitor table when a
failure occurs during testing.

Three input parameters are declared with names and data types assigned--Operator,
FailureTime, and BatchStamp. At run time, these parameters accept actual values into the
procedure from the caller. The procedure body starts with the BEGIN keyword and
concludes with the END keyword. The procedure body consists of a single INSERT
statement that uses the parameters just as you would use host variables in an embedded
SQL program. The effect of a call to the procedure is to create a new row in a table named
ManufDB.TestMonitor containing a record of the current date and time along with the
name of the operator, and the batch stamp (unique identifier) of the batch of parts that
failed during testing.
146 Chapter 4

Constraints, Procedures, and Rules
Using Procedures
Executing Procedures

You execute the procedure using an EXECUTE PROCEDURE statement. The EXECUTE
PROCEDURE statement can be issued directly in ISQL or in an application program, or the
EXECUTE PROCEDURE clause can appear inside a CREATE RULE statement. The following
shows an invocation of a procedure in an ISQL session:

isql=> EXECUTE PROCEDURE
 > ManufDB.FailureList (USER, CURRENT_DATETIME,
 > '1984-06-14 11:13:15.437');
 isql=>

The following shows an invocation of the same procedure within an application program:

EXECUTE PROCEDURE
 :ReturnCode = ManufDB.FailureList (:Operator,
 CURRENT_DATETIME, :BatchStamp)

This example shows the use of a return status and host variables, which cannot be
employed in ISQL or with rules. For more information about using host variables and
return status with procedures, refer to the ALLBASE/SQL Advanced Application
Programming Guide chapter “Using Procedures in Application Programs.”

The next example shows an invocation of the ManufDB.FailureList procedure through a
CREATE RULE statement:

isql=> CREATE RULE AFTER INSERT TO ManufDB.TestData
 > WHERE PassQty < TestQty
 > EXECUTE PROCEDURE
 > ManufDB.FailureList(USER, CURRENT_DATETIME, BATCHSTAMP);
 isql=>

In this case, the invocation of the procedure takes place when an INSERT operation is
performed on ManufDB.TestData for a batch of parts in which there were some failures.
When executing the procedure from within a rule, you can refer to the names of columns in
the table on which the rule is triggered. More information about invoking procedures from
rules appears in the section “Techniques for Using Procedures with Rules,” later in this
chapter.

Procedures and Transaction Management

A procedure that is not executed from within a rule can execute any of the following
transaction management statements:

BEGIN WORK
 COMMIT WORK
 ROLLBACK WORK
 ROLLBACK WORK TO SAVEPOINT
 SAVEPOINT

Since there are no restrictions on the use of these statements, you must ensure that
transactions begin and end in appropriate ways. One recommended practice is to code
procedures that are atomic, that is, completely contained in a transaction which the
procedure ends with either a COMMIT or a ROLLBACK as its final statement. An alternative
recommended practice is to code procedures without any transaction management
statements at all. Note that when you issue the EXECUTE PROCEDURE statement in an
Chapter 4 147

Constraints, Procedures, and Rules
Using Procedures
application, and if a transaction is not already in progress, a transaction is begun. If a
transaction is already in progress at the time EXECUTE PROCEDURE is issued, and the
procedure issues either a COMMIT or a ROLLBACK statement to end the transaction, the
entire transaction, including the portion in the application, is affected.

In all cases, it is important to document procedures carefully. Refer to the section
“Recommended Coding Practices for Procedures” later in this chapter.

When a procedure is executed from within a rule, all the transaction management
statements are disallowed and result in an error.

Using SQL Statements in Procedures

Within a procedure, you can use most of the SQL statements that are allowed in embedded
SQL application programs, including COMMIT WORK, ROLLBACK WORK, and ROLLBACK WORK
TO SAVEPOINT. The following (including dynamic SQL statements) are not allowed in
procedures:

ADVANCE

 BEGIN DECLARE SECTION
 BULK statements

 CLOSE USING

 COMMIT WORK RELEASE
 CONNECT
 CREATE PROCEDURE (including inside CREATE SCHEMA)

 DECLARE CURSOR for EXECUTE PROCEDURE

 DESCRIBE
 DISCONNECT
 END DECLARE SECTION
 EXECUTE
 EXECUTE IMMEDIATE
 EXECUTE PROCEDURE
 GENPLAN
 INCLUDE

 OPEN USING

 PREPARE
 RELEASE
 ROLLBACK WORK RELEASE
 SET CONNECTION
 SET DML ATOMICITY
 SET MULTITRANSACTION
 SET SESSION
 SET TRANSACTION
 SQLEXPLAIN
 START DBE
 STOP DBE
148 Chapter 4

Constraints, Procedures, and Rules
Using Procedures
In procedures that are invoked by execution of rules, the following statements result in an
error:

BEGIN WORK
 COMMIT WORK
 ROLLBACK WORK
 ROLLBACK WORK TO SAVEPOINT
 SAVEPOINT

Another set of statements is provided for use only within procedures:

Assignment (=)
 BEGIN...END
 DECLARE Variable
 GOTO
 IF...THEN...ELSEIF...ELSE...ENDIF
 Labeled Statements
 PRINT
 RETURN
 WHILE...DO...ENDWHILE

Inside procedures, statements are terminated with a semicolon (;).

You can define parameters for passing information into and out of a procedure. In
addition, procedures let you store data in local variables, which are declared inside the
procedure with the DECLARE Variable statement.

Specifying Parameters

A parameter represents a value that is passed between a procedure and an invoking
application or rule. You define formal parameters with the CREATE PROCEDURE statement.

When executing a procedure directly, you pass input parameter values in the EXECUTE
PROCEDURE statement, and output parameter values are returned when the procedure
terminates. However, when using a procedure cursor, input parameter values must be set
before opening the cursor, and output parameter values are returned when the CLOSE
statement executes.

Within the body of the procedure, a parameter name is prefixed with a colon (:).

You can specify up to 1023 parameters of any SQL data type except the LONG data types.
Default values and nullability may be defined just as in a CREATE TABLE statement. If a
language is specified for a parameter defined as a CHAR or VARCHAR type, it must be
either the language of the DBEnvironment or else NATIVE 3000. The following shows a
procedure with a single parameter:

CREATE PROCEDURE Process10 (PartNumber CHAR(16)) AS
 BEGIN
 .
 .
 .
 END;
Chapter 4 149

Constraints, Procedures, and Rules
Using Procedures
If you wish to return values to a calling application program, specify the parameter for
OUTPUT in both the CREATE PROCEDUREand EXECUTE PROCEDUREstatements. If no input
value is required for a parameter, specify OUTPUT ONLY. Note that no OUTPUT option is
allowed in the EXECUTE PROCEDURE statement in ISQL nor in the EXECUTE PROCEDURE
clause of the CREATE RULE statement.

Using Local Variables in Procedures

A local variable holds a data value within a procedure. Local variable declarations must
appear at the beginning of the main body of the procedure using the DECLARE statement,
and they must specify a data type and size. Optionally, the DECLAREstatement can include
nullability, language, and a default value. The following are typical examples:

DECLARE LastName CHAR(40);
 DECLARE SalesPrice DECIMAL(6,2);
 DECLARE LowPrice, HighPrice DECIMAL(6,2) NOT NULL;
 DECLARE LocationCode INTEGER NOT NULL;
 DECLARE Quantity INTEGER DEFAULT 0;

Types and sizes are the same as for column definitions, except that you cannot specify a
LONG local variable. You can declare several variables in the same DECLAREstatement by
separating them with a comma provided they share the same data type, size, nullability,
native language, and default value. Within the body of the procedure, a local variable
name is prefixed with a colon (:). A local variable name cannot duplicate a parameter
name.

Local variables function in procedures much as host variables function in application
programs, but the two are not interchangeable. That is, you cannot use host variables from
the application within the body of the procedure definition nor can you use local variables
in the application. Since the application's host variables cannot be directly accessed from
within the procedure, you must use local variables or parameters in the INTO clause of
any FETCH, REFETCH, or SELECT statement within a procedure. Then, if necessary, you
transfer data to a calling application through output parameters. If multiple rows must be
returned to the calling application, a SELECT statement with no INTO clause should be
used in conjunction with a procedure cursor. Further information regarding procedure
cursors is found in the “Using Procedures in Application Programs” chapter of the
ALLBASE/SQL Advanced Application Programming Guide and in this manual under
related syntax statements (ADVANCE, CLOSE, CREATE PROCEDURE, DECLARE CURSOR,
DESCRIBE, EXECUTE PROCEDURE, FETCH, OPEN).

In contrast to host variables, local variables do not use indicator variables to handle NULL
values. A local variable itself contains the null indicator, if the variable is nullable.
Declaring a local variable to be NOT NULL makes it work like a host variable that is used
without an indicator variable.
150 Chapter 4

Constraints, Procedures, and Rules
Using Procedures
Using Built-in Variables in Procedures

The following built-in variables can be used in error handling:

The built-in variables are read-only, and are not available outside of procedures. The first
six of these have the same meaning that they have as fields in the SQLCA in application
programs. They are always prefixed by a double colon to differentiate them from any local
variables or parameters.

Note that in procedures, sqlerrd2 returns the number of rows processed for all host
languages. However, in application programs, sqlerrd3 is used in COBOL, Fortran, and
Pascal, while sqlerrd2 is used in C.

For procedures returning multiple row result set(s), note that the built-in variables in the
procedure do not reflect the status of any FETCH or ADVANCE statements issued by the
application to manipulate a procedure cursor. After issuing such a statement, the
application should examine the appropriate fields of the SQLCA to determine status and
handle any errors.

Queries inside Procedures

Within a procedure, you can declare parameters or local variables to process either single
row or multiple row query results. Multiple row query results within a procedure must be
processed one row at a time, by means of a select cursor. A select cursor is a pointer
indicating the current row in a set of rows retrieved by a SELECT statement. Bulk
processing is not available for a select cursor within a procedure.

Multiple row query results for queries within a procedure can be processed by means of a
procedure cursor declared in a calling application. A procedure cursor is a pointer used
to indicate the current row in a set of rows retrieved by a set of SELECT statements within
a procedure. When you issue an EXECUTE PROCEDURE statement in ISQL, and the
procedure contains queries with no INTO clause, ISQL uses a procedure cursor to process

Table 4-1. Built-in Variables in Procedures

Variable Data Type Description

 ::sqlcode INTEGER DBERR number returned after the execution of an SQL
statement, 0 if no errors.

 ::sqlerrd2 INTEGER Number of rows processed in an SQL statement.

 ::sqlwarn0 CHAR(1) Set to “W” if an SQL warning was detected.

 ::sqlwarn1 CHAR(1) Set to “W” if a character string value was truncated when being
stored in a variable or parameter.

 ::sqlwarn2 CHAR(1) Set to “W” if a null value was eliminated from the argument set of
an aggregate function.

 ::sqlwarn6 CHAR(1) Set to “W” if the current transaction was rolled back.

 ::activexact CHAR(1) Indicates whether a transaction is in progress (“Y”) or not (“N”).
For information about transactions, see “Managing Transactions”
in the chapter “Using ALLBASE/SQL.”
Chapter 4 151

Constraints, Procedures, and Rules
Using Procedures
the query results. Further information regarding procedure cursors is found in the “Using
Procedures in Application Programs” chapter of the ALLBASE/SQL Advanced
Application Programming Guide and in this manual in the following section, “Using a
Procedure Cursor in ISQL,” and under related syntax statements (ADVANCE, CLOSE,
CREATE PROCEDURE, DECLARE CURSOR, DESCRIBE, EXECUTE, EXECUTE IMMEDIATE
EXECUTE PROCEDURE, FETCH, OPEN).

The following sections discuss the use of a simple select, a select cursor, and an ISQL
procedure cursor.

Using a Simple SELECT

A simple SELECT statement with an INTO clause returns only a single row. If more than
one row qualifies for the query result, only the first row is put into the parameter or local
variable specified in the INTO clause, and a warning is issued. Example:

CREATE PROCEDURE PurchDB.DiscountPart(PartNumber CHAR(16))
 AS BEGIN
 DECLARE SalesPrice DECIMAL(6,2);

 SELECT SalesPrice INTO :SalesPrice
 FROM PurchDB.Parts
 WHERE PartNumber = :PartNumber;

 IF ::sqlcode = 0 THEN
 IF :SalesPrice > 100. THEN
 :SalesPrice = :SalesPrice*.80;
 INSERT INTO PurchDB.Discounts
 VALUES (:PartNumber, :SalesPrice);
 ENDIF;
 ENDIF;
 END;

The procedure inserts a row into the PurchDB.Discounts table containing the part number
and 80% of the sales price if the current price of a given part is over $100. The parameter
PartNumber supplies a value for the predicate in the SELECTstatement and later supplies
a value for the VALUES clause in the INSERT statement. The local variable :SalesPrice is
used for the single-row result of the query on the Parts table, and it is also used in the
expression in the VALUES clause of the INSERT statement. The procedure tests if the
built-in variable ::sqlcode = 0 to ensure that the SELECT was successful before inserting
data into the PurchDB.Discounts table.

Using a Select Cursor

If your procedure must process a set of rows one at a time, you can use a cursor to loop
through the set and perform desired operations, as in the following:

CREATE PROCEDURE PurchDB.DiscountAll(Percentage DECIMAL(4,2))
 AS BEGIN
 DECLARE SalesPrice DECIMAL(6,2);
 DECLARE C1 CURSOR FOR SELECT SalesPrice FROM PurchDB.Parts
 FOR UPDATE OF SalesPrice;
 OPEN C1;
 WHILE ::sqlcode = 0 DO
 FETCH C1 INTO :SalesPrice;
152 Chapter 4

Constraints, Procedures, and Rules
Using Procedures
 IF ::sqlcode = 0 THEN
 IF :SalesPrice < 1000. THEN
 UPDATE PurchDB.Parts
 SET SalesPrice = :SalesPrice*:Percentage
 WHERE CURRENT OF C1;
 ELSEIF :SalesPrice >= 1000. THEN
 UPDATE PurchDB.Parts
 SET SalesPrice = :SalesPrice*(:Percentage - .05)
 WHERE CURRENT OF C1;
 ENDIF;
 ENDIF;
 ENDWHILE;
 IF ::sqlcode = 100 THEN
 PRINT 'Success';
 CLOSE C1;
 RETURN;
 ELSE
 PRINT 'Error in Fetch or Update';
 CLOSE C1;
 RETURN;
 ENDIF;
 END;

This procedure discounts the prices of all part numbers by a specified percentage if the
current sales price is less than $1000, and it discounts prices by five percentage points for
part numbers whose current price is greater than or equal to $1000. The procedure
displays a message indicating success or failure.

The use of select cursors for multiple row query results is presented in great detail in the
ALLBASE/SQL application programming guides. Refer to the chapter “Processing with
Cursors” in the guide for the programming language you use.

Using a Procedure Cursor in ISQL

When you issue an EXECUTE PROCEDUREstatement in ISQL for a procedure containing one
or more SELECTstatements with no INTO clause, ISQL uses a procedure cursor to display
the query results.

For example, create a procedure as follows:

CREATE PROCEDURE PurchDB.PartNo2 AS
 BEGIN
 SELECT *
 FROM PurchDB.Parts
 WHERE PartNumber LIKE '11%';

 SELECT PartNumber, BinNumber, QtyOnHand
 FROM PurchDB.Inventory
 WHERE PartNumber LIKE '11%';
 END;
Chapter 4 153

Constraints, Procedures, and Rules
Using Procedures
When you execute the procedure, the following is displayed:

execute procedure purchdb.partno2;
 ----------------+------------------------------+------------------
 PARTNUMBER |PARTNAME |SALESPRICE
 ----------------+------------------------------+------------------
 1123-P-01 |Central Processor | 500.00
 1133-P-01 |Communication Processor | 200.00
 1143-P-01 |Video Processor | 180.00
 1153-P-01 |Graphics Processor | 220.00

 Number of rows selected is 4

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, e[nd] or n[ext] >

Entering n[ext] moves you from one SELECT statement to the next. You would see the
following:

execute procedure purchdb.partno2;
 ----------------+---------+---------
 PARTNUMBER |BINNUMBER|QTYONHAND
 ----------------+---------+---------
 1123-P-01 | 4003| 5
 1133-P-01 | 4007| 11
 1143-P-01 | 4016| 8
 1153-P-01 | 4027| 5

 Number of rows selected is 4

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, e[nd] or n[ext] >

Entering n[ext] when the last result set is displayed produces a message like the following:

End of procedure result sets.
 Procedure return status is 0.
 isql=>

Note that although you can move back and forward through the current result set, you
cannot move back to redisplay a previous result set.

Error Handling in Procedures Not Invoked by Rules

You must provide explicit mechanisms for error handling inside procedures. The
techniques you use for this depend on whether or not the procedure is invoked by the firing
of a rule. This section describes error handling within a procedure that is not invoked by a
rule. For information about error handling in procedures invoked by rules, see the section
“Error Handling in Procedures Invoked by Rules,” below. For information about error
handling in an application that invokes a procedure, see the section “Using Procedures in
Application Programs” in the ALLBASE/SQL Advanced Application Programming Guide.

By default, when an error occurs in an SQL statement in a procedure, the effects of the
SQL statement are undone, but the procedure continues on to the next statement. If you
want errors in SQL statements to cause an immediate error return from the procedure,
use the WHENEVER statement with the STOP option.
154 Chapter 4

Constraints, Procedures, and Rules
Using Procedures
The syntax for the WHENEVER is as follows:

WHENEVER (SQLERROR
SQLWARNING
NOT FOUND}{STOP

CONTINUE
GOTO [:] Label
GO TO [:] Label }

The STOP option causes the current transaction to be rolled back, and the procedure's
execution is terminated. If an error occurs in evaluating the condition in an IF or WHILE
statement, or in evaluating the expression in a parameter or variable assignment
statement, the execution of the procedure terminates, and control is returned to the caller
with SQLCODE set to the last error encountered inside the procedure.

Within the procedure, the entire message buffer is not available. That is, SQLEXPLAIN
cannot be used. The built-in variable ::sqlcode holds only the error code from the first
message in the message buffer (guaranteed to be the most severe error).

In procedures, as elsewhere in ALLBASE/SQL, the message buffer is cleared out only
before executing an SQL statement. That is, execution of the following do not cause the
message buffer to be reset:

• Assignment

• GOTO

• IF

• PRINT

• RETURN

• WHILE

The argument of any PRINT statement is passed back to the caller in the message buffer.
When the message buffer is reset, PRINT statements are not removed.

Runtime errors are accompanied by a generic error message indicating, by number, which
procedure statement caused the error. All SQL statements in a procedure and all non-SQL
statements except variable declarations, ENDIF, ELSE, ENDWHILE, END , and THEN, are
numbered consecutively from the beginning of the procedure. The following is an example
of a sequence of errors returned when an EXECUTE PROCEDURE statement fails:

Integer divide by zero. (DBERR 2601)
Error occurred executing procedure PURCHDB.DISCOUNT statement 2.(DBERR 2235)

 Error occurred during evaluation of the condition in an IF or WHILE
 statement or the expression in a parameter or variable assignment.
 Procedure execution terminated. (DBERR 2238)

Using RAISE ERROR in Procedures

You can use the RAISE ERRORstatement to generate an error within a procedure and make
a message available to users, as in the following example:

RAISE ERROR 7500 MESSAGE 'Error Condition';
 RETURN 1;

The RAISE ERROR statement causes the message to be stored in the message buffer, and
Chapter 4 155

Constraints, Procedures, and Rules
Using Procedures
the RETURNstatement causes an immediate return from the procedure following the error.
Following the return from a procedure, an application program can retrieve the messages
from raised errors by using the SQLEXPLAIN statement. Since SQLCODE is 0 in this case
(because the procedure executed correctly; it was an SQL statement within it that received
the error), you should execute SQLEXPLAIN in a loop that tests SQLWARN[0], as follows:

while (sqlwarn[0]=='W')
 EXEC SQL SQLEXPLAIN :SQLMessage;

However, SQLEXPLAINcannot be used within the procedure itself. You should document the
cause of all errors generated by the RAISE ERROR statement in a procedure so that the
procedure caller can understand the error condition.

NOTE The behavior of errors, including RAISE ERROR, in procedures called by rules
differs somewhat from that described here. Refer to “Using RAISE ERROR in
Procedures Invoked by Rules” for more information.

Recommended Coding Practices for Procedures

The use of procedures can have indirect consequences that the procedure writer and the
procedure caller may not anticipate. Problems are most likely to arise in the areas of
transaction management, cursor management, error handling, and DBEnvironment
settings. In order to minimize difficulty, good communication between the procedure writer
and the caller of the procedure is essential. Thus procedures should be carefully
documented as to what is expected from the calling application, and applications should be
carefully documented as to what they expect a called procedure to do and not to do.

Within a procedure, you can use ISQL comments or comment notation for the
programming language of an application that invokes a procedure. See the
ALLBASE/ISQL Reference Manual or the appropriate ALLBASE/SQL application
programming guide for information about comments.

The following practices are suggested to ensure that a procedure is always called under the
same conditions and with the same expectations:

• If the procedure might execute a COMMIT or ROLLBACK, the application should issue a
COMMIT or ROLLBACK before calling the procedure. Any cursors opened in the
application with the KEEP cursor option and subsequently committed should be closed
and committed before the application calls the procedure.

• Documentation of the calling application should clearly state the following:

— Whether the procedure will be called with a transaction open.

— Whether the procedure is expected to have COMMIT or ROLLBACK statements.

— Whether the procedure is expected to be atomic.

The following practices are suggested to ensure that a procedure will always execute as
expected:

• Procedure execution should not span transaction boundaries. Either the procedure
should be treated as an atomic transaction, that is, it should always issue a COMMIT or
156 Chapter 4

Constraints, Procedures, and Rules
Using Rules
ROLLBACK statement upon completion of work and before termination; or it should be
entirely contained within a transaction, that is, it should not contain any COMMIT or
ROLLBACK statements.

• If the procedure executes any COMMIT or ROLLBACK statements, it should be treated as
a transaction. This means that the last statement accessing the DBEnvironment within
the procedure should be a COMMIT WORK or a ROLLBACK WORK statement.

• If the procedure uses any cursors, they should be closed before termination. If the
procedure opens any cursors with the KEEP option, and subsequently executes any
COMMIT statements, the cursors should be closed and committed before termination.

• A procedure should not change the application's environment without restoring it upon
termination. The application's environment includes settings for isolation level,
constraint checking, timeout values, and rule firing.

• Documentation of the procedure should clearly state the following:

— Whether or not a transaction should already exist at the time of procedure execution.

— Whether any COMMIT or ROLLBACK statements will be executed by the procedure.

— Whether the procedure modifies any environment settings.

— What types of errors are handled by the procedure and how they are handled.

— Meanings of all possible return status values.

— Meaning of any errors returned by RAISE ERROR statements.

Using Rules
Rules allow you to tie procedures to data manipulation statements. Rules are more flexible
than simple integrity constraints, enabling you to incorporate complex business rules into
the structure of a DBEnvironment with minimal application programming. The following
sections describe the use of rules:

• Understanding Rules

• Creating Rules

• Techniques for Using Procedures with Rules

• Error Handling in Procedures Invoked by Rules

• Using RAISE ERROR in Procedures Invoked by Rules

• Enabling and Disabling Rules

• Special Considerations for Procedures Invoked by Rules

• Differences between Rules and Integrity Constraints
Chapter 4 157

Constraints, Procedures, and Rules
Using Rules
Understanding Rules

Rules allow you to define generalized constraints by invoking procedures whenever
specified operations are performed on a table. The rule fires, that is, invokes a procedure,
each time the specified operation (such as INSERT, UPDATE, or DELETE) is performed and
the rule's search condition is satisfied.

Rules tie procedures to particular kinds of data manipulation statements on a table. This
permits data processing to be carried out by the DBEnvironment itself. The effect is less
application coding and more efficient use of resources. This is especially important for
networked systems.

Rules will fire under the following conditions:

• The rule's statement types must include the statement type of the current statement.
Statement types are INSERT, DELETE , and UPDATE. (You can have more than one
statement type per rule.)

• If the rule's statement type includes UPDATE, and if the StatementType clause
includes a list of columns in the table, and if the current statement is an update, it must
be on at least one of the listed columns of that table.

• The rule's search condition must evaluate to TRUE for the current row of the current
statement.

A rule fires once for each row operated on by the current statement that satisfies the rule's
search condition.

Creating Rules

A rule is defined in a CREATE RULE statement, which identifies a table, types of data
manipulation statements, a firing condition, and a procedure to be executed whenever the
condition evaluates to TRUE and the data manipulation statement is of the right type.

The following is a simple example of a rule tied to deletions from the Parts table:

CREATE RULE PurchDB.RemovePart
 AFTER DELETE FROM PurchDB.Parts
 WHERE SUBSTRING(PartNumber,1,4) < > 'XXXX'
 EXECUTE PROCEDURE PurchDB.ListDeletes (OLD.PartNumber);

The table on which the rule is defined is PurchDB.Parts. The statement type required to
trigger the procedure is the DELETE operation. The search condition that must be satisfied
in addition to the statement type of DELETEis that the first four characters in PartNumber
must not be “XXXX.” The procedure to be executed is PurchDB.ListDeletes, shown in the
following:

CREATE PROCEDURE PurchDB.ListDeletes (PartNumber CHAR(16) NOT NULL) AS
 BEGIN
 INSERT INTO PurchDB.Deletions
 VALUES (:PartNumber, CURRENT_DATETIME);
 END;

When a row containing a part number that does not start with XXXX is deleted from the
Parts table, its number is inserted along with the current date and time, in the
PurchDB.Deletions table.
158 Chapter 4

Constraints, Procedures, and Rules
Using Rules
Techniques for Using Procedures with Rules

One common use of the rule-and-procedure combination is to enforce integrity within a
DBEnvironment. This can be done in different ways, depending on your needs. The
following sections contrast two approaches to integrity enforcement:

• Using Rule Chaining

• Using a Single Procedure

Using a Chained Set of Procedures and Rules

The following example uses a chained set of procedures and rules to remove all references
to a part number once it has been deleted from the database. In this case a rule fires a
procedure, which causes another delete, which causes another rule to invoke an additional
procedure, and so on.

CREATE PROCEDURE PurchDB.RemovePart (PartNum CHAR(16) NOT NULL)
 AS BEGIN
 DELETE FROM PurchDB.Inventory WHERE PartNumber = :PartNum;
 DELETE FROM PurchDB.SupplyPrice WHERE PartNumber = :PartNum;
 END;

 CREATE RULE PurchDB.RemovePart
 AFTER DELETE FROM PurchDB.Parts
 EXECUTE PROCEDURE PurchDB.RemovePart (OLD.PartNumber);

 CREATE PROCEDURE PurchDB.RemoveVendPart (VendPartNum CHAR(16) NOT NULL)
 AS BEGIN
 DELETE FROM PurchDB.OrderItems WHERE VendPartNumber = :VendPartNum;
 DELETE FROM ManufDB.SupplyBatches WHERE VendPartNumber = :VendPartNum;
 END;

 CREATE RULE PurchDB.RemoveVendPart
 AFTER DELETE FROM PurchDB.SupplyPrice
 EXECUTE PROCEDURE PurchDB.RemoveVendPart (OLD.VendPartNumber);

 CREATE PROCEDURE ManufDB.RemoveBatchStamp (BatchStamp DATETIME NOT NULL)
 AS BEGIN
 DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
 END;

 CREATE RULE ManufDB.RemoveBatchStamp
 AFTER DELETE FROM ManufDB.SupplyBatches
 EXECUTE PROCEDURE ManufDB.RemoveBatchStamp (OLD.BatchStamp);
Chapter 4 159

Constraints, Procedures, and Rules
Using Rules
Executing the Chained Set of Procedures and Rules

Whenever a user performs a DELETEoperation on PurchDB.Parts, the procedures and rules
are executed on each row of each table for the identified part number in the following
order:

1. Delete from Parts table.

2. Fire rule RemovePart .

3. Invoke procedure RemovePart .

4. Delete from Inventory table.

5. Delete from SupplyPrice table.

6. Fire rule RemoveVendPart .

7. Invoke procedure RemoveVendPart .

8. Delete from OrderItems table.

9. Delete from SupplyBatches table.

10.Fire rule RemoveBatchStamp .

11.Delete from TestData table.

Using a Single Procedure with Cursors

The following example uses a single rule and one procedure to remove all references to a
part number once it has been deleted from the database. In this case, a single procedure
RemovePart determines which rows need to be deleted in the other tables once a part
number is deleted from the Parts table. Since this method only uses one rule and one
procedure, it would be effective only when a DELETEis done from the Parts table. Deletions
of part numbers from other tables would not trigger any rules at all.

The single procedure uses two cursors to scan the PurchDB.SupplyPrice and
ManufDB.SupplyBatches tables for entries that correspond to a deleted part number. The
procedure then performs deletions of qualifying rows in PurchDB.OrderItems and
ManufDB.TestData.

CREATE PROCEDURE PurchDB.RemovePart(PartNum CHAR(16) NOT NULL)
 AS BEGIN
 DECLARE VendPartNum CHAR(16) NOT NULL;
 DECLARE BatchStamp DATETIME NOT NULL;
 DECLARE SupplyCursor CURSOR FOR
 SELECT VendPartNumber FROM PurchDB.SupplyPrice
 WHERE PartNumber = :PartNum;
 DECLARE BatchCursor CURSOR FOR
 SELECT BatchStamp FROM ManufDB.SupplyBatches
 WHERE VendPartNumber = :VendPartNum;

 DELETE FROM PurchDB.Inventory WHERE PartNumber = :PartNum;
160 Chapter 4

Constraints, Procedures, and Rules
Using Rules
Open the first cursor:

 OPEN SupplyCursor;
 FETCH SupplyCursor INTO :VendPartNum;

 WHILE ::sqlerrd2 = 1 DO
 DELETE FROM PurchDB.OrderItems WHERE VendPartNumber = :VendPartNum;

Open the second cursor:

OPEN BatchCursor;
 FETCH BatchCursor INTO :BatchStamp;

 WHILE ::sqlerrd2 = 1 DO
 DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
 FETCH BatchCursor INTO :BatchStamp;
 ENDWHILE;

 CLOSE BatchCursor;

 DELETE FROM ManufDB.SupplyBatches WHERE VendPartNumber = :VendPartNum;
 FETCH SupplyCursor INTO :VendPartNum;
 ENDWHILE;
 CLOSE SupplyCursor;
 DELETE FROM PurchDB.SupplyPrice WHERE PartNumber = :PartNum;
 END;

The single rule that invokes the above procedure is as follows:

CREATE RULE PurchDB.RemovePart
 AFTER DELETE FROM PurchDB.Parts
 EXECUTE PROCEDURE PurchDB.RemovePart (OLD.PartNumber);

Error Handling in Procedures Invoked by Rules

When invoked by a rule, a procedure is executed inside the execution of a data
manipulation statement. Therefore, if the procedure encounters an error, the effect of the
procedure and the effect of the data manipulation statement as a whole are undone.
Statements that may fire rules always execute with statement atomicity, regardless of the
current general error checking level set by the SET DML ATOMICITY statement.

Inside procedures invoked by rules, SQL errors have the usual effect of issuing messages,
halting execution of the current statement, rolling back a transaction, or ending a
connection. In addition, even if the error does not result in rolling back a transaction or
losing a connection, it results in the undoing of the effects of all procedures invoked in a
chain by the current statement, and it results in the undoing of the effects of all rules
triggered by the current statement. Thus the entire execution of the statement is undone.

Using RAISE ERROR in Procedures Invoked by Rules

Within a procedure which is triggered by a rule, the RAISE ERRORstatement can be used to
generate an error, which causes an immediate return and undoes the statement that
triggered the rule. The text of the RAISE ERRORmessage can provide useful information to
the user such as the procedure name, the exact reason for the error, the location in the
Chapter 4 161

Constraints, Procedures, and Rules
Using Rules
procedure, or the name of the rule that invoked the procedure (if the procedure is only fired
by one rule).

Suppose the following rule executes whenever a user attempts to delete a row in the
Vendors table:

CREATE RULE PurchDB.CheckVendor
 AFTER DELETE FROM PurchDB.Vendors
 EXECUTE PROCEDURE PurchDB.DelVendor (OLD.VendorNumber);

The procedure PurchDB.DelVendor checks for the existence of the use of a vendor number
elsewhere in the database, and if it finds that the number is being used, it rolls back the
delete on the Vendors table. The procedure is coded as follows:

CREATE PROCEDURE PurchDB.DelVendor (VendorNumber INTEGER NOT NULL) AS
 BEGIN
 DECLARE rows INTEGER NOT NULL;

 SELECT COUNT(*) INTO :rows FROM PurchDB.Orders
 WHERE VendorNumber = :VendorNumber;
 IF :rows <> 0 THEN
 RAISE ERROR 1 MESSAGE 'Vendor number exists in the "Orders" table.';
 ENDIF;

 SELECT COUNT(*) INTO :rows FROM PurchDB.SupplyPrice
 WHERE VendorNumber = :VendorNumber;
 IF :rows <> 0 THEN

 RAISE ERROR 1 MESSAGE 'Vendor number exists in "SupplyPrice" table.';
 ENDIF;
 END;

PurchDB.DelVendor checks for the existence of the use of a vendor number in two tables:
PurchDB.Orders and PurchDB.SupplyPrice. If it retrieves any rows containing the vendor
number, it returns an error code and a string of text to the caller by means of the RAISE
ERROR statement.

The following shows the effect of the rule and procedure when you attempt to delete a row
from the Vendors table in ISQL:

 isql=> DELETE FROM purchdb.vendors WHERE vendornumber = 9006;
 Vendor number exists in the "Orders" table.
 Error occurred executing procedure PURCHDB.DELVENDOR statement 3.
 (DBERR 2235)
 INSERT/UPDATE/DELETE statement had no effect due to execution errors.
 (DBERR 2292)
 Number of rows processed is 0
 isql=>

The DELETE statement triggers the rule, which executes the procedure
PurchDB.DelVendor. If the vendor number that is to be deleted is not found in either of the
two tables, sqlcode is 0, and no messages are displayed.

When a procedure is called through the use of a rule, the procedure exits as soon as an
error occurs. This can be either an ordinary SQL error (but not a warning), or a
user-defined error produced with the RAISE ERROR statement. After an error return, the
statement that fired the rule is undone, and the operation of all other rules fired by the
162 Chapter 4

Constraints, Procedures, and Rules
Using Rules
statement is also undone.

In application programs, you use SQLEXPLAINto retrieve the messages generated by RAISE
ERROR and other SQL statements.

Enabling and Disabling Rules

Rule processing takes place by default in the DBEnvironment. However, the DBA can use
the following statement to disable the operation of rules in the current session:

isql=> disable rules;

This statement, which is useful in debugging, should be employed only with great care,
since it can affect the integrity of the database, if rules are being used to control data
integrity. To restore the operation of rules in the session, use the following statement:

 isql=> enable rules;

Rules are not fired retroactively when the ENABLE RULES statement is issued after the
DISABLE RULES statement has been issued.

Special Considerations for Procedures Invoked by Rules

Procedures operate somewhat differently when invoked by rules than when invoked
directly by a user. The differences are most pronounced in several areas:

• Transaction handling.

• Effects of rule chaining.

• Invalidation of sections.

• Changing session attributes.

• Performance considerations.

Transaction Handling in Rules

Since rules are fired by data manipulation statements that are already being executed, a
transaction is always active when a rule invokes a procedure. Therefore, BEGIN WORK and
BEGIN ARCHIVEstatements will result in errors in a procedure invoked by a rule. The error
will cause the rule to fail and the user's statement to be undone.

COMMIT WORK, COMMIT ARCHIVE, ROLLBACK WORK, ROLLBACK ARCHIVE, SAVEPOINT, and
ROLLBACK TO SAVEPOINTstatements will generate errors when encountered in procedures
triggered by rules. The error causes the user's statement and all subsequent rule-driven
statements to be undone. If you wish to include COMMIT WORK, COMMIT ARCHIVE,
ROLLBACK WORK, ROLLBACK ARCHIVE, SAVEPOINT, or ROLLBACK TO SAVEPOINT
statements in the procedure, because the procedure will be executed by users directly as
well as by rules, you should include these statements within a condition that will only be
true for non-rule invocation. To do this, add a flag parameter to the procedure. Have users
invoking the procedure pass in a fixed value (such as 0), and have rules invoking the
procedure pass in a different value (such as 1).
Chapter 4 163

Constraints, Procedures, and Rules
Using Rules
Then the procedure can be coded with IF statements like the following:

 if :Flag = 0 then
 commit work;
 endif;

The flag check ensures that the rule will not execute statements that would cause it to
generate an error when the procedure is invoked by a rule, while user calls can commit or
roll back changes automatically.

Effects of Rule Chaining

Procedures invoked by rules can include data manipulation statements that invoke rules
that trigger the execution of other procedures. Excessive chaining of rules in this fashion
uses additional system resources. When the chain length exceeds 20, an error occurs,
which causes the user's statement to be undone. To avoid problems, be sure to trace the
dependencies of statements within procedures invoked by rules so as to:

• avoid an endless loop of rule chaining.

• avoid exceeding a rule depth greater than the maximum of 20.

• control and maintain the rule system with minimal complexity.

To assist in tracing, the DBA can use the SET PRINTRULES ON statement to display the
names of rules being fired.

The rule developer should also determine if multiple rules will apply to the same data
manipulation statement. An analysis of the rule type and WHERE conditions can be done
to see whether any rules overlap in statement type on a given table, and whether their
conditions are mutually exclusive or not. The rules are checked for each row an INSERT,
DELETE, or UPDATE statement affects. If multiple rules can affect a single row, the order of
their execution is not guaranteed to be fixed if the section is ever revalidated. To avoid
potential problems, it is best to ensure that rules affecting the same statement have
mutually exclusive WHERE conditions or that the order of execution of the procedures
they invoke is unimportant.

Invalidation of Sections

Procedures can include data definition statements that affect the execution of procedures
and rules by invalidating sections. Use care when issuing the following statements inside
procedures:

• DROP PROCEDURE. If a rule depends on the procedure, all sections checking that rule
will be invalidated by the DROP PROCEDURE statement, and will fail to be revalidated.

• CREATE RULE and DROP RULE. Because rule enforcement is checked during the
lifetime of the rule, CREATE RULE and DROP RULE should be used with care. If a rule
that is currently among those checked for a statement is dropped within a procedure
invoked by a rule on behalf of that statement, the statement will be invalidated while it
is still being executed. In this situation, execution will halt, an error will occur, and the
statement will be undone.

• Any data definition. Within a procedure invoked by a rule, if any DDL is performed
which invalidates a statement currently being executed (either the user's statement, or
164 Chapter 4

Constraints, Procedures, and Rules
Using Rules
a statement within an invoked procedure which chained another rule), an error will
occur, and the user's statement will be undone.

Changing Session Attributes

Procedures should avoid the following statements, which change the attributes of
transactions or sessions:

• SET CONSTRAINTS

• DISABLE RULES

• ENABLE RULES

• SET PRINTRULES

• SET USER TIMEOUT

If you include one of these statements in a procedure invoked by a rule, consider its effect
carefully. If any of these statements is executed by a procedure invoked by a rule, and it
causes the setting of the attribute to change, then the user's statement will execute partly
in the original mode and partly in the altered mode. In the event of rule chaining,
attributes might change several times. If a statement that invokes a procedure is undone,
any settings modified by the procedure are restored to their values prior to the issuing of
the statement.

The SET CONSTRAINTSstatement will change the application of check constraints as of the
next statement in the procedure, and this change will affect the remainder of the set of
rows defined by the triggering statement. The SET CONSTRAINTS statement will change
the application of unique and referential constraints as of the user's next statement--that
is, the statement following the one that invoked the procedure through a rule.

The DISABLE RULES statement will have no effect on the firing of the rules on their
respective current rows. It will only affect rows not yet checked and rules not yet fired.
DISABLE RULES can be used to ensure that the rule depth of 20 is not exceeded, if the chain
of rule dependencies is understood well enough for the appropriate placement of this
statement.

SET PRINTRULES ON and SET PRINTRULES OFF affect the printing of rule names of rules
not yet fired, or of rows not yet checked.

Performance Considerations

The placement of conditions on execution of statements within the firing of a rule should
be examined carefully. Firing conditions placed in the WHERE clause can avoid the
overhead of loading and invoking the procedure, since the WHERE condition is checked
before the procedure is invoked. Thus, it might be better to develop several rules with
separate conditions and procedures with well-defined actions rather than a single rule
with no condition and a single procedure that makes checks before deciding what steps to
carry out. To determine the best design for your needs, weigh the overhead of frequent
loading and executing of a procedure against the overhead of maintaining several
procedures and rules.
Chapter 4 165

Constraints, Procedures, and Rules
Using Rules
Differences between Rules and Integrity Constraints

Rules are similar to integrity constraints in that when a rule is created, all existing
INSERT, UPDATE, and DELETEstatements will be affected by the rule (if the statement type
is appropriate to the rule). Rules are viewed as changes to the table definition, and so all
existing sections depending on the table are invalidated when a rule is created. When
these sections are next revalidated, the rule definition is picked up and compared to the
section; appropriate rules are then included in the revalidated section for checking at
statement execution time.

The following are some of the most important ways in which rules differ from integrity
constraints:

• Rules are entirely reactive. They are not fired at CREATE RULE time against the
existing rows in the table. Moreover, after DISABLE RULES, no record is kept of rows
the rule would have fired on; so, when the ENABLE RULESstatement is next issued, the
rule is not fired retroactively. Integrity constraints, on the other hand, are always
checked when an ALTER TABLEstatement is issued with the ADD CONSTRAINTclause,
and when SET CONSTRAINTS IMMEDIATE is executed.

• Rules only fire on the statement types they are defined to fire on, whereas integrity
constraints will be checked on all data change operations.

• Rules do not use index structures to enforce the constraints they define; some integrity
constraints build special indexes.

• The only side effect of the integrity constraint is an error, while a rule can have many
different side effects depending on the actions of the procedure it invokes.

• In addition to providing a general way of implementing constraints, rules can be used to
define more abstract tasks such as logging the changes made to a table or enforcing
stricter security measures developed by the database designer. Rules are most useful in
defining complex relationships that cannot be modeled with existing check, unique, or
referential constraints.
166 Chapter 4

Concurrency Control through Locks and Isolation Levels
5 Concurrency Control through Locks
and Isolation Levels

Concurrency control is the process of regulating access to the same data by multiple
transactions operating in the same DBEnvironment. Without regulation, a database could
easily become inconsistent or corrupt. Consider what can happen if two or more concurrent
users access the same data without any concurrency control. For example, one user could
delete a row while another user is in the process of updating it. Or one user might update a
row, and a second user might make a decision based on the update, then the first user
might decide to roll back the update, at which point the second user's decision becomes
invalid. To avoid problems of this type, it is important to regulate the kinds of access to
database tables available to concurrent users.

This chapter describes the methods employed by ALLBASE/SQL to provide concurrency
control for multiuser DBEnvironments. A section is devoted to each of the following topics:

• Defining Transactions

• Understanding ALLBASE/SQL Data Access

• Use of Locking by Transactions

• Defining Isolation Levels between Transactions

• Details of Locking

• What Determines Lock Types

• Scope and Duration of Locks

• Examples of Obtaining and Releasing Locks

• Resolving Conflicts among Concurrent Transactions

• Monitoring Locking with SQLMON

The techniques of concurrency control described in this chapter are normally implemented
through application programs, though you can use some of them interactively as well.

Concurrency is a complex subject. If you are a new user of relational technology or of
ALLBASE/SQL, you should read the entire chapter before attempting to use any of the
special features described here.
Chapter 5 167

Concurrency Control through Locks and Isolation Levels
Defining Transactions
Defining Transactions
Concurrency control in ALLBASE/SQL operates at the level of the transaction, which
identifies an individual user's unit of work within a multiuser DBEnvironment. As
mentioned in a previous chapter, transactions are bounded by BEGIN WORK and COMMIT
WORK statements. If you omit the BEGIN WORK statement, ALLBASE/SQL issues one
automatically, using the RR (repeatable read) isolation level. ALLBASE/SQL keeps track
of which transactions are accessing which pages of data at a particular moment in time.
Transactions have unique ID numbers which are listed in the SYSTEM.TRANSACTION
pseudotable in the system catalog.

Transactions can be seen as taking place over time, as in Figure 5-1.

Figure 5-1. Transactions over Time

In this example, transaction 2 begins before transaction 1 ends; therefore, transaction 1
and transaction 2 are concurrent transactions. Transaction 3 begins after transaction 1
has committed; therefore, transaction 1 and transaction 3 are not concurrent, since they do
not occupy the same time.

Concurrent transactions that need to access the same data pages may be in contention for
a particular table, page, or row at a particular moment. Suppose transaction 1 needs to
access an entire table as part of a reporting application. If transaction 2 needs to update
parts of that table, it may need to wait until transaction 1 is complete before the update
can proceed.
168 Chapter 5

Concurrency Control through Locks and Isolation Levels
Understanding ALLBASE/SQL Data Access
Understanding ALLBASE/SQL Data Access
Concurrent access to data by multiple users is facilitated by the use of a shared data buffer
for all users of an ALLBASE/SQL DBEnvironment. Understanding how this buffer is used
can clarify many concurrency issues.

A DBEnvironment running in multiuser mode is accessed by multiple processes, as shown
in Figure 5-2.

Figure 5-2. Multiuser DBEnvironment

A single data buffer services the needs of all users of the DBEnvironment. In addition,
each interactive user or application program has its own 12K tuple buffer associated with
it. The data buffer holds 4096-byte pages from the DBEFiles in which tables and indexes
are stored. All pages of data requested from tables in the DBEnvironment and all index
pages required for access to the data are read first into this shared data buffer. In the case
of queries, qualifying rows (tuples) are read from the data buffer into the tuple buffer, and
then they are transferred to the screen (in the case of ISQL) or to host variables or arrays
(in the case of an application program). All changes to existing data and index pages are
placed in the data buffer before being written to disk.

The use of the data buffer makes access to data efficient, because pages of data are only
read into the buffer when necessary. These data pages stay in the buffer until they are
swapped out when buffer space is needed for some other page. The use of the buffer also
Chapter 5 169

Concurrency Control through Locks and Isolation Levels
Understanding ALLBASE/SQL Data Access
promotes quick access to the same pages of data by different transactions, because a page
may not have to be read in from disk if it is already in the buffer.

When you issue a query, you request a specific set of rows and columns from different
tables in a database. The content of this set of rows and columns is the query result. For
every query, ALLBASE/SQL maintains a cursor, which is a pointer to a row in the query
result. A query result may be much larger than the size of available memory, so result rows
are read into your application's tuple buffer in blocks of up to 12K at a time. As your
application advances through a query result, the cursor position advances. When the
application has read the last row in the tuple buffer, a new set of rows is read in until the
end of the query result is reached.

NOTE In procedures or embedded SQL applications, you can explicitly declare and
open a cursor for each query result. In ISQL, you do not explicitly open
cursors; ALLBASE/SQL maintains the pointer position for you.

For unsorted queries, the tuple buffer is filled with rows of data taken from pages found in
the data buffer. Of course, the tuples in the query result are a subset of the content of each
data page. In other words, the data buffer contains everything on each data page, but the
tuple buffer contains only the columns and rows you have requested. As the cursor moves
through the tuple buffer containing the query result, additional rows must be fetched from
the data buffer. When data has been fetched from all qualifying pages in the data buffer,
additional data pages must be read into the data buffer from disk, and then additional
qualifying rows and columns must be read into the tuple buffer. In the case of sorting, the
sort output is stored in a temporary table in the SYSTEM DBEFileSet before being read
into the data buffer.
170 Chapter 5

Concurrency Control through Locks and Isolation Levels
Use of Locking by Transactions
Use of Locking by Transactions
Transactions obtain locks to avoid the possible interference of one transaction with
another. This is important when you use PUBLIC or PUBLICROW tables, which can be
accessed by many concurrent users of a DBEnvironment. Within the framework of a
transaction, the PUBLIC tables that contain the required data for the operation you are
performing are locked to regulate access to the data they contain. In addition, individual
pages in PUBLIC tables are locked as needed when they are read into the data buffer. In the
case of PUBLICROW tables, individual rows are locked as needed before they are read into
the tuple buffer. In some cases, the use of a table lock may make the use of individual locks
on pages unnecessary. Locks are released on both tables and pages when the transaction
that acquired them issues a COMMIT WORK or ROLLBACK WORK statement, or when other
conditions are met (described further in the section on "Defining Isolation Levels").

Basics of Locking

The following are the two basic requirements of locking:

• Read operations on data pages must acquire share locks before data can be retrieved.

• Write operations on data pages must obtain exclusive locks before data is modified.

Lock types are described in more detail in a later section.

When a lock is obtained, the transaction ID (a number), the name of the object locked, and
the type of lock acquired are stored in a lock list in shared memory. When a user needs a
particular lock, a lock request is issued, and ALLBASE/SQL checks to see whether the
object is already locked by some other transaction. If the lock request cannot be granted,
the transaction waits until the other transaction releases the lock. If the request can be
granted, the new lock is placed in the lock list. (Compatibility of locks is described in a
later section.)

When one transaction is waiting for another transaction to release a lock, and the second
transaction is also waiting for the first to release a lock, the transactions are said to be in
deadlock. If a deadlock occurs, ALLBASE/SQL rolls back one transaction, and this allows
the others to obtain the needed lock and continue.

When a transaction ends through a COMMIT WORK or ROLLBACK WORK statement, locks are
released; that is, the entries are deleted from the lock list. If the transaction has obtained
several different locks, they are all released in a group.

When a transaction ends through an abnormal termination, locks are released by the
monitor.

Locks and Queries

During query processing on PUBLIC tables, the cursor is positioned on a row in the query
result; by extension, the cursor also points to the underlying data buffer page from which
the specific row was derived. Typically, the underlying page to which a cursor points is
locked to restrict access to it by other transactions. When a page in the data buffer is
locked, another transaction may only access that page in a compatible lock mode. For
Chapter 5 171

Concurrency Control through Locks and Isolation Levels
Use of Locking by Transactions
example, if someone else is updating a row of user data on page A of a PUBLIC table, your
transaction must wait until the update is committed before reading rows from page A into
your tuple buffer.

During query processing on PUBLICROWtables, the underlying row to which a cursor points
is locked, and the page on which the row resides is also locked (with an intent lock,
explained in "Types of Locks", below). Other users can access the same row only in a
compatible lock mode, but they can access different rows on the same page in different lock
modes. For example, if someone else is updating a row of user data on page A, your
transaction must wait until the update is committed before it can read the same row.
However, you can read other rows from page A into your tuple buffer and update them.

Locks on System Catalog Pages

In addition to locks on user data, ALLBASE/SQL locks pages of data in the system catalog
for the duration of the transaction. Data pages in one or more system tables are locked
when any SQL statement is executed.

See the appendix, “Locks Held on the System Catalog By SQL Statements,” in the
ALLBASE/SQL Database Administration Guide for more information.

Locks on Index Pages

B-tree indexes on PRIVATE and PUBLICREAD user tables are never locked, because
concurrency control on the index is already achieved via the table level locks that are
always acquired on these tables. B-tree indexes on PUBLIC or PUBLICROW user tables are
not locked for read operations, but they are locked with intention exclusive (IX) page locks
for write operations. B-tree indexes on PUBLIC and PUBLICROW tables are locked with
exclusive (X) page locks only in the following cases:

• When an index row is inserted and the page must be compressed before the insertion.
Compression is an attempt to recover non-contiguous space that has become available
on an index page.

• When an insert is made and the page must be split into two new pages. Splitting occurs
when compression does not result in enough space for inserting the new index row. In
such a case, the data from the original page is moved to the two new pages, each of
which receives half of the key values from the original page. The new index key is
inserted on one of the new pages, and the original page is freed, that is, made available
for reuse. A total of three X locks are obtained during this operation: one on the original
page, and two on the newly allocated index pages.

• When a delete is made, and an index page becomes empty because the last key on the
page was deleted. In this case, ALLBASE/SQL frees the page, which requires an X page
lock.

Costs of Locking

The price paid for ensuring the integrity of the database through locking is a reduction in
throughput because of lock waits and deadlock and the CPU time used to obtain locks.
This price can be high. For example, one way to guarantee that two transactions do not
interfere with one another is to allow only one transaction access to a database table at a
time. This serialization of transactions avoids deadlocks, but it causes such a dramatic
172 Chapter 5

Concurrency Control through Locks and Isolation Levels
Use of Locking by Transactions
reduction of throughput that it is obviously not desirable in most situations.

Another cost of locking is the use of shared memory resources. Each lock requires the use
of some runtime control block space. The more locks used by a transaction, the more
memory required for control blocks. This is especially important for PUBLICROW tables,
which usually require more locks than PUBLIC tables.

To minimize the costs of locking on PUBLIC and PUBLICROW tables, you should design each
transaction in such a way as to lock only as much data as necessary to keep out other
transactions that might conflict with your transaction's work. The following sections
explain the features of ALLBASE/SQL that you can use to accomplish this.
Chapter 5 173

Concurrency Control through Locks and Isolation Levels
Defining Isolation Levels between Transactions
Defining Isolation Levels between Transactions
Isolation level is the degree to which a transaction is separated from all other concurrent
transactions. Four levels are possible, shown here in order from most to least restrictive:

• Repeatable read (RR)--the default

• Cursor stability (CS)

• Read committed (RC)

• Read uncommitted (RU)

In general, you should choose the least restrictive possible isolation level for your needs in
order to achieve the most concurrency. You select an isolation level in the BEGIN WORK
statement, as in the following example:

 isql=> BEGIN WORK CS;

An isolation level can also be specified with either the SET TRANSACTION or SET SESSION
statement.

Repeatable Read (RR)

By default, transactions have the Repeatable Read (RR) isolation level, which means
that within the transaction, you can access the same data as often as you wish with the
certainty that it has not been modified by other transactions. In other words, other
transactions are not allowed to modify any data pages that have been read by your
transaction until you issue a COMMIT WORK or ROLLBACK WORK statement. This is the most
restrictive level, allowing the least concurrency.

All the examples of transactions shown so far use the RR (repeatable read) isolation level.
At the RR level, all locks are held until the transaction ends with a COMMIT WORK or
ROLLBACK WORKstatement. This option causes each data row or page read to be locked with
a share lock, which forces any other user trying to update the data on the same row or page
to wait until the current transaction completes. However, other transactions may read the
data on the same row or page. For PUBLICROW tables, if you update a row during a
transaction, the row receives an exclusive lock, which forces other transactions to wait for
both reading or writing that row until your transaction ends. For PUBLIC tables, if you
update a data page during a transaction, the page receives an exclusive lock, which forces
other transactions to wait for both reading or writing until your transaction ends.
Repeatable Read should be used if you must read the same data more than once in the
current transaction with assurance of seeing the same data on successive reads.

Cursor Stability (CS)

The Cursor Stability (CS) isolation level guarantees the stability of the data your cursor
points to. However, this isolation level permits other transactions to modify rows of data
you have already read, provided you have not updated them and provided they are not still
in the tuple buffer. CS also permits other transactions to update rows in the active set
which your transaction has not yet read into the tuple buffer. With cursor stability, if you
move your cursor and then try to reread data you read earlier in the transaction, that data
174 Chapter 5

Concurrency Control through Locks and Isolation Levels
Defining Isolation Levels between Transactions

T

may have been modified by another transaction. At the CS level, share locks on data
(whether at the row or page level) are released as soon as the associated rows are no longer
in the tuple buffer. Exclusive locks are held until the transaction ends with a COMMIT WORK
or ROLLBACK WORK statement. The following describes what using CS means:

• No other transactions can modify the row on which the transaction has a cursor
positioned.

• A shared lock is kept on the row or page that the cursor is currently pointing to. When
the cursor is advanced to the next page of data and nothing has been updated on the
previous page, the lock on that previous page is released.

• If an update is done on a data page, the exclusive lock on that page is retained until the
transaction ends with a COMMIT WORK or ROLLBACK WORK statement.

Use the CSisolation level for transactions in which you need to scan through large portions
of a database to locate rows that need to be updated immediately. CS lets you do this
without preventing other transactions from updating data pages that you have already
passed by without updating. CSguarantees that a row of data will not be changed between
the time you issue the FETCHstatement and the time you issue an UPDATE WHERE CURREN
in the same transaction.

NOTE When you use CSfor a query that involves a sort operation, such as an ORDER
BY, DISTINCT, GROUP BY , or UNION, or when a sort/merge join is used to
join tables for the query, the sort may use a temporary table for the query
result. In such cases, your cursor actually points to rows in this temporary
table, not to rows in the tuple buffer. Therefore, when sorting is involved, the
locks held on data pages or rows are released before you manipulate the
cursor. In other words, no locks are held at the cursor position for sorted scans
at the CSisolation level. If it is important to retain locks in this situation, use
the RR isolation level.

If you are updating a row based on the information in a sorted query result,
use a simple SELECT statement to verify the continued existence of the data
before doing the update operation. In this case, it is good practice to include
the TID as part of the original SELECT, and then to use the TID in the WHERE
clause of the SELECT that verifies the data.

Read Committed (RC)

With Read Committed, you are sure of reading consistent data with a high degree of
concurrency. However, you are not guaranteed the ability to reread the data your cursor
points to, because other transactions can modify that data as soon as it has been read into
your application's tuple buffer. Also, you cannot read rows or pages from the data buffer
that have been modified by another transaction unless that other transaction has issued a
COMMIT WORK statement. At the RC level, share locks on data are released as soon as the
data has been read into your buffer. Exclusive locks are held until the transaction ends
with a COMMIT WORK or ROLLBACK WORKstatement.

The following describes what using RC means:
Chapter 5 175

Concurrency Control through Locks and Isolation Levels
Defining Isolation Levels between Transactions
• You can retrieve only rows that have been committed by some transaction or modified
by your own transaction.

• Other transactions can write on the page on which the transaction has a cursor
positioned, because locks are released as soon as data is read.

• If an update is done on a page, the lock is retained until the transaction ends with a
COMMIT WORK or ROLLBACK WORK statement.

Use the RC isolation level for improved concurrency, especially in transactions which
include a long duration of time between fetches. When you must update following a FETCH
statement using the RCisolation level, use the REFETCHstatement first, which obtains and
holds locks on the current page, thus letting you verify the continued existence of the data
you are interested in.

Read Uncommitted (RU)

The Read Uncommitted (RU) isolation level lets you read anything that is in the data
buffer, whether or not it has been committed, in addition to pages read in from disk. For
example, someone else's transaction might perform an update on a page, which you can
then read; then the other transaction issues a ROLLBACK WORKstatement which cancels the
update. Your transaction has thus seen transitory data which was not committed to the
database. At the RU level, no share locks are obtained on user data. Exclusive locks
obtained during updates are held until the transaction ends with a COMMIT WORK or
ROLLBACK WORK statement.

The following describes what using RU means:

• The transaction does not obtain any locks on user data when reading, and therefore
may read uncommitted data.

• The transaction does not have to wait on locks on user data, so deadlocks are
considerably reduced. However, transactions may still have to wait for system catalog
locks to be released.

• If an update is done on a page, the transaction obtains an exclusive lock, which is
retained until the transaction ends with a COMMIT WORK or ROLLBACK WORK
statement.

RUis ideal for reporting and similar applications where the reading of uncommitted data is
not of major importance. If you must update following a FETCH statement using the RU
isolation level, use the REFETCH statement first, which obtains and holds the appropriate
locks, letting you verify that you are not updating a row based on uncommitted data.
176 Chapter 5

Concurrency Control through Locks and Isolation Levels
Details of Locking
Details of Locking
To promote the greatest concurrency, ALLBASE/SQL supports a variety of granularities
and lock types. Granularity is the size of the object locked. Lock type is the severity of
locking provided. Compatibility refers to the ability of different transactions to hold locks
at the same time on the same object.

Lock Granularities

The use of different granularities of locking promotes a high level of concurrency. There
are three levels of granularity in ALLBASE/SQL:

• Row (tuple) level

• Page level

• Table level

Although some system operations use row level locking internally, system operations
acquire page locks by default. User-created tables can be locked at the row, page, or table
level, depending on the table type. B-tree and constraint indexes are locked with weak
locks at the page level for update operations and are not locked at all on reads. Table, page,
and row level locking are illustrated in Figure 5-3. and Figure 5-4. Figure 5-3. portrays a
query that accesses two pages of a table.

Figure 5-3. Page Versus Table Level Locking

With page level locking, pages containing data scanned for the query are locked. All other
pages can be locked by other transactions. With table level locking, the same query locks
the table as a whole, whether or not the individual pages are being used for a query. This
means that when a table has an exclusive lock on it, no other transaction can obtain any
locks on the table or any data page in it until the transaction holding the page lock
terminates.
Chapter 5 177

Concurrency Control through Locks and Isolation Levels
Details of Locking
Figure 5-4. also portrays a query that accesses two pages of a table.

Figure 5-4. Row Versus Page Level Locking

With row level locking, only the rows containing data scanned for the query are locked. All
other rows can be locked by other transactions. With page level locking, the same query
locks an entire page, even if the page contains row(s) not used by the query.

Table size can affect concurrency at the page level. For example, if a small table occupies
only one page, then the effect of a page level lock is the same as locking the entire table. In
the case of small tables where frequent access is needed by multiple transactions, row level
locking can provide the best concurrency. After issuing an UPDATE STATISTICS statement
on a table, you can query the SYSTEM.TABLE view to determine how many pages it
occupies.

Table level locking serializes access to the table, that is, forces transactions with
incompatible locks to operate on a table one at a time. This reduces deadlocks by keeping
other users from accessing the table until the transaction is committed or otherwise
terminated. A small table limits concurrency by its very nature since the probability is
high that many users will want to access the limited number of pages or rows. By locking a
small table at the table level, you can improve performance by reducing the work of
retrying deadlocked transactions. On larger tables, the price of table level locking is
higher, since the naturally higher concurrency of the large table is sacrificed to
serialization.

Page level locking improves concurrency by allowing multiple users to access different
pages in the same table concurrently. Row level locking maximizes concurrency by
allowing multiple users to access different rows in the same table at the same time, even
on the same page.

Because ALLBASE/SQL uses a buffer system in accessing data from database files, keep
178 Chapter 5

Concurrency Control through Locks and Isolation Levels
Details of Locking
in mind that the system can actually acquire several page or row locks, one at a time,
before the data is exposed to the user. In effect, the user's transaction obtains and releases
locks on sets of pages or rows at a time as it moves through a query result. This is because
data from many pages and rows can be required to fill the 12K tuple buffer.

Types of Locks

Locks in ALLBASE/SQL can be classified into the following five types, listed from the
lowest to the highest level of severity:

• Intention Share (IS): Indicates an intention to read data at a lower level of
granularity. An IS lock on a PUBLIC table indicates an intention to read a page. An IS
lock on a PUBLICROW table together with an IS lock on a page indicates an intention to
read a row on that page. When a need to read data at a lower level is established,
ALLBASE/SQL internally requests an IS lock at the higher level. For example, after an
IS table lock has been granted on a PUBLIC table, requests are made for S locks on
particular pages. In the case of a PUBLICROWtable, after IS locks have been granted on
both table and page, requests are made for S locks on particular rows.

• Intention Exclusive (IX): Indicates an intention to update or modify data at a lower
level of granularity. An IX lock on a PUBLIC table indicates an intention to modify data
on a page. An IX lock on a PUBLICROWtable together with an IX lock on a page indicates
an intention to modify a row on that page. When a need to write data at a lower level is
established, ALLBASE/SQL internally requests an IX lock at the higher level. For
example, after an IX table lock has been granted on a PUBLIC table, requests are made
for X locks on particular pages. In the case of a PUBLICROW table, after IX locks have
been granted on both table and page, requests are made for X locks on particular rows.

• Share (S): Permits reading by other transactions.

• Share and Intention Exclusive (SIX): Indicates a share lock at the current level and
an intention to update or modify data at a lower level of granularity. SIX locks are
placed on both tables, pages, and rows. When the need to write data at the page or row
level is established, and there is also a need to be able to read every page in the table
without its being modified by any other transaction, then ALLBASE/SQL internally
requests a SIX lock on the table. After an SIX lock has been granted on a PUBLIC table,
no additional locks are acquired when a page is read, but an X page lock is acquired
when a page is written. After an SIX lock has been granted on a PUBLICROW table, no
additional locks are acquired when a row is read, but an IX page lock and an X row lock
are acquired when a row is written.

• Exclusive (X): Prevents any access by other users. An exclusive lock is required
whenever data is inserted, deleted, or updated. Because no other user can read this
data before the transaction completes, the integrity of the database is not endangered if
the changes have to be rolled back, either at the user's request or on recovery after a
system failure.

Some of these locks are intention locks. Intention locks are obtained at a higher level of
granularity whenever a lock is obtained at a lower level. For example, when you obtain a
share lock (S) on a page, the table is normally locked with an intention share lock (IS). This
is done so that other transactions can quickly tell that a table is being read by someone
without the need to determine which specific pages are being read. Suppose another
Chapter 5 179

Concurrency Control through Locks and Isolation Levels
Details of Locking
transaction wishes to lock the table in exclusive mode. The IS lock on the table would
prevent the other transaction from locking the table in exclusive mode. Without the use of
higher granularity locks, ALLBASE/SQL would have to search all page or row locks to
determine whether the exclusive lock request could be granted.

Figure 5-5. shows the use of an intention lock at the table level and share locks on the page
level. The example assumes that an index is being used for data access.

Figure 5-5. Locks at Different Granularities

Lock Compatibility

Table 5-1. shows the compatibility of different lock types. A Y (yes) at the intersection of a
row and column in the table indicates that two locks are compatible at the same level of
granularity; a blank space indicates that they are not compatible.

When two lock requests are compatible, both transactions are allowed to access the table,
page, or row concurrently, and the lock on this data object is promoted to or left at the lock
mode of higher severity. For example, if transaction 2 wishes to update a page that is
already being read by transaction 1, transaction 2 requests an IX lock on the table and an
X lock on the page. Transaction 1 has an IS lock on the table, which is compatible with the
requested IX, so the lock on the table is promoted to IX. Then, transaction 2 obtains the X
lock on the page it needs to update only if transaction 1 is not already reading that same

Table 5-1. Lock Compatibility Matrix

IS IX S SIX X

IS Y Y Y Y

IX Y Y

S Y Y

SIX Y

X

180 Chapter 5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types
page. Note that S and X locks on the same page are not compatible.

When locks are not compatible, the second access request must wait until the lock acquired
by the first access request is released.

Weak Locks

Intention exclusive locks are called weak locks when there is no other lock at a finer level
of granularity on the object being locked. This is the case for index pages, which are locked
IX when concurrent transactions are updating different rows on the same page. Weak
locks, also known as sublocks or concurrent locks, are used to prevent the deletion of an
index page by another concurrent transaction. ALLBASE/SQL uses strong locks (exclusive
locks) on index pages only for splitting, deleting, or compressing index pages.

What Determines Lock Types
ALLBASE/SQL locks one or more of the following three objects:

• Tables. Rows or pages of tables or entire tables are locked when you execute SQL
statements referencing them.

• PCRs. Pages of PCRs (indexes that support referential constraints) are locked when
ALLBASE/SQL updates a key value.

• Indexes. Pages of indexes are locked when ALLBASE/SQL updates an index.

• System tables. Rows or pages in one or more system tables are locked when you
execute any SQL statement. System tables are always locked at the RR level regardless
of the transaction isolation level, when they are accessed for execution of an SQL
statement. Refer to the appendix "Locks Held on the System Catalog by SQL
Statements" in the ALLBASE/SQL Database Administration Guide for complete
information.

As this summary indicates, locks on user data and indexes are obtained at the row level,
page level, or at the table level. Although some locking of system data is done at the row
level, system catalog indexes are always locked at the page level.

The locks that are applied to pages and tables are determined by a combination of the
following factors:
Chapter 5 181

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types
• Type of SQL statement.

• Locking structure implicit at CREATE TABLE time.

• Use of the LOCK TABLE statement.

• Optimizer's choice of a scan type.

• Choice of isolation level.

• Updatability of cursors or views used to access data.

• Use of sorting.

Type of SQL Statement

Specific SQL statements imply particular kinds of data access. Statements such as SELECT
and FETCH, which merely read data, request share locks. INSERT, DELETE, and UPDATE, all
of which modify tables, request exclusive locks. In addition, the cursor manipulation
statements let you specify an intention to update certain rows of data. When you declare a
cursor in a program for updating certain columns, and you then open the cursor, share
update (SIX) locks may be obtained.

Data definition statements (CREATE and DROP, ADD and REMOVE) also request exclusive
locks, both for the objects being defined, and for the system catalog pages containing
descriptions of the objects. During data definition, locking of the system catalog can be
extensive. Refer to the appendix "Locks Held on the System Catalog by SQL Statements"
in the ALLBASE/SQL Database Administration Guide for a complete list of statements
and their effects on the system catalog.

When data manipulation or data definition statements update a table that has a B-tree or
constraint index defined on it, locks may also be placed on those index pages.

Locking Structure Implicit at CREATE TABLE Time

Table 5-2. shows the general locking structure used for a table depending on the type of
locking assigned when the table is created. For clarity, the table shows only the locks
obtained for index scans. (Scan type is described in a later section.)

Table 5-2. Locking Behavior Determined by CREATE TABLE Statement

Table Type Read Locks Write Locks

PRIVATE (default) Table Exclusive (X) Table Exclusive (X)

PUBLICREAD Table Share (S) Table Exclusive (X)

PUBLIC Table Intent Share (IS)

Page Share (S)

Table Intent Exclusive (IX)

Page Exclusive (X)

PUBLICROW Table Intent Share (IS)

Page Intent Share (IS)

Row Share (S)

Table Intent Exclusive (IX)

Page Intent Exclusive (IX)

Row Exclusive (X)
182 Chapter 5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types
PUBLICROWand PUBLIC tables allow concurrent users to access the table for both reads and
writes but they increase the chances of deadlock, because concurrent transactions can be
waiting for each other to release locks. PUBLICROW tables obtain locks at the row level,
which affords more concurrency than with PUBLIC tables, at the possible cost of obtaining
more locks. PUBLICREADtables allow only one transaction to write to a table, or they allow
multiple transactions to read the table; no readers can access the table while any writing
is going on. PRIVATE tables allow only one transaction to read from or write to a table at a
time.

If the locking structure of a table does not allow a transaction to access the table, the
transaction must wait. In a typical example, if one transaction is reading a PUBLICREAD
table, and a second transaction executes a statement to update that table, the second
transaction waits until the first transaction executes a COMMIT WORK or ROLLBACK WORK
statement.

The implicit locking structure of a table can be changed by using the ALTER TABLE
statement.

Use of the LOCK TABLE Statement

The LOCK TABLE statement is another determinant of lock types. With this statement,
ALLBASE/SQL explicitly locks a table as a whole, making most page or row locking
unnecessary. You can lock tables in SHARE mode, EXCLUSIVE mode, or in SHARE UPDATE
mode. With SHARE locking (S locks), other transactions may read pages in the table you
have locked but not update them. With EXCLUSIVE locking (X locks), no other transaction
may access the locked table until your transaction commits. With share update locking
(SIX locks), other transactions may read pages that are not being updated. However, no
other transaction can obtain an exclusive lock until your transaction ends with a COMMIT
WORK or ROLLBACK WORK statement.

You can upgrade the implicit locking mode of a table to a more severe level by using the
LOCK TABLEstatement. Thus, you can lock a PUBLIC, PUBLICROW, or PUBLICREADtable in
EXCLUSIVE mode. However, you cannot downgrade the implicit locking mode. If you
attempt to lock a PRIVATE table in SHARE mode, the LOCK TABLE statement has no effect.

Use the LOCK TABLE statement to reduce the following:

• The overhead of obtaining and maintaining locks

• The potential for deadlock

Choice of a Scan Type

Another factor that determines the kind of locking in a data access transaction is the type
of scan used to process a query. There are four types of scan:

• Serial scan

• Index scan

• Hash scan

• TID scan

A sequential scan (also known as a serial scan) is one in which ALLBASE/SQL begins at
Chapter 5 183

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types
the first page of a table and reads each page, looking for rows that qualify for the query
result, until it arrives at the end of the table. An index scan looks up the page locations of
those rows that qualify for the query result in an index which you have separately created.
A hash scan accesses an individual row by calculating the row's primary page location
from a value supplied in the query's predicate. A TID scan obtains a specific row by
obtaining its page number from the TID (tuple ID) directly. A hash scan accesses an
individual row by calculating the row's primary page location from a value supplied by the
query's predicate.

When a sequential scan is used to access a table, the data is being read at the table level.
Depending on the isolation level of a transaction (described in the next section), a
sequential scan either locks the whole table or else locks each page of a table in share mode
(each row, in the case of a PUBLICROW table) in turn until it finds the row it is seeking.

When an index scan is used to access a table, the data is being read at the page level if the
table is PUBLIC or at the row level if the table is PUBLICROW. An index scan has to read
index pages, but no locks are acquired; a transaction only needs to lock the data page or
row pointed to by the index. Thus, an index scan that retrieves only a few rows from a
large PUBLIC table will obtain locks on fewer data pages than a sequential scan on the
same table. (Index pages are locked with IX locks only when an index is updated.) A TID
scan locks only the page or row pointed to by the TID. A hash scan locks only the data page
containing the hash key, possibly with some overflow pages. Hashing is not possible with
PUBLICROW tables.

By default, the choice of a plan of access to the data is made by the ALLBASE/SQL
optimizer. You can override the access plan chosen by the optimizer with the SETOPT
statement.

As a rule of thumb, you can assume that the optimizer chooses a sequential scan when the
query needs to read a large proportion of the pages in a table. Similarly, the optimizer
often chooses an existing index when a small number of rows (or only a single row) is to be
retrieved, and the index was created on the columns referred to in the WHEREclause of the
query. When you use a TID function, you can assume the optimizer will choose a TID scan.
To display the access plan chosen by the optimizer, use the SQL GENPLAN statement,
specifying the query of interest. Then perform a query on the SYSTEM.PLAN view in the
system catalog to display the optimizer’s choices. For more information, refer to the section
“Using GENPLAN to Display the Access Plan” in Chapter 3 , “SQL Queries.”

NOTE If you are reading a large table, and if you do not expect it to be updated by
anyone while your transaction is running, you can avoid excessive overhead
in shared memory from locks obtained on each page by using the LOCK TABLE
statement in SHARE mode. This makes it unnecessary for ALLBASE/SQL to
lock individual pages or rows.

Choice of Isolation Level

One more factor that determines the kinds of locks obtained on data objects is the isolation
level of the transaction. A higher degree of isolation means less concurrency in operations
involving PUBLIC and PUBLICROW tables. You can select the isolation level used in your
transactions to maximize concurrency for the type of operation you are performing and to
184 Chapter 5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types
minimize the chance of deadlocks.

The kind of lock obtained at different isolation levels depends on the other factors that
determine locks--scan type, kind of SQL statement, and implicit table type. A simplified
summary of locks obtained on PUBLIC tables and their indexes appears in Table 5-3.. Hash
and TID scans are omitted.

Table 5-3. Locks Obtained on PUBLIC Tables with Different Isolation Levels

Isolation Level and
Scan Type

Read Operations
(SELECT, FETCH)

Read for Updatea

a. Opening a cursor that was declared FOR UPDATE (RR and CS), or using REFETCH
(RC and RU).

Write Operations
(UPDATE, INSERT,

DELETE)

Table Page Table Page Table Page

RR Sequential S - SIX - SIX X

RR Index IS S IX SIX IX X

CS Sequential IS Sb

b. Lock released at the end of the next read.

IX SIX IX X

CS Index IS S IX SIX IX X

RC Sequential IS Sc

c. Lock released at the end of the current read.

IX SIX IX X

RC Index IS S IX SIX IX X

RU Sequential None None IX SIX IX X

RU Index None None IX SIX IX X
Chapter 5 185

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types
A simplified summary of locks obtained on PUBLICROW tables appears in Table 5-4. Hash
and TID scans are omitted.

NOTE ALLBASE/SQL locks system catalog pages at the RR isolation level when
they are accessed or modified on behalf of an SQL statement. Refer to the
appendix “Locks Held on the System Catalog by SQL Statements” in the
ALLBASE/SQL Database Administration Guide for a list of locks acquired
for each SQL statement.

Neighbor Locking

Neighbor locking is a way indexes are maintained. More than one object is locked within a
Publicrow. SQLMon is the best tool to get the kind of locks held on SQL objects.

During an index scan, “weak” (IS, IX) locks are placed on index and data pages. A tuple
(page) lock will be placed on the qualifying tuple(s). In order to insure RR (Repeatable
Read), an additional tuple (page) lock is placed on the data tuple corresponding to the
higher key next to the qualifying key. During a RR/CS/RC index scan, the qualifying data
tuple are locked in S. During inserts and deletes, the higher key's tuple is locked in X for
uniqueness and to insure RR for readers. Of course, the updated tuple is locked in X also.
During an update where the key is updated, we end up with two higher key locks because

Table 5-4. Locks Obtained on PUBLICROW Tables with Different Isolation
Levels

Isolation Level
and Scan Type

Read Operations
(SELECT, FETCH)

Read for Updatea

a. Opening a cursor that was declared FOR UPDATE (RR and CS), or using REFETCH (RC
and RU).

Write Operations
(UPDATE, INSERT,

DELETE)

Table Page Row Table Page Row Table Page Row

RR Sequential S - - SIX - - SIX IX X

RR Index IS IS S IX IX SIX IX IX Xb

b. Next higher key’s data row is locked for an insert or delete, and the next two higher
key's data rows are locked for an update.

CS Sequential IS ISc

c. Lock released at the end of the next read.

Sc IX IXc SIXc IX IX X

CS Index IS ISc Sc IX IXc SIXc IX IX Xb

RC Sequential IS ISd

d. Lock released at the end of the current read.

Sd IX IXd SIX IX IX X

RC Index IS ISd Sd IX IX SIX IX IX Xb

RU Sequential None None None IX IX SIX IX IX X

RU Index None None None IX IX SIX IX IX Xb
186 Chapter 5

Concurrency Control through Locks and Isolation Levels
What Determines Lock Types
the update corresponds to an index delete followed by an index insert. What should you
lock if there is no higher? Lock an imaginary tuple which has the highest possible key.
Note that locks are placed at the tuple level for PUBLICROW or at the page level for PUBLIC
tables.

Updatability of Cursors or Views

When a transaction uses cursors or views to access and manipulate data, the kinds of locks
obtained depend partly on whether the cursors or views are updatable according to the
rules presented under "Updatability of Queries" in Chapter 3 , “SQL Queries.” Table 5-3.
shows the locks obtained on updatable views and on updatable cursors declared FOR
UPDATE; they are listed in the "Read for Update" column in the table. In general, SIX, IX,
and X locks will not be used unless the query that underlies the view or cursor is
updatable.

Use of Sorting

If a query involves a sort operation, locks are maintained only if the transaction is at the
RR isolation level. When there is an ORDER BY, a GROUP BY, UNION, or DISTINCT clause in
a query, or if the optimizer decides to use the sort/merge join method for joins or nested
queries, the data in the tables is sorted and copied to a temporary table. The user's cursor
is really defined on this temporary table, which does not require any locking since it is
private to the user. Locks on the original tables underlying the view or cursor are retained
only if the transaction was started at the RR isolation level. Locks obtained at the CS or
RC level are released; locks are not obtained at all at the RU level.
Chapter 5 187

Concurrency Control through Locks and Isolation Levels
Scope and Duration of Locks
Scope and Duration of Locks
In general, the length of a transaction affects concurrency. Long transactions hold locks
longer, which increases the chances that another transaction is waiting for a lock. Short
transactions are "in and out" quickly, which means they are less likely to interfere with
other transactions.

The isolation level determines what kinds of locks are obtained in particular
circumstances, and also how long these locks are held. Great differences can be found
between isolation levels in the duration of locks. For example, a sequential scan that
obtains share locks at the RR level holds them while the entire table is read, making
updates impossible by others during that time. At the RU level, other users can update the
table throughout an entire scan by another reader. Figure 5-6. shows the relative scope
and duration of share locks obtained for a sequential scan by the RR, CS, and RC isolation
levels on PUBLIC and PUBLICROW tables. RU is not shown, because it does not obtain any
share locks on user data.

Figure 5-6. Scope and Duration of Share Locks for Different Isolation Levels
188 Chapter 5

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks
Examples of Obtaining and Releasing Locks
The following sections present a few scenarios that show how locks are obtained and
released within concurrent transactions.

Simple Example of Concurrency Control through Locking

The following scenario illustrates in a simple way how locks are obtained and released. It
is based on the sample DBEnvironment PartsDBE, which is fully described in Appendix C.
Try this example yourself on a system that has several terminals available in physical
proximity to one another, and observe the results:

• Four users each issue the following CONNECT statement (assume they are connecting
from a different group and account than the one containing PartsDBE):

 isql=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';

• User 1 issues the following query (transaction 1):

 isql=> SELECT SALESPRICE FROM PurchDB.Parts
 > WHERE PartNumber = '1123-P-01';

At this point, transaction 1 obtains a share lock on page A.

• User 2 issues the following UPDATE statement (transaction 2):

 isql=> UPDATE PurchDB.Parts SET SalesPrice = 600.
 > WHERE PartNumber = '1123-P-01';

Transaction 2, executing concurrently, needs an exclusive lock on page A. Transaction 2
waits.

• Users 3 and 4 each issue the following query, independently (transactions 3 and 4):

 isql=> SELECT * FROM PurchDB.Parts;

Transactions 3 and 4, executing concurrently, each need a share lock on page A.
Transactions 3 and 4 wait, because of an upcoming exclusive lock request.

• User 1 issues the following statement:

 isql=> COMMIT WORK;

• Transaction 1 terminates, so transaction 2 obtains its exclusive lock on page A.
Transactions 3 and 4 still wait.

• User 2 issues the following statement:

 isql=> COMMIT WORK;

• Transaction 2 terminates, so transactions 3 and 4 both obtain share locks on page A.

This sequence is illustrated in Figure 5-7., Figure 5-8., and Figure 5-9..
Chapter 5 189

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks
Figure 5-7. Lock Requests 1: Waiting for Exclusive Lock

Figure 5-8. Lock Requests 2: Waiting for Share Locks
190 Chapter 5

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks
Figure 5-9. Lock Requests 3: Share Locks Granted

Sample Transactions Using Isolation Levels

The following sections show typical situations in which different isolation levels affect the
behavior of your transactions when using the sample DBEnvironment PartsDBE.

Example of Repeatable Read

The following scenario illustrates the operation of the RR isolation level:

1. Two users each issue the following CONNECT statement (assume they are connecting
from a different directory than the one containing PartsDBE):

 isql=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';

2. User 1 then issues a query (transaction 1) as follows:

 isql=> SELECT * FROM PurchDB.Vendors;

This implicitly issues a BEGIN WORK statement at the RR isolation level, and obtains a
share lock (S) on the Vendors table, because the scan is a sequential one, reading the
entire table. User 1 sees the query result in the ISQL browser, and exits the browser,
but does not issue a COMMIT WORK statement.

3. User 2 then issues the following statement (which starts transaction 2 at the RR
isolation level):

 isql=> UPDATE PurchDB.Vendors
Chapter 5 191

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks
 > SET ContactName = 'Harry Jones'
 > WHERE VendorNumber = 9001;

Transaction 2 now must wait for an IX lock on the Vendors table because an IX lock is
not compatible with the S lock already held by transaction 1. Transaction 2 also must
obtain an X lock on the page containing data for vendor 9001.

4. User 1 now issues the following statement:

 isql=> COMMIT WORK;

5. Transaction 2 can now complete the update, because transaction 1 no longer holds the S
lock on the Vendors table. This makes it possible for transaction 2 to obtain the IX lock
on the Vendors table and the X lock on the page containing data for 9001.

Example of Cursor Stability

The following scenario illustrates the operation of the CS isolation level:

1. Two users each issue the following CONNECT statement (assume they are connecting
from a different group and account than the one containing PartsDBE):

 isql=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';

2. User 1 then sets the CS isolation level for transaction 1 and issues the following query:

 isql=> BEGIN WORK CS;
 isql=> SELECT * FROM PurchDB.Vendors;

User 1 sees the query result in the ISQL browser, but does not exit the browser.

3. User 2 then issues the following statement (this statement implicitly starts transaction
2 at the RR isolation level):

 isql=> UPDATE PurchDB.Vendors
 > SET ContactName = 'Harry Jones'
 > WHERE VendorNumber = 9001;

Transaction 2 now waits for an exclusive lock on a page in the Vendors table, because
transaction 1 still has a cursor positioned on that page.

4. User 1 now exits from the ISQL browser, but does not issue a COMMIT WORKstatement.

5. Transaction 2 can now complete the update, because transaction 1's cursor is no longer
positioned on the page that transaction 2 wishes to update.

6. Transaction 1 now attempts to issue the same query again, using a REDO statement:

 isql=> REDO;
 SELECT * FROM PurchDB.Vendors;

Now transaction 1 waits, because transaction 2 has obtained an exclusive lock on the
table.

7. Transaction 2 issues the following statement:

 isql=> COMMIT WORK;

The query result for transaction 1 now appears in the ISQL browser again, this time
with the changed row in the query result.
192 Chapter 5

Concurrency Control through Locks and Isolation Levels
Examples of Obtaining and Releasing Locks
Example of Read Committed

The following scenario illustrates the operation of the RC isolation level in concurrent
transactions in the sample DBEnvironment PartsDBE. Most of the details are the same as
for the CS example just presented:

1. Two users each issue the following CONNECT statement (assume they are connecting
from a different group and account than the one containing PartsDBE):

 isql=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';

2. User 1 then sets the RC isolation level for transaction 1 and issues the following query:

 isql=> BEGIN WORK RC;
 isql=> SELECT * FROM PurchDB.Vendors;

User 1 sees the query result in the ISQL browser, but does not exit the browser.

3. User 2 then issues the following statement (this statement implicitly starts transaction
2 at the RR isolation level):

 isql=> UPDATE PurchDB.Vendors
 > SET ContactName = 'Harry Jones'
 > WHERE VendorNumber = 9001;

Transaction 2 is able to perform the update, because the locks on pages that were
obtained by transaction 1's cursor were released as soon as the data was placed in
transaction 1's tuple buffer. Notice the difference between RC and CS.

Example of Read Uncommitted

The following scenario illustrates the operation of the RU isolation level:

1. Two users each issue the following CONNECT statement (assume they are connecting
from a different group and account than the one containing PartsDBE):

 isql=> CONNECT TO 'PartsDBE.SomeGrp.SomeAcct';

2. User 1 issues the following update:

 isql=> UPDATE PurchDB.Vendors SET ContactName = 'Rogers, Joan'

 > WHERE VendorNumber = 9005;

3. User 2 then sets the RU isolation level for transaction 2 and issues a query:

 isql=> BEGIN WORK RU;
 isql=> SELECT * FROM PurchDB.Vendors WHERE VendorNumber = 9005;

User 2 sees the desired row in the ISQL browser, where the contact name for vendor
9005 is Rogers, Joan , even though user 1 has not issued a COMMIT WORKstatement. In
other words, user 2 has read uncommitted data.
Chapter 5 193

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions
Resolving Conflicts among Concurrent Transactions
Several kinds of conflict can occur between transactions that are contending for access to
the same data. The following three are typical cases:

• One transaction has locked an object that another transaction needs and is in a wait
state.

• Two transactions each need an object the other transaction has locked in the same
DBEnvironment and are both in a wait state.

• Two transactions each need an object the other transaction has locked in another
DBEnvironment and are both in a wait state.

The first conflict results in a lock wait, which simply means that the second transaction
must wait until the first transaction releases the lock. The second conflict is known as
conventional deadlock, which is automatically resolved by ALLBASE/SQL. The third
conflict is an undetectable deadlock, which cannot be automatically resolved.

Lock Waits

When a transaction is waiting for a lock, the application pauses until the lock can be
acquired. When a transaction is in a wait state, some other transaction already has a lock
on the row, page, or table that is needed. When the transaction that is holding a lock on the
requested row, page, or table releases its lock through a COMMIT WORK or ROLLBACK WORK
statement, the waiting transaction can then acquire a new lock and proceed.

The amount of time an application waits for a lock depends on the timeout value. A
timeout value is the amount of time a user waits if a requested database resource is
unavailable. If an application times out while waiting for a lock, an error occurs and the
transaction is rolled back. See the SET USER TIMEOUTstatement in the "SQL Statements"
chapter of this manual for more information.

The larger the number of lock waits, the slower the performance of the DBEnvironment as
a whole. You can observe the lock waits at any given moment in the DBEnvironment by
issuing the following query:

 isql=> SELECT * FROM SYSTEM.CALL WHERE STATUS = 'WAITING ON LOCK';

The use of isolation levels less severe than Repeatable Read can improve concurrency by
reducing lock waits. For example, reporting applications that do not depend on perfect
consistency can use the Read Uncommitted level, while applications that scan an entire
table to update just a few rows can use Read Committed with REFETCH or Read
Uncommitted with REFETCH for the greatest concurrency. Applications that intend to
update a larger number of rows can use Cursor Stability.

You can set the amount of time a transaction will wait for a lock by using the SET USER
TIMEOUT statement, or by setting a default timeout value using the ALTDBE command in
SQLUtil. If no timeout value is set as a default, the transaction will wait until the resource
is released. Consult your database administrator about default timeout values.
194 Chapter 5

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions
Deadlocks

The second kind of conflict is known as a deadlock between two transactions. This happens
when two transactions both need data or indexes that the other already has locked.
Deadlocks involving system catalog pages are also possible. ALLBASE/SQL detects and
resolves deadlocks when they occur. If different priority numbers are assigned to the
transactions in the BEGIN WORKstatement, the transaction with the larger priority number
is rolled back. If no priorities are assigned, the more recent transaction is rolled back.

ALLBASE/SQL resolves deadlocks between two transactions at a time. Therefore, if more
than two transactions are deadlocked at one time, the transaction aborted may not be the
transaction with the largest priority number or the newest transaction among all
transactions deadlocked.

By default, the action taken to resolve a deadlock is to roll back one of the transactions.
However, it is also possible to set the deadlock action for a transaction to roll back the
current command instead of the entire transaction by using the SET SESSION or SET
TRANSACTION statements.

Table Type and Deadlock

Specific table types are likely to incur particular types of deadlock. Two transactions can
deadlock on the same PUBLIC or PUBLICROWtable when the transactions attempt to access
the same page or row. The larger the table, the less likely it is that two transactions will
need to access the same page or row, so deadlock is reduced. If the table is small, there is
less chance of deadlock when it is defined PUBLICROW rather than PUBLIC.

The following scenario illustrates the development of a deadlock involving two fairly large
PUBLIC tables with indexes in the sample DBEnvironment PartsDBE. Assume that both
transactions are at the RR isolation level.

Transaction 1: UPDATE PurchDB.Parts SET Obtains IX lock on table,
SalesPrice = 1.2*SalesPrice; X on each page.

Transaction 2: SELECT * FROM PurchDB.SupplyPrice; Obtains S lock on table.
Transaction 1: UPDATE PurchDB.SupplyPrice SET Waits for IX on table

UnitPrice = 1.2*UnitPrice;
Transaction 2: SELECT * FROM PurchDB.Parts; Deadlock.

This sequence results in a deadlock which causes ALLBASE/SQL to choose a transaction
to roll back. In the example, since no priorities are assigned, ALLBASE/SQL rolls back
both of user 2's queries and displays an error message. User 1's second update then
completes. Figure 5-10. shows the deadlock condition that results from the previous
example.
Chapter 5 195

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions
Figure 5-10. Deadlock

The use of PRIVATE tables ensures there will be no deadlock on the same table, because
access to the table is serialized. However, deadlock across two or more tables is common
with PUBLICREAD and PRIVATE tables that are accessed by different transactions in
different order. The following example shows a deadlock involving a PRIVATE table:

 Transaction 1: SELECT * FROM TABLEA; Obtains X lock on table.
 Transaction 2: SELECT * FROM TABLEB; Obtains X lock on table.
 Transaction 1: SELECT * FROM TABLEB; Waits for X on table.
 Transaction 2: SELECT * FROM TABLEA; Deadlock.

A common deadlock scenario for PUBLICREAD tables is to do a SELECT, thus obtaining a
table level share lock, and then an UPDATE, which must upgrade the lock to exclusive:

 Transaction 1: SELECT * FROM TABLEA; Obtains S lock on table.
 Transaction 2: SELECT * FROM TABLEA; Obtains S lock on table.
 Transaction 1: UPDATE TABLEA; Waits to upgrade to X on table.
 Transaction 2: UPDATE TABLEA; Deadlock.

The need to upgrade frequently results in deadlock.

Table Size and Deadlock

The size of a table is another factor affecting its susceptibility to deadlock. If the table is
small, it is highly probable that several users may need the same pages, so deadlocks may
be relatively frequent when page level locking is used. The probability of collision is
highest when the table is small and its rows are also small, with many stored on one page.
If the table is large, it is relatively unlikely that multiple users will want the same pages
at the same time, so page level locking should cause relatively few deadlocks.
196 Chapter 5

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions
Avoiding Deadlock

The tradeoff between deadlock and throughput is one of the central issues in concurrency
control. It is important to minimize the number of deadlocks while permitting the greatest
possible concurrent access to database tables.

Avoiding Deadlock by Using the Same Order of Execution

To avoid deadlock among multiple tables, be sure to have all transactions access them in
the same order. This can often be done by modifying programs to use the same algorithms
to access data in the same order (for example, first update table 1, then table 2), rather
than accessing data in random order. This strategy cannot always be followed, but when it
can be used, processes will wait their turn to use a particular data object rather than
deadlocking.

Avoiding Deadlock by Reading for Update

You can avoid deadlocks that stem from upgrading locks by designing transactions that
use SIX locks, which have the effect of serializing updates on a table while permitting
concurrent reads. To employ SIX locks, read the table with a cursor that includes a FOR
UPDATE clause. You can also obtain SIX locks by using the LOCK TABLE statement,
specifying the SHARE UPDATE option.

Avoiding Deadlock by Using the LOCK TABLE Statement

Locking at the table level should reduce deadlocks when all or most pages in a PUBLIC
table (rows in a PUBLICROW table) are accessed in a query. Locking the table in share
update mode obtains SIX locks on the table and its pages (or rows) when you are reading
data with the intention of updating some data.

Avoiding Deadlock on Single Tables by Using PUBLICREAD and PRIVATE

The use of PUBLICREAD and PRIVATE tables decreases the chance of encountering a
deadlock by forcing serialization of updates within a single table, that is, requiring one
update transaction to be committed before another can obtain any locks on the same table.
Obviously, this reduces concurrency during update operations. You can also use the LOCK
TABLEstatement for transactions on PUBLICREADtables that read data prior to updating it.

Avoiding Deadlock by Using the KEEP CURSOR Option

In applications that declare cursors explicitly, you can use the KEEP CURSORoption in the
OPEN statement to release exclusive locks as quickly as possible. When you use the KEEP
CURSORoption for a cursor you explicitly open in a program, you can use the COMMIT WORK
statement to end the transaction and release locks without losing the cursor's position.
Furthermore, you can either retain or release the locks on the page or row pointed to by
the current cursor position. When you use the KEEP CURSOR option, your transaction
holds individual exclusive locks only for a very short time. Thus, the chance of deadlock is
reduced, and throughput is improved dramatically. For details, refer to the chapter
entitled "Processing with Cursors" in the ALLBASE/SQL application programming guide
for the language of your choice.
Chapter 5 197

Concurrency Control through Locks and Isolation Levels
Resolving Conflicts among Concurrent Transactions
Undetectable Deadlock

Applications that connect to multiple DBEnvironments may encounter deadlocks that
cannot be detected and resolved by ALLBASE/SQL. An example follows:

Transaction 1: SET CONNECTION 'DBE1';
UPDATE TABLEA SET COL1 = 5; Obtains X table lock.

Transaction 2: SET CONNECTION 'DBE2';
UPDATE TABLEB SET COL1 = 7; Obtains X table lock.

Transaction 1: SET CONNECTION 'DBE2';
SELECT * FROM TABLEB; Waits.

Transaction 2: SET CONNECTION 'DBE1';
SELECT * FROM TABLEA; Waits--Undetectable Deadlock.

This kind of deadlock is called undetectable because ALLBASE/SQL can only detect a
deadlock within a single DBEnvironment session. It is your responsibility to coordinate
your system's use of distributed transactions so as to prevent undetectable deadlock. You
can enable ALLBASE/SQL to identify and roll back what probably are undetectable
deadlocks by setting appropriate user timeout values for each DBEnvironment connection.
For more information refer to "Using Multiple Connections and Transactions with
Timeouts" in Chapter 2 , “Using ALLBASE/SQL.”

A similar condition known as an undetectable wait state can also arise when you are
using multi-connect functionality. An undetectable wait occurs when you connect more
than once to the same DBEnvironment from the same application in multi-transaction
mode and attempt to obtain resources held by your other connection. For example:

 CONNECT TO 'DBE1' AS 'CONNECT1';a
 CONNECT TO 'DBE1' AS 'CONNECT2';
 SET CONNECTION 'CONNECT1';
 UPDATE TABLEA SET COL1 = 5; Obtains X table lock.
 SET CONNECTION 'CONNECT2';
 UPDATE TABLEA SET COL1 = 7; Waits--Undetectable wait.

In this instance, you are waiting on your own resources. To avoid situations like this, be
sure to set user timeout values when you use multi-connect functionality .
198 Chapter 5

Concurrency Control through Locks and Isolation Levels
Monitoring Locking with SQLMON
 Monitoring Locking with SQLMON
SQLMON is an online diagnostic tool that monitors the activity of your DBEnvironment. In
addition to providing information on file capacity, I/O, logging, tables, and indexes, SQLMON
displays information on the locks currently held in your DBEnvironment. SQLMON is fully
documented in the ALLBASE/SQL Performance and Monitoring Guidelines.

MONITOR Authority

Users with DBA authority or who are granted MONITORauthority can run SQLMON. Use the
GRANT MONITOR command to allow users to run SQLMON. Use the REVOKE MONITOR
command to revoke the authority. SYSTEM.SPECAUTH and CATALOG.SPECAUTH identify
users with MONITOR authority.

Monitoring Tasks

Table 5-5 summarizes the monitoring tasks related to locking you can perform with
SQLMON:

Table 5-5. SQLMON Monitoring Tasks

Task Screens Fields

Determining Size of Runtime
Control Block

Overview RUNTIME CB %
Used Pages
Max Pages

Monitoring DBEnvironment Lock
Activity

 Load LOCK REQTS
LOCK WAITS
LOCK WAIT %

Comparing Number of Locks by
Table

Lock TabSummary OWNER.TABLE
G
TOTAL LOCKS

Comparing Number of Locks by
Session

Lock Memory TABLE
PAGE
ROW
TOTAL
MAXTOTAL

Identifying Locks on a Table or
Referential Constraint (PCR)

 Lock OWNER.TABLE[/CONSTRAINT]
G
PAGE/ROW ID
LOCK QUEUE

Determining Number of Sessions
that are Accessing a Particular
Lock

Lock LOCK QUEUE
Chapter 5 199

Concurrency Control through Locks and Isolation Levels
Monitoring Locking with SQLMON
Determining Number of
Transactions that are Waiting for
Locks

Overview Load IMPEDE XACT

Identifying Locks for which
Sessions are Waiting

Lock all fields

Identifying Sessions that have
Obtained a Particular Lock

 Lock Object GWC
MOD
PIN

Identifying Sessions that are
Waiting to Obtain (or to Convert) a
Particular Lock

Lock Object GWC
MOD
NEW
PIN

Identifying Lock Activity for a
Particular Session

Lock Session all fields

Identifying Locks Obtained by a
Particular Session that are
Causing Other Sessions to Wait

Lock Impede all fields

Detecting Deadlocks Load
Load Session
Load Program

DEADLOCKS

Resolving Deadlocks Lock
Lock Object
Lock Impede

all fields

Table 5-5. SQLMON Monitoring Tasks

Task Screens Fields
200 Chapter 5

Names
6 Names

This chapter contains general rules for names used in ALLBASE/SQL commands.
Syntactically, names used in ALLBASE/SQL commands fall into several categories. This
chapter includes a section for each category as follows:

• Basic Names

• Native Language Object Names

• DBEUserIDs

• Owner Names

• Authorization Names

• Compound Identifiers

• Host Variable Names

• Local Variable Names

• Parameter Names

• DBEnvironment and DBECon File Names

• DBEFile and Log File Identifiers

• TempSpace Names

• Special Names

Some programming languages define reserved words that cannot be defined as names by
the user.
Chapter 6 201

Names
Basic Names
Basic Names
The syntax rules in this chapter apply to most SQL names. Names that are required to
conform to the following rules can be classified as basic names:

• A basic name can be up to 20 bytes in length.

• A name can be made up of any combination of letters (A to Z), decimal digits (0 to 9), $,
#, @, or underscore (_). However, the first character cannot be an underscore or a
decimal digit.

• Lowercase letters (a to z) are automatically changed to the corresponding uppercase
letters (A to Z) unless enclosed in double quotation marks.

• You can use any combination of characters in a basic name if you enclose it in double
quotation marks. However, note that if you define a name using double quotes, you
must use double quotes when you use the name later. Moreover, if the context in which
you are using the name would itself require the use of double quotes, you must precede
each of the quotes around the basic name with a backslash, as in the following example:

UNLOAD TO EXTERNAL EParts FROM
 "SELECT * FROM \"PurchDB\".PARTS";

In addition, application programs must be capable of distinguishing double-quoted
names. To prevent any possible conflict, minimize the use of double-quoted basic names.

The following are classified as basic names:

 Class names Log file names
 Column names Module names
 Constraint names Procedure names
 Cursor names Rule names
 DBEFile names Table names
 DBEFileSet names TempSpace names
 Group names View names
 Index names
202 Chapter 6

Names
Native Language Object Names
Native Language Object Names
All the object names in a DBEnvironment can be represented in the DBEnvironment
language or in NATIVE 3000. The following rules for object names are the same as for
ASCII:

• The length of an object name is specified as a number of bytes. Note that this would
mean a maximum of 20 characters for a table name in English and 10 in Chinese,
because Chinese is represented in a two-byte character set.

• Table and view names can be qualified by prefixing the owner name followed by a
period ('.') The period serves as the delimiter and is thus a part of the syntax of SQL. It
cannot be represented by a native language delimiter but must be ASCII.

DBEUserIDs
A DBEUserID is made up of a user’s MPE XL user and account names connected with the
@ symbol. An example is WOLFGANG@DBMS, where Wolfgang is the user name, and
DBMS is the account name.

When a DBEnvironment is configured, ALLBASE/SQL grants DBA authority to the
DBEUserID of the DBECreator. You cannot revoke DBA authority from the DBECreator.

Owner Names
Owner names can be one of the following:

• DBEUserID

• Group name

• Class name
Chapter 6 203

Names
Authorization Names
Authorization Names
An authorization name identifies an owner name defined in the AUTHORIZATION
clause of the CREATE SCHEMA statement. Authorization names must be unique within the
DBEnvironment. There cannot be another owner, authorization group, or grantor with the
same name on the system when the CREATE SCHEMA statement is issued.

Authorization names can be one of the following:

• DBEUserID

• Group name

• Class name

Compound Identifiers
Basic names and DBEUserIDs are considered simple names. In some cases, simple
names are combined to form a compound identifier, which consists of an owner name
combined with one or more basic names, with periods (.) between them.

Often you can abbreviate a compound identifier by omitting one of its parts. If you do this,
a default value is automatically used in place of the missing part. For example, you can
omit the owner name (and the period) when you refer to tables you own; ALLBASE/SQL
generates the owner name by using your logon name.

A complete compound identifier, including all of its parts, is called a fully qualified
name. The following are compound identifiers:

Authorization group identifier—[Owner.]GroupName

Column identifier— [[Owner.]TableName .]ColumnName

Constraint identifier— [Owner.]ConstraintName

Index identifier— [Owner.]IndexName

Module identifier—[Owner.]ModuleName

Procedure identifier— [Owner.]ProcedureName

Rule identifier—[Owner.]RuleName

Section identifier— [Owner.]ModuleName(SectionNumber)

Table identifier— [Owner.]TableName

View identifier— [Owner.]ViewName

Different owners can have modules, tables, or views by the same name; the fully qualified
name of these objects must be unique in the DBEnvironment. Group names, however,
must be unique in the DBEnvironment.
204 Chapter 6

Names
Host Variable Names
Host Variable Names
Host variables are used to pass information between an application program and
ALLBASE/SQL. They are ordinary application program variables that happen to be used
in SQL commands.

A host variable name must be preceded by a colon (:) when used in an SQL command.
When used elsewhere in an application program, no colon should be used.

Host variable names must conform to ALLBASE/SQL's rules for basic names; however,
they are allowed to be up to 30 bytes in length. In addition, host variable names must
conform to the rules of the language in which the application program is written.

Local Variable Names
Local variables are used to hold data within a procedure. A local variable is declared in a
DECLARE statement in the procedure, and it is prefixed with a colon (:) when used in any
other statement. Local variable names must conform to ALLBASE/SQL's rules for basic
names.

Parameter Names
Parameters are used to pass information between the database and a procedure. A
parameter is identified in the parameter list of a CREATE PROCEDURE statement, and it is
prefixed with a colon (:) when used in the body of the procedure. Parameter names must
conform to ALLBASE/SQL's rules for basic names.

DBEnvironment and DBECon File Names
The name of a DBEnvironment and the name of its DBECon file are identical. This name
uses the form shown here, follows HP-UX file naming conventions, and cannot exceed 128
characters, including slashes:

FileName [.GroupName[.AccountName]]

This name must always be enclosed in single quotation marks when specified in SQL
commands. If athe group and account are not given, ALLBASE/SQL assumes the name
specified is in the current group and account.
Chapter 6 205

Names
DBEFile and Log File Identifiers
DBEFile and Log File Identifiers
DBEFiles and log files have logical names which conform to the rules for ALLBASE/SQL
basic names. DBEFile and log file names are stored in the system catalog.

In addition to logical names, the physical DBEFiles and log files are referred to in the SQL
syntax by system file names. If the group and account are not given, ALLBASE/SQL
assumes the name specified is in the current group and account. System file names are
always enclosed in single quotation marks in SQL commands.

TempSpace Names
A TempSpace name is a logical name for the area where temporary files are stored by
ALLBASE/SQL. This name conforms to the rules for ALLBASE/SQL basic names.
TempSpace names are stored in the system catalog.

Special Names
ALLBASE/SQL has several names with special meaning. You should not create objects
with these names as owner:

• TEMP— Modules owned by TEMP are deleted when the transaction in which they are
created terminates.

• CATALOG— This name is the owner of the catalog views.

• SYSTEM— This name designates the owner of the system views.

• HPRDBSS and STOREDSECT— These names designate the owners of the system
tables. STOREDSECT owns the tables used to store compiled sections and views;
HPRDBSS owns all other system tables.

• PUBLIC— This name refers to all users and authorization groups who have been
granted CONNECT authority.

• HPODBSS— This name is reserved.

• SEMIPERM— This name is the owner of all semi-permanent sections.
206 Chapter 6

Data Types
7 Data Types

Every value in SQL belongs to some data type. A data type is associated with each value
retrieved from a table, each constant, and each value computed in an expression.

This chapter discusses data types. The following sections are presented:

• Type Specifications

• Value Comparisons

• Overflow and Truncation

• Underflow

• Type Conversion

• Null Values

• Decimal Operations

• Date/Time Operations

• Binary Operations

• Long Operations

• Native Language Data

A data type defines a set of values. Reference to a previously defined data type is a
convenient way of specifying the set of values that can occur in some context. For example,
in SQL the type INTEGER is defined as the set of integers from −2,147,483,648 through
+2,147,483,647, plus the special value NULL. If you define a column with type INTEGER,
each value stored in the column must be either an integer in the range −2,147,483,648
through +2,147,483,647, or a null value (if NOT NULL is not specified).
Chapter 7 207

Data Types
Type Specifications
Type Specifications
All the data in a column must be of the same type. Specify the data type for each column
when you create a table or when you add a column to an existing table. The
ALLBASE/SQL data types and the values you can specify for data of each type are shown
in Table 7-1.

Table 7-1. ALLBASE/SQL Data Types

 Group Data Type Description

 Alpha-
numeric

CHAR[ACTER][(n)] String of fixed length n, where n is an integer from 1 to
3996 bytes. The default size is CHAR (1). The keyword
CHARACTER is a synonym for CHAR.

VARCHAR(n) String of variable length no greater than n, where n must
be an integer from 1 to 3996 bytes.

 Numeric DEC[IMAL][(p[,s])]
NUMERIC[(p[,s])]

Fixed-point packed decimal number with a precision
(maximum number of digits excluding sign and decimal
point) no greater than p, where p is 1 through 27, and a
scale (number of digits to the right of the decimal) of s,
where s is from 0 through p. E (exponential) and L (Pascal
longreal) notation are not allowed in the specification of a
decimal value. Operations on data of type DECIMAL are
often much more precise than operations on data of type
FLOAT.

The default for NUMERIC and DECIMAL types is
DECIMAL (27,0). DEC and NUMERIC are synonyms for
DECIMAL.

FLOAT[(p)] or
DOUBLE
PRECISION

Long (64-bit) floating point number. This is an approximate
numeric value consisting of an exponent and a mantissa.
The precision, p, is a positive integer that specifies the
number of significant binary digits in the mantissa. The
value of p can be from 25 to 53. The default is 53.

The range of negative numbers that can be represented is
−1.79769313486230E+308 to −2.22507385850721E−308.
The range of positive numbers that can be represented is
2.22507385850721E−308 to 1.79769313486230E+308. E
(exponential) or L (Pascal longreal) notation can be used to
specify FLOAT values.

DOUBLE PRECISION is a synonym for FLOAT(53).
208 Chapter 7

Data Types
Type Specifications
FLOAT(p) or REAL Short (32-bit) floating point number. This is an
approximate numeric value consisting of an exponent and
a mantissa. The precision, p, is a positive integer that
specifies the number of significant binary digits in the
mantissa. The value of p can be from 1 to 24. The default
(using REAL) is 24. The range of negative numbers that
can be represented is −3.402823E+38 to −1.175495E−38.
The range of positive numbers that can be represented is
3.402823E+38 to 1.175495E−38.

REAL is a synonym for FLOAT (24).

INT[EGER] Integer in the range −2147483648 (−231) το 2147483647
(231−1). INT is a synonym for INTEGER.

SMALLINT Integer in the range −32768 (−215) το 32767 (215−1).

Date/Time DATE String of form 'YYYY-MM-DD', where YYYY represents the
calendar year, MM is the month, and DD is the day of the
month. DATE is in the range from '0000-01-01' to
'9999-12-31'.

TIME String of the form 'HH:MI:SS: where HH represents hours,
MI is minutes, and SS is seconds. TIME is in the range
from '00:00:00' to '23:59:59'.

DATETIME String of the form 'YYYY-MM-DD HH:MI:SS.FFF', where
YYYY represents the calendar year, MM is the month, DD
is the day, HH the hour, MI the minute, SS the second, and
FFF thousandths of a second. The range is from '000-01-01
00:00:00.000' to '9999-12-31 23:59:59.999'.

INTERVAL String of the form 'DDDDDDD HH:MI:SS.FFF', where
DDDDDDD is a number of days, HH a number of hours, MI
a number of minutes, SS a number of seconds, and FFF a
number of thousandths of a second. The range is from '0
00:00:00.000' to '3652436 23:59:59.999'.

Binary BINARY(n) Binary string of fixed length n, where n is an integer from 1
to 3996 bytes. Each byte stores 2 hexadecimal digits.

VARBINARY(n) Binary string of variable length no greater than n, where n
is an integer from 1 to 3996 bytes. Each byte stores 2
hexadecimal digits.

LONG BINARY(n) Binary string of fixed length n, where n is an integer from 1
to (231−1) bytes.

LONG
VARBINARY(n)

Binary string of variable length no greater than n, where n

is an integer from 1 to (231−1) bytes.

Table 7-1. ALLBASE/SQL Data Types

 Group Data Type Description
Chapter 7 209

Data Types
Type Specifications
Your choice of data types can affect the following:

• How values are used in expressions. Some operations can be performed only with data
of a certain type. For example, arithmetic operations are limited to numeric and
date/time data types, such as INTEGER, SMALLINT, FLOAT, DECIMAL, DATE,
TIME, DATETIME, or INTERVAL. Pattern matching with the LIKE predicate can be
performed only with string data, that is, data of types CHAR or VARCHAR.

• The result of operations combining data of different types. When comparisons and
expressions combining data of different but compatible types are evaluated,
ALLBASE/SQL performs type conversion, as described later in this chapter.

• How values are transferred programmatically. When data is transferred between
ALLBASE/SQL and an application program in host variables, ALLBASE/SQL uses the
data type equivalencies described in the ALLBASE/SQL application programming
guides.

Table 7-2. contains the storage requirements of the various data types.

Table 7-2. Data Type Storage Requirements

Type Storage Required

CHAR (n) n bytes (where n must be an integer from 1 to 3996)

VARCHAR (n) n bytes (where n must be an integer from 1 to 3996)

DECIMAL (p[,s]) 4 bytes (where p <= 7) or 8 bytes (where 7 < p <= 15) or 12 bytes (where 15
< p <= 23) or 16 bytes (where p > 23)

FLOAT 8 bytes

REAL 4 bytes

INTEGER 4 bytes. Integer values less than -2147483648 (-2**31) or larger than
2147483647 (2**31 - 1) up to 15 digits long are stored as decimals with a
precision of 15 and a scale of 0, i.e., equivalent to DECIMAL (15,0)

SMALLINT 2 bytes

DATE 16 bytes

TIME 16 bytes

DATETIME 16 bytes

INTERVAL 16 bytes

BINARY (n) n bytes (where n must be an integer from 1 to 3996)

VARBINARY (n) n bytes (where n must be an integer from 1 to 3996)

LONG BINARY (n) n bytes (where n must be an integer from 1 to 231 - 1)

LONG
VARBINARY (n)

n bytes (where n must be an integer from 1 to 231 - 1)
210 Chapter 7

Data Types
Value Comparisons
Value Comparisons
When you compare a CHAR and a VARCHAR string, ALLBASE/SQL pads the shorter
string with ASCII blanks to the length of the longer string. The two strings are equal if the
characters in the shorter string match those in the longer string and if the excess
characters in the longer string are all blank.

If a case sensitive CHAR column is compared to a CHAR column that is not case sensitive,
both columns are treated as case sensitive. If a string constant is compared to a column
that is not case sensitive, then the string constant is treated as not case sensitive.

Before comparing DECIMAL numbers having different scales, ALLBASE/SQL extends the
shorter scale with trailing zeroes to match the larger scale.

Items of type DATE, TIME, DATETIME, and INTERVAL can be compared only with items
of the same type, or with CHAR or VARCHAR strings in the correct format. All
comparisons are chronological, which means the point which is farthest from
'0000-01-01 00:00:00.000' is the greatest value. ALLBASE/SQL attempts to convert CHAR
or VARCHAR strings to the default date/time format before performing the comparison.

When you compare a BINARY and a VARBINARY hexadecimal string, ALLBASE/SQL
pads the shorter binary string with binary zeroes to the length of the longer string. When
comparing two BINARY or VARBINARY hexadecimal strings having different lengths,
ALLBASE/SQL compares the excess binary digits of the longer binary string with binary
zeroes. The two strings are equal if the binary digits in the shorter string match those in
the longer string and if the excess binary digits in the longer string are all binary zero.

The chapter "Search Conditions" provides more information on comparison operations.
Chapter 7 211

Data Types
Overflow and Truncation
Overflow and Truncation
Some operations can result in data overflow or truncation. Overflow results in loss of data
on the left. Truncation results in loss of data on the right.

Overflow or truncation can occur in several instances as follows:

• During arithmetic operations, for example, when multiplication results in a number
larger than the maximum value allowable in its type. Arithmetic operations are defined
inChapter 8 , “Expressions.”

• When using aggregate functions, for example, when the sum of several numbers
exceeds the maximum allowable size of the type involved. Aggregate functions are
defined in Chapter 8 , “Expressions.”

• During type conversion, as when an INTEGER value is converted to a SMALLINT
value. Type conversion is discussed later in this chapter.

Because large integers (less than −2147483648 (−231) or larger than 2147483647 (231−1)
up to 15 digits long) are stored as decimals, large integer overflow actually results in a
DECIMAL OVERFLOW message.

Overflow always causes an error.

Truncation can cause a warning for the following types of data:

• Alphanumeric data—A warning occurs if a string is truncated because it is too long for
its target location. No error is given if truncation occurs on input.

• Numeric data—No error or warning occurs when zeroes are dropped from the left or
when any digit is dropped from the fractional part of DECIMAL or FLOAT values.
Otherwise, truncation of numeric values causes an error.

• LONG data—A warning occurs if LONG column data is truncated because it is too long
for its target input file. The output file location is modified to fit the LONG column
length, so no truncation error occurs on LONG column output. If the file system fills up,
or the limit of shared memory is reached, a system error occurs.

Refer to the ALLBASE/SQL Message Manual for information on handling warnings and
errors.

Underflow
Underflow occurs when a FLOAT or a REAL value is too close to zero to be represented by
the hardware. Underflow always causes an error.
212 Chapter 7

Data Types
Type Conversion
Type Conversion
ALLBASE/SQL converts the type of a value in the following situations:

• Including values of different types in the same expression.

• Moving data from a host variable to a column or a column to a host variable of a
different type.

The valid type combinations are shown in Table 7-1.

In some cases, such as the following, data conversion can lead to overflow or truncation:

• Overflow can occur during these conversions:

FLOAT to DECIMAL, INTEGER or SMALLINT

FLOAT to REAL

REAL to DECIMAL, INTEGER, or SMALLINT

DECIMAL to DECIMAL, INTEGER, or SMALLINT

INTEGER to DECIMAL or SMALLINT

SMALLINT to DECIMAL

• Overflow of the integer part and truncation of the fractional part of a number can occur
during a FLOAT-to-DECIMAL conversion, because ALLBASE/SQL aligns the decimal
points.

Table 7-3. Valid Type Combinations

Source Data Type Target Data Type

 CHAR or VARCHAR CHAR or VARCHAR

DATE, TIME DATETIME, or INTERVAL when
CHAR value involved in date/time math or inserted
into or compared to a date/time column

CHAR or VARCHAR BINARY or VARBINARY (from host
variable/constant into a binary column only)

BINARY or VARBINARY BINARY or VARBINARY

BINARY or VARBINARY CHAR or VARCHAR (from column into host
variable, or comparing a binary column with a char
column or value)

DECIMAL, FLOAT, REAL, INTEGER,
SMALLINT

Any numeric type

DATE, TIME, DATETIME, INTERVAL CHAR or VARCHAR (except in LIKE predicate)
Chapter 7 213

Data Types
Type Conversion
• Truncation of the fractional part of a value occurs during these conversions:

DECIMAL to SMALLINT or INTEGER

DECIMAL to DECIMAL when the target scale is smaller than the source scale

FLOAT to INTEGER, SMALLINT, DECIMAL, or REAL

REAL to INTEGER, SMALLINT, or DECIMAL

• Truncation can occur during these conversions if the target is too small:

DATE, TIME, DATETIME or INTERVAL to VARCHAR or CHAR

CHAR to VARCHAR, BINARY or VARBINARY

VARCHAR to CHAR, BINARY or VARBINARY

VARBINARY to BINARY, CHAR or VARCHAR

BINARY to VARBINARY, CHAR, or VARCHAR

When you use numeric data of different types in an expression or comparison operation,
the data type of the lesser type is converted to that of the greater type, and the result is
expressed in the greater type. Numeric types have the following precedence:

FLOAT

REAL, DECIMAL

INTEGER

SMALLINT

Comparison operations or expressions involving different numeric data types result in
conversion from one data type to another as explained in Table 7-4.

Table 7-4. Conversions from Combining Different Numeric Data Types

Operations containing: Result:

DECIMAL and INTEGER
types only

All participating integers are converted to DECIMAL quantities
having a precision of 10 and a scale of 0.

DECIMAL and SMALLINT
types only

All participating SMALLINT values are converted to DECIMAL
quantities having a precision of 5 and a scale of 0.

One item of type FLOAT All participating integer and decimal operands are converted to
FLOAT quantities and precision can be lost.

One item of type REAL All arithmetic involving REAL operands results in a type of
FLOAT. All participating integer and decimal operands are
converted to FLOAT quantities and precision can be lost.
214 Chapter 7

Data Types
Null Values
Null Values
A null value is a special value that indicates the absence of a value. Any column in a table
or parameter or local variable in a procedure, regardless of its data type, can contain null
values unless you specify NOT NULL for the column when you create the table or the
procedure. NULL is used as a placeholder for a value that is missing or unknown. These
properties of null values affect operations on rows or parameters or local variables
containing the following values:

• Null values always sort highest in a sequence of values.

• Two null values are not equal to each other except in a GROUP BY or SELECT
DISTINCT operation, or in a unique index.

• An expression containing a null value evaluates to null; for example, five minus null
evaluates to null.

Because of these properties, ALLBASE/SQL ignores columns or rows or parameters or
local variables containing null values in these situations:

• Evaluating comparisons

• Joining tables, if the join is on a column containing null values

• Executing aggregate functions

• Evaluating if/while conditions or assignment expressions

In several SQL predicates, described in Chapter 9 , “Search Conditions,” you can explicitly
test for null values. In an application program, you can use indicator variables to handle
input and output null values.
Chapter 7 215

Data Types
Decimal Operations
Decimal Operations
The precision (p) and scale (s) of a DECIMAL result depend on the operation used to derive
it. The following rules define the precision and scale that result from arithmetic operations
on two decimal values having precisions p1 and p2 and respective scales s1 and s2. Rules
are also provided for the resulting precision and scale of aggregate functions that operate
on a single expression having a precision of p1 and a scale of s1. Arithmetic operations and
aggregate functions are discussed further in Chapter 8 , “Expressions.”

Addition and Subtraction

p = MIN(27, MAX (p1 − s1 , p2 − s2) + MAX(s1, s2)+ 1)

s = MAX (s1,s2)

Multiplication

p = MIN (27, p1 + p2)

s = MIN (27, s1 + s2)

Division

p = 27

s = 27 − MIN (27, p1 − s1 + s2)

where p1 and s1 describe the numerator operand, and p2 and s2 describe the denominator
operand.

MAX and MIN Functions

p = p1

s = s1

SUM Function

p = 27

s = s1

AVG Function

p = 27

s = 27 − p1 + s1
216 Chapter 7

Data Types
Date/Time Operations
Date/Time Operations
DATE, TIME, DATETIME, or INTERVAL values may only be assigned to a column with a
matching data type or to a fixed or variable length character string column or host
variable. Otherwise an error condition is generated. All rules regarding assignment to a
character string are also true for date/time assignment to a character string variable or
column.

Conversions of the individual fields of a date/time data type follow the rules given earlier
in this subsection for the corresponding data type.

NOTE The validity of dates prior to 1753 (transition of Julian to Gregorian calendar)
cannot be guaranteed.

DATE, TIME, DATETIME, and INTERVAL data types behave similar to character strings
in data manipulation statements. The examples below illustrate this.

Examples

INSERT

DATETIME, DATE, TIME and INTERVAL values:

INSERT INTO ManufDB.TestData
 (BatchStamp, TestDate, TestStart, TestEnd, LabTime, PassQty, TestQty)
 VALUES ('1984-08-19 08:45:33.123',
 '1984-08-23',
 '08:12:19', '13:23:01',
 '5 10:35:15.700',
 49, 50)

SELECT

DATE and TIME values:

 SELECT TestDate, TestStart
 FROM ManufDB.TestData
 WHERE TestDate = '1984-08-23'

DATETIME and INTERVAL values:

 SELECT BatchStamp, LabTime
 FROM ManufDB.TestData
 WHERE TestDate = '1984-08-23'

UPDATE

DATE and TIME values:

 UPDATE ManufDB.TestData
 SET TestDate = '1984-08-25', TestEnd = '19:30:00'
 WHERE BatchStamp = '1984-08-19 08:45:33.123'
Chapter 7 217

Data Types
Date/Time Operations
INTERVAL values:

 UPDATE ManufDB.TestData
 SET LabTime = '5 04:23:00.000'
 WHERE TestEnd = '19:30:00'

Note that the radix of DATE and TIME data is seconds, whereas the radix of DATETIME
and INTERVAL data is milliseconds.

Date/time data types can also be converted to formats other than the default formats by
the date/time functions described in Chapter 8 , “Expressions.”

Use of Date/Time Data Types in Arithmetic Expressions

You can use a variety of operations to increment, decrement, add or subtract date, time,
datetime, and interval values. Table 7-5. shows the valid operations and the data type of
the result:

Table 7-5. Arithmetic Operations on Date/Time Data Types

Operanda Operator Operand b Result Type

DATE +,− INTERVAL DATE

INTERVAL + DATE DATE

DATE − DATE INTERVAL

TIME +,− INTERVAL TIME

INTERVAL + TIME TIME

TIME − TIME INTERVAL

DATETIME +,− INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

DATETIME − DATETIME INTERVAL

INTERVAL +,− INTERVAL INTERVAL

INTERVAL *, / INTEGER INTERVAL

STRINGa − DATE INTERVAL

STRINGb + DATE DATE

DATE − STRINGa INTERVAL

DATE + STRINGb DATE

STRINGc − DATETIME INTERVAL

DATETIME − STRINGc INTERVAL

STRINGb + DATETIME DATETIME

DATETIME + STRING DATETIME
218 Chapter 7

Data Types
Date/Time Operations
These arithmetic operations obey the normal rules associated with dates and times. If a
date/time arithmetic operation results in an invalid value (for example, a date prior to
'0000-01-01'), an error is generated. If the format for the string does not match the above
default type, an error is generated. Another solution is to apply TO_DATE, TO_TIME,
TO_DATETIME, and TO_INTERVAL to the string so that the correct format is used.

You can also use the Add Months function to add or subtract from the month portion of the
DATEor DATETIMEcolumn. In the result, the day portion is unaffected, only the month and,
if necessary, the year portions are affected. However, if the addition of the month causes an
invalid day (such as 89-02-30), then a warning message is generated and the value is
truncated to the last day of the month.

Use of Date/Time Data Types in Predicates

DATE, TIME, DATETIME, and INTERVAL data types can be used in all predicates except
the LIKE predicate. LIKE works only with CHAR or VARCHAR values and so requires the
use of the TO_CHAR conversion function to be used with a DATETIME column. Items of type
DATE, TIME, DATETIME , and INTERVAL can be compared with items of the same type or
with literals of type CHAR or VARCHAR. All comparisons are chronological, which means
that the point which is farthest from '0000-01-01 00:00:00.000' is the greatest value. String
representations of each data type (in host variables or as literals) can also be compared
following normal string comparison rules. Some examples follow:

 SELECT * FROM ManufDB.TestData
 WHERE BatchStamp = '1984-06-19 08:45:33.123'
 AND TestDate = '1984-06-27'

SELECT * FROM ManufDB.TestData
 WHERE Testend - TestStart <= '0 06:00:00.000'

STRINGd − TIME INTERVAL

STRINGb + TIME TIME

TIME − STRINGd INTERVAL

TIME + STRINGd TIME

STRINGb +,− INTERVAL INTERVAL

INTERVAL +,− STRINGb INTERVAL

a. The format for string should be DATE.
b. The format for string should be INTERVAL.
c. The format for string should be DATETIME.
d. The format for string should be TIME.

Table 7-5. Arithmetic Operations on Date/Time Data Types

Operanda Operator Operand b Result Type
Chapter 7 219

Data Types
Binary Operations
Date/Time Data Types and Aggregate Functions

You can use the aggregate functions MIN, MAX, and COUNT in queries on columns of type
DATE, TIME, DATETIME, and INTERVAL. SUM and AVG can be done on INTERVAL
data types only.

Binary Operations
BINARY or VARBINARY values may be assigned to a column with a matching data type
or to a fixed or variable length character string host variable. All rules regarding
assignment to a character string are also true for binary assignment to a character string
variable.

LONG BINARY and LONG VARBINARY values cannot be converted to any other type,
and cannot participate in any expressions except as assignments to long functions and
string functions.

Character (ASCII) or hexadecimal format is used when inserting BINARY and
VARBINARY data literals into a column. Hexadecimal format is preceded by the
hexadecimal indicator 0x when inserting data through ISQL, but not if you are inserting
data through an application program. The result of a SELECT statement on a BINARY or
VARBINARY column is in hexadecimal format.

You cannot insert BINARY literals (0's and 1's) into a CHAR column in ISQL; however, you
can insert them in an application program using a host variable.
220 Chapter 7

Data Types
Long Operations
Long Operations
LONG columns in ALLBASE/SQL enable you to store a very large amount of binary data
in your database and to reference that data using a column name. You might use LONG
columns to store text files, software application code, voice data, graphics data, facsimile
data, or test vectors. Storing data in the database gives you the the advantages of
ALLBASE/SQL's recoverability, concurrency control, locking strategies, and indexes on
related columns.

The concept of how LONG column data is stored and retrieved differs from that of
non-LONG columns. LONG data is not processed by ALLBASE/SQL. Any formatting,
viewing, or other processing must be accomplished by a preprocessed application program.
Refer to the ALLBASE/SQL application programming guides for information on accessing
LONG columns from a preprocessed application.

Like other column data types, the LONG column is defined with the CREATE TABLE or
ALTER TABLEstatement. A LONG column descriptor, called the LONG column I/O string ,
describes where the LONG column input data is located and where the data is placed
when a SELECT or FETCH statement is executed. The LONG column I/O string is specified
as an element in the VALUES clause of an INSERT or the SET clause of an UPDATE
operation. When you use the SELECT or FETCH statement, the LONG column descriptor is
returned to the ISQL display or the host variable and the long column data is placed either
in the operating system file or stored memory.

Defining LONG Column Data with CREATE TABLE or ALTER
TABLE

Following is the syntax for specifying a column definition for a LONG column in either the
CREATE TABLE or ALTER TABLE statement. A maximum of 40 such LONG columns can be
defined for a single table.

(ColumnName LONG ColumnDataType [IN DBEFileSetName]
[LANG = ColumnLanguageName] [NOT NULL]) [,...]

The LONG data is stored in DBEFiles. These files can occupy up to 231 −1 bytes. For better
performance and storage considerations, specify a separate DBEFileSet when defining the
LONG column.

If IN DBEFileSetName is not specified for a LONG column, this column's data is stored in
the same DBEFileSet as its related table. Do not specify the SYSTEM DBEFileSet as this
could severely impact database performance.

In the following example, LONG data for PartPicture is stored in the DBEFileSet
PartPictureSet, while data for columns PartName and PartNumber is stored in
PartsIllusSet:

 CREATE TABLE PurchDB.PartsIllus
 (PartName CHAR(16),
 PartNumber INTEGER,
 PartPicture LONG VARBINARY(1000000) IN PartPictureSet)
 IN PartsIllusSet
Chapter 7 221

Data Types
Long Operations
The next statement specifies that data for the new LONG column, PartModule, will be
stored in PartPictureSet:

 ALTER TABLE PurchDB.PartsIllus
 ADD PartModule LONG VARBINARY(50000) IN PartPictureSet

Since LONG data for PartMap will be stored in the same DBEFileSet as its related table,
PartsIllus, it goes to PartsIllusSet.

 ALTER TABLE PurchDB.PartsIllus
 ADD PartMap LONG VARBINARY(70000)

Defining Input and Output with the LONG Column I/O String

The INSERT and UPDATE statements use the LONG column I/O string to define the
various input and output parameters for any LONG column. You need to understand this
string in order to input, change, or retrieve LONG data.

The LONG column I/O string has an input portion (indicated with <) and an output
portion (indicated with >). The input portion of the LONG column I/O string, also referred
to as the input device, specifies the location of data that you want written to the
database. You can indicate a file name or a heap address and heap length.

A variable length record file cannot be input to a LONG column.

The output portion of the LONG column I/O string (the output device) specifies where
you want LONG data to be placed when you execute the SELECT or FETCH statement. You
have the option of specifying a file name, part of a file name, or having ALLBASE/SQL
specify a file name. You also can direct output to the heap address (in this case,
ALLBASE/SQL will select the heap address). Additional output parameters allow you to
append to or overwrite an existing file. The output device specification is stored in the
database table and is available to you when you use the OUTPUT_DEVICE function or
OUTPUT_NAME function together with a SELECT or FETCH statement. For more
information on the OUTPUT_DEVICE and OUTPUT_NAME functions, see Chapter 8 ,
“Expressions,” in this document.

The examples in the following sections illustrate the use of the input and output portions
of the LONG column I/O string. The complete syntax for the LONG column I/O string is
presented under the INSERT, UPDATE, and UPDATE WHERE CURRENT statements.

It is important to note that files used for LONG column input and output are opened and
closed by ALLBASE/SQL. You do not need to open or close the files for use in the
DBEnvironment. ALLBASE/SQL does not control the input or output device files on the
operating system. That is, if there is a rollback work, ALLBASE/SQL will not remove the
physical operating system file generated by the SELECT statement.

Using INSERT with LONG Column Data

As with any column, you use the SQL INSERT statement or an ISQL INPUT command to
initially put data in a LONG column. The LONG column I/O string requires an input
device, but the output device is optional.

The following examples illustrate some of the options available to you.
222 Chapter 7

Data Types
Long Operations
Using INSERT with No Specified File Options

In this example, data from the file hammer.tools becomes the contents of the LONG
column PartPicture. The output device is the file hammer. If this file already exists when
the SELECTor FETCHstatement is issued, it is not overwritten or appended to, and an error
is generated.

 INSERT INTO PurchDB.PartsIllus
 VALUES ('hammer'
 100,
 '<hammer.tools >hammer')

Using INSERT with the Overwrite Option

When you want to reuse an existing output device file when the inserted data is later
selected or fetched, specify the overwrite option. Here if file wrench already exists at
INSERT time, it is overwritten:

 INSERT INTO PurchDB.PartsIllus
 VALUES ('hammer',
 100,
 '<hammer.tools >!wrench')

Using INSERT with the Append Option

You can append LONG data to an existing file. If the file limit for the wrench files is
inadequate to hold the data that is to be appended, a warning is returned (DBWARN
2051), but data up to the file limit is added to the file. In this example, when the LONG
column PartPicture is selected or fetched, output is appended at the end of the file wrench :

 INSERT INTO PurchDB.PartsIllus
 VALUES ('hammer',
 100,
 '<hammer.tools >>wrench')

Using INSERT with the Wildcard Option

Depending on your application, you may need to assign a specific, known name to the
output device. On the other hand, a partially generic name or a completely unknown name
may be desirable. In this example, the output device name begins with PRT and is followed
by a five-character, random wild card, for instance, 'PRT123AB':

 INSERT INTO PurchDB.PartsIllus
 VALUES ('hammer'
 100,
 '< hammer.tools >PRT$')
Chapter 7 223

Data Types
Long Operations
Using INSERT with Heap Space Input and Output

You have the option of using a heap address to indicate the location of input data. Output
datamay be directed toa heap address generated by ALLBASE/SQL at output time. In the
next example, 4000 bytes of data flow from heap address 1230 to the PartsIllus table, and
when this data is selected or fetched, it goes to the heap address:

 INSERT INTO PurchDB.PartsIllus
 VALUES ('saw'
 300,
 '<%1230:4000 >%$')

Using SELECT with LONG Column Data

The concept of how data is retrieved differs from that of non-LONG columns. The output
portion of the LONG column I/O string (rather than the data itself) is obtained with the
SELECT or FETCH statement. The LONG data goes to a file or heap space.

In this example, the SELECTstatement places the LONG data from the PartPicture column
in a file or in heap space, as specified in the LONG column I/O string when the PartPicture
column was inserted or updated. The SELECT statement puts the file name or heap space
address in the PartPicture LONG column descriptor. In an application, the contents of the
descriptor are placed in a host variable and may be parsed to extract the file name or heap
space address. When a long field column is selected using ISQL, the file name or heap
space address is displayed in the column whose heading is the long field name. Refer to the
"Programming with LONG Columns" chapter of the appropriate application programming
guide for information on the format of the LONG column descriptor.

 SELECT PartPicture
 FROM PurchDB.PartsIllus
 WHERE PartName = 'saw'

Using UPDATE with LONG Column Data

When you issue an UPDATE on a LONG column, you have the following options:

• Change the stored data as well as the output device name and/or options.

• Change the stored data only.

• Change the output device name and/or options only.

You must specify either the input device, the output device, or both.

Examples

The following examples present a sampling of possible combinations.

Using UPDATE to Change Stored Data and Output Device Name

In this example, data from the file newhammer.tools is inserted into the LONG column
PartPicture replacing the previously stored data. The output device name is changed to be
the file newhammer. Should file newhammer already exist when the SELECT or FETCH
statement is issued, it is not overwritten, and an error is generated.
224 Chapter 7

Data Types
Long Operations
 UPDATE PurchDB.PartsIllus
 SET PartPicture = '<newhammer.tools >newhammer'
 WHERE PartName = 'hammer'

Using UPDATE to Change Stored Data Only

Here the stored data in LONG column PartPicture is replaced with data from the file
../tools/newhammer . Assuming the original output device was named hammer, when you
select or fetch the PartPicture column, the updated output still goes to a file named
hammer.

 UPDATE PurchDB.PartsIllus
 SET PartPicture = '<newhammer.tools'
 WHERE PartName = 'hammer'

Using UPDATE to Change the Output Device Name and Options

You may want to change the output file name but not the LONG data associated with a
particular column. Here newhammerbecomes the output device name. When LONG column
PartPicture is SELECTed or FETCHed, output is appended to the file newhammer.

 UPDATE PurchDB.PartsIllus
 SET PartPicture = '>>newhammer'
 WHERE PartName = 'hammer'

Using UPDATE with Heap Space Input and Output

You may decide to use heap space as your input input device. Output may be directed to a
heap address. In this example, LONG data flows from file newsaw to the PartsIllus table,
and when this data is selected or fetched it goes to a heap address:

 UPDATE PurchDB.PartsIllus
 SET PartPicture = '< newsaw >%$'
 WHERE PartName = 'saw'

In the next example, 4000 bytes of data flow to the database from heap address 1000 and
when the LONG column is selected or fetched, data goes to the file newsaw:

 UPDATE PurchDB.PartsIllus
 SET PartPicture = '<%1000:4000 >newsaw'
 WHERE PartName = 'saw'

Using DELETE with LONG Column Data

DELETEand DELETE WHERE CURRENTsyntax is unchanged when used with LONG columns.
It is limited in that a LONG column cannot be used in the WHERE clause.

In the following example, any rows in PurchDB.PartsIllus with the PartName of hammer
are deleted:

 DELETE FROM PurchDB.PartsIllus
 WHERE PartName = 'hammer'

When LONG data is deleted, the space it occupied in the DBEnvironment is released when
your transaction ends. But the data files still exist on the operating system.
Chapter 7 225

Data Types
Native Language Data
Native Language Data
Character data in the DBEnvironment can be represented in the native language specified
by the DBEnvironment language. When native language character columns are created,
they follow the same rules as CHAR and VARCHAR columns. For character columns, size
is defined in bytes. Thus a column defined as CHAR (20) could hold 20 characters in ASCII
or 10 characters in Japanese Kanji.

Numeric data must be in ASCII representation.

Pattern matching is in terms of conceptual characters rather than bytes. This is
necessary for languages in which there are both one-byte and two-byte characters
frequently mixed in the same string. An example is Japanese, in which the Kanji and
Hiragana characters occupy 16 bits each, whereas the Katakana characters use only 8 bits.
Conceptual character matching is also necessary to establish a collating sequence that
includes the one-byte ASCII character set as a subset of a two-byte character set such as
Chinese.

Truncation is done on a character basis. For example, imagine a column defined as CHAR
(20). If a string contains 11 Kanji characters, or 22 bytes, the last character is truncated if
you try to insert it into the column. In a case where a string contains both Kanji and
Katakana characters and is 21 bytes long, the truncation depends on the size of the last
character. If it is a 2-byte Kanji character, the data is truncated to 19 bytes; if it is a 1-byte
Katakana character, the data is truncated to 20 bytes.

An implicit type conversion occurs when an NATIVE 3000 string is compared to a native
language CHAR or VARCHAR type. The shorter string is padded with ASCII blanks before
the comparison is done.

When a case insensitive ASCII expression is compared to a case insensitive NLS
expression, the two expressions are compared using the NLS collation rules. The case
insensitive NLS comparison is done by using the NLSCANMOVE and NLCOLLATE intrinsics.
The same ASCII characters in upper and lower case are equivalent. The same accent
characters (extended characters) in upper and lower case are also equivalent. However, an
accent character may not be the same as its ASCII equivalent, depending on the specific
language collation table.
226 Chapter 7

Expressions
8 Expressions

This chapter discusses value specification. The following sections are presented:

• Expression

• Add Months Function

• Aggregate Functions

• CAST Function

• Constant

• Current Functions

• Date/Time Functions

• Long Column Functions

• String Functions

• TID Function

An expression specifies a value to be obtained in one of the following ways:

• From a column of a table

• From a host variable in an application program

• From a dynamic parameter

• From a local variable or parameter in a procedure

• From a constant

• By adding, subtracting, multiplying, dividing, or negating values

• By evaluating an aggregate function

• By evaluating a date/time (conversion, current, or add months) function

• By evaluating a long column or string function

• By a combination of these methods

Expressions are used for several purposes including:

• To identify columns. In the SELECTstatement, expressions are used in the select list to
identify column values to be retrieved.

The SELECTstatement is also part of the CREATE VIEW, DECLARE CURSOR, and INSERT
statements. The expressions in this case identify columns that qualify for the view, the
cursor, or the insert operation.

• To identify rows. In the search condition of the following statements, expressions help
define the set of rows affected: SELECT, INSERT, UPDATE, DELETE, CREATE VIEW,
and DECLARE. Refer to the “Search Conditions” chapter for more information.

• To define new column values. In the UPDATEstatement, expressions define a new value
for a column in an existing row.
Chapter 8 227

Expressions
Expression
Expression
An expression can consist of a primary or several primaries connected by arithmetic
operators. A primary is a signed or unsigned value derived from one of the items listed in
the SQL syntax below.

Scope

SQL Data Manipulation Statements

SQL Syntax

[+
-] { ColumnName

USER
:HostVariable [[INDICATOR] :IndicatorVariable]
?
:LocalVariable
:ProcedureParameter
::Built-inVariable
AddMonthsFunction
AggregateFunction
Constant
DateTimeFunction
CurrentFunction
LongColumnFunction
StringFunction
CASTFunction
(Expression)
TIDFunction }

[{ *
/
+
-
|| } [+

-] { ColumnName
: HostVariable [[INDICATOR]: IndicatorVariable]
?
: LocalVariable
: ProcedureParameter
:: Built-inVariable
AddMonthsFunction
AggregateFunction
Constant
DateTimeFunction
CurrentFunction
LongColumnFunction
StringFunction
CASTFunction
Expression) }] [...]
228 Chapter 8

Expressions
Expression
Parameters

+, − designate unary plus and unary minus. Unary plus assigns the primary a
positive value. Unary minus assigns the primary a negative value. Default
is positive.

ColumnName is the name of a column from which a value is to be taken; column names
are defined in the "Names" chapter.

USER The keyword USER can be used as a character constant in several
locations as follows:

• In a WHERE clause predicate when comparing it to a character string,
for example:

WHERE Owner = USER
 WHERE Owner IN ('ALLUSERS', USER)

• In the VALUES clause of the INSERT statement, for example:

VALUES (USER)

• In a DEFAULT clause of a column definition, for example:

Owner CHAR(20) DEFAULT USER NOT NULL

• In a SELECT list, returning a character string, for example:

SELECT USER, column1

• In an UPDATE SET clause, assigning a value to a character string, for
example:

SET Owner = USER

USER evaluates to the current DBEUserID. In ISQL, it evaluates to the
login name of the ISQL user. From an application program, it evaluates to
the login name running the program. USER behaves like a CHAR(20)
constant, with trailing blanks if the login name has fewer than 20
characters.

Note that if a column in your table is named USER, it must be preceded
with the table name for column values to be selected. The function USER
takes precedence over any column named USER.

HostVariable contains a value in an application program being input to the expression.

IndicatorVariable names an indicator variable, whose value determines whether the
associated host variable contains a NULL value:

> = 0 the value is not NULL

< 0 the value is NULL (The value in the host variable will be
ignored.)

? is a place holder for a dynamic parameter in a prepared SQL statement in
an application program. The value of the dynamic parameter is supplied at
run time.

LocalVariable contains a value in a procedure.
Chapter 8 229

Expressions
Expression
ProcedureParameter contains a value that is passed into or out of a procedure.

Built-inVariable is one of the following built-in variables used for error handling:

• ::sqlcode
• ::sqlerrd2
• ::sqlwarn0
• ::sqlwarn1
• ::sqlwarn2
• ::sqlwarn6
• ::activexact

The first six of these have the same meaning that they have as fields in the
SQLCA in application programs. Note that in procedures, sqlerrd2 returns
the number of rows processed for all host languages. However, in
application programs, sqlerrd3 is used in COBOL, Fortran, and Pascal,
while sqlerr2 is used in C. ::activexact indicates whether a transaction is
in progress or not. For additional information, refer to the application
programming guides and to Chapter 4 , “Constraints, Procedures, and
Rules.”

AddMonthsFunction returns a value that represents a DATE or DATETIME value with a
certain number of months added to it.

AggregateFunction is a computed value; aggregate functions are defined in this
chapter.

Constant is a specific value; constants are defined in this chapter.

DateTimeFunction returns a value that is a conversion of a date/time data type into an
INTEGER or CHAR value, or from a CHAR value.

CurrentFunction returns a value that represents the current DATE, TIME , or
DATETIME.

LongColumnFunction returns information from a long column descriptor.

StringFunction returns a partial value or attribute of string data.

CASTFunction converts data from one data type to another.

(Expression) is one or more of the above primaries, enclosed in parentheses.

* multiplies two primaries.

/ divides two primaries.

+ adds two primaries.

− subtracts two primaries.

|| concatenates two string operands.

TIDFunction returns the database address of a row (or rows for a BULK SELECT) of a
table or an updatable view. You cannot use mathematical operators with
this function except to compare it (using = or <>) to a value, host variable,
or dynamic parameter.
230 Chapter 8

Expressions
Expression
Description

• Arithmetic operators can be used between numeric values, that is, those with data
types of FLOAT, REAL, INTEGER, SMALLINT, or DECIMAL. Refer to the "Data
Types" chapter for rules governing the resulting precision and scale of DECIMAL
operations.

• Arithmetic operators can also be used between DATE, TIME, DATETIME , and
INTERVAL values. Refer to the "Data Types" chapter for rules on the valid operations
and the resulting data types.

• Elements in an expression are evaluated in the following order:

— Aggregate functions and expressions in parentheses are evaluated first.

— Unary plusses and minuses are evaluated next.

— The * and / operations are performed next.

— The + and − operations are then performed.

• You can enclose expressions in parentheses to control the order of their evaluation. For
example:

10 * 2 − 1 = 19, but
 10 * (2 −1) = 10

• TO_INTEGER is the only date/time function that can be used in arithmetic
expressions.

• When two primaries have the same data type, the result is of that data type. For
example, when an INTEGER is divided by an INTEGER, the result is INTEGER. In
such cases, the result will be truncated.

• If either arithmetic operand is the NULL value, then the result is the NULL value.

• Arithmetic operators cannot be used to concatenate string values. Use || to
concatenate string operands.

• Both operands of concatenation operator should be one of the following: CHAR (or
VARCHAR, or Native CHAR, or Native VARCHAR), BINARY (or VARBINARY), but no
mix of CHAR and BINARY.

• If either concatenation operand is the NULL value, then the result of the concatenation
is the NULL value.

• If one concatenation operand is a variable length string (VARCHAR, Native VARCHAR,
VARBINARY), then the result data type of the concatenation is a variable length string.

• If both concatenation operands are fixed length string data type (CHAR, Native CHAR,
BINARY), then the result of the concatenation is fixed length string.

• The concatenation result will consist of the first operand followed by the second
operand. The trailing blanks of the string value are preserved by concatenation
regardless of the string's data types. The resultant string may be truncated on the
right, if the length exceeds the maximum string length of 3996 bytes. If truncation
occurs, a truncation warning is sent.

• Type conversion, truncation, underflow, or overflow can occur when some expressions
Chapter 8 231

Expressions
Expression
are evaluated. For more information, refer to the chapter, "Data Types."

• If the value of an indicator variable is less than zero, the value of the corresponding
host variable is considered to be NULL.

NOTE To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a −1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

• The following expressions can evaluate to NULL:

— Host variable with an indicator variable

— Local variable

— Procedure parameter

— Column

— Add Months function

— DateTime function

— Aggregate function

— CAST function

— String function

• A NULL value in an expression causes comparison operators and other predicates to
evaluate to unknown. Refer to Chapter 9 , “Search Conditions,” for more information on
evaluation of comparison operators and predicates containing NULL values.

• The ? can be used as a host variable or dynamic parameter in an expression as shown in
the following examples:

— In the WHERE clause of any SELECT statement:

SELECT *
 FROM PurchDB.Orders
 WHERE PartNumber = ?
 AND OrderDate > ?
 ORDER BY OrderDate

— In the WHERE and SET clauses of an UPDATE statement:

UPDATE PurchDB.Parts
 SET SalesPrice = ?
 WHERE PartNumber = ?

— In the WHERE clause of a DELETE statement:

DELETE FROM PurchDB.OrderItems
 WHERE ItemDueDate
 BETWEEN ? and ?

— In the VALUES clause of an INSERT or a BULK INSERT statement. In this example
each ? corresponds in sequential order to a column in the PurchDB.OrderItems
232 Chapter 8

Expressions
Expression
table:

BULK INSERT INTO PurchDB.OrderItems VALUES (?,?,?,?)

See the syntax descriptions for each DML statement, and for the PREPARE,
DESCRIBE, EXECUTE, and OPEN statements for details of dynamic parameter usage.

Example

The result length of PartNumber || VendPartNumber is 32 in this example.

CREATE TABLE PurchDB.SupplyPrice
(Part Number CHAR(16) NOT CASE SENSITVE not null unique,

VendorNumber INTEGER
VendPartNumber CHAR(16) lang=german,
UnitPrice DECIMAL (10,2),
Delivery Days SMALLINT,
DiscountQty SMALLINT)

SELECT PartNumber || VendPartNumber, UnitPrice from PurchDB.SupplyPrice;
Chapter 8 233

Expressions
Add Months Function
Add Months Function
The Add Months function uses the keyword ADD_MONTHSto apply the addition operation to
a DATE or DATETIME expression. It is different from a simple addition operator in that it
adjusts the day field in the DATE or DATETIME value to the last day of the month if
adding the months creates an invalid date (such as '1989-02-30').

Scope

SQL Data Manipulation Statements

SQL Syntax
ADD_MONTHS (DateExpression , {[+

-] IntegerValue
:HostVariable [[INDICATOR]: IndicatorVariable]
?
:LocalVariable
:ProcedureParameter })

Parameters

DateExpression is either a DATE or DATETIME expression. See the "Expression"
section of this chapter for details on the syntax.

HostVariable is a host variable of type INTEGER. It can be positive or negative. If
negative, the absolute value is subtracted from Value1 .

IndicatorVariable names an indicator variable, whose value
determines whether the associated host variable contains
a NULL value:

> = 0

the value is not NULL

< 0

the value is NULL (The value in the host variable will be
ignored.)

? indicates a dynamic parameter in a prepared SQL statement. The value of
the parameter is supplied when the statement is executed.

LocalVariable contains a value within a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

Description

• The Add Months function adds a duration of months to a DATE or DATETIME
expression. Only the month portion of the value is affected, and, if necessary, the year
portion. The day portion of the date is unchanged unless the result would be invalid (for
234 Chapter 8

Expressions
Add Months Function
example, '1989-02-31'). In this case, the day is set to the last day of the month for that
year, and ALLBASE/SQL generates a warning indicating the adjustment.

• If either parameter is NULL, ADD_MONTHS will evaluate to NULL also.

Example

In this example, rows are returned which comprise the batch stamp and test date that
have a pass quantity less than 48. A warning is generated because 7 months added to the
'1984-07-30' date results in an invalid date, '1985-02-30'.

 SELECT BatchStamp, ADD_MONTHS(TestDate,7)
 FROM ManufDB.TestData
 WHERE PassQty <= 48

 ADD_MONTHS result adjusted to last day of month. (DBWARN 2042)
Chapter 8 235

Expressions
Aggregate Functions
Aggregate Functions
Aggregate functions specify a value computed using data described in an argument. The
argument, enclosed in parentheses, is an expression. The value of the expression is
computed using each row that satisfies a SELECT statement. Aggregate functions can be
specified in the select list and the HAVING clause. Refer to the explanation of the SELECT
statement for more details.

Scope

SQL SELECT Statements

SQL Syntax
{ AVG ({ Expression

[ALL
DISTINCT] ColumnName})

MAX ({ Expression
[ALL

DISTINCT] ColumnName})
MIN ({ Expression

[ALL
DISTINCT] ColumnName})

SUM ({ Expression
[ALL

DISTINCT] ColumnName})
COUNT ({ *

[ALL
DISTINCT] ColumnName}) }

Parameters

Expression specifies a value to be obtained.

AVG computes the arithmetic mean of the values in the argument; NULL
values are ignored. AVG can be applied only to numeric data types and to
the INTERVAL type. When applied to FLOAT or REAL, the result is
FLOAT. When applied to INTEGER or SMALLINT, the result is
INTEGER, and fractions are discarded. When applied to DECIMAL, the
result is DECIMAL. When applied to INTERVAL, the result is
INTERVAL.

MAX finds the largest of the values in the argument; NULL values are ignored.
MAX can be applied to numeric, alphanumeric, BINARY (not LONG), and
date/time data types; the result is the same data type as that of the
argument.

MIN finds the smallest of the values in the argument; NULL values are
ignored. MIN can be applied to numeric, alphanumeric, BINARY (not
LONG), and date/time data types; the result is the same data type as that
of the argument.
236 Chapter 8

Expressions
Aggregate Functions
SUM finds the total of all values in the argument. NULL values are ignored.
SUM can be applied to numeric data types and INTERVAL only. When
applied to FLOAT or REAL, the result is FLOAT. When applied to
INTEGER or SMALLINT, the result is INTEGER. When applied to
DECIMAL, the result is DECIMAL. When applied to INTERVAL, the
result is INTERVAL.

COUNT * counts all rows in all columns, including rows containing NULL values.
The result is INTEGER.

COUNTColumnName counts all rows in a specific column; rows containing NULL values
are not counted. The data type of the column cannot be LONG BINARY or
LONG VARBINARY. The result is INTEGER.

ALL includes any duplicate rows in the argument of an aggregate function. If
neither ALL nor DISTINCT is specified, ALL is assumed.

DISTINCT eliminates duplicate column values from the argument of an aggregate
function.

Description

• If an aggregate function is computed over an empty, ungrouped table, results are as
follows:

— COUNT returns 1; SQLCODE equals 0.

— AVG, SUM, MAX, and MIN return NULL; SQLCODE equals 0.

• If an aggregate function is computed over an empty group or an empty grouped table,
all aggregate functions return no row at all.

• Refer to the "Data Types" chapter for information on truncation and type conversion
that may occur during the evaluation of aggregate functions.

• Refer to the "Data Types" chapter for information on the resulting precision and scale of
aggregate functions involving DECIMAL arguments.

• A warning message is returned if a NULL is removed from the computation of an
aggregate function.

Example

The average price of each part with more than five rows in table PurchDB.SupplyPrice is
calculated.

 SELECT PartNumber, AVG(UnitPrice)
 FROM PurchDB.SupplyPrice
 GROUP BY PartNumber
 HAVING COUNT * > 5
Chapter 8 237

Expressions
CAST Function
CAST Function
The CAST function converts data from one data type to another. The CAST function can be
used anywhere a general expression is allowed. CAST is supported inside functions that
support expressions including aggregate functions. CAST also takes general expressions
including nested functions as input.

Scope

SQL Data Manipulation Statements

SQL Syntax
{ CAST ({ Expression

NULL} { AS
, } DataType [,FormatSpec]) }

Parameters

Expression is the value to be converted. See the "Expression" section in this chapter
for details on the syntax.

DataType ALLBASE/SQL data type: CHAR(n), VARCHAR(n), DECIMAL(p[,s]),
FLOAT, REAL, INTEGER, SMALLINT, DATE, TIME, DATETIME,
INTERVAL, BINARY(n), VARBINARY(n), TID.

The LONG BINARY(n) and LONG VARBINARY(n) cannot be used in the
CAST operations.

FormatSpec Format specification used for DATE, TIME, DATETIME, INTERVAL
conversions. FormatSpec is the same as that used in the date/time
conversion functions.

Description

The following table shows what data type conversions the CAST function supports. These
are the status codes used in the table:

• Y—is supported

• N—is not supported

• E—is an ALLBASE/SQL Extension (not a part of ANSI standard)
238 Chapter 8

Expressions
CAST Function
• If input to CAST is NULL, then the result of the CAST operation is NULL.

• ALLBASE/SQL supports implicit data conversion between:

• Numeric data types to numeric data types

• Character data types to character data types

• Binary data types to binary data types

• Binary data types to character data types

• Character data types to binary data types

When CAST is used to do these conversions, all existing rules are applied.

• When a number is converted, if the number does not fit within the target precision, an
overflow error occurs.

• When converting from an approximate numeric to an exact numeric or from an exact
numeric to an exact numeric with less scale (integers have a scale of 0), the extra digits
of scale beyond the target scale are dropped without rounding the result.

Source Data Type Target Data Type

ENa ANb VC CHAR
(n)

B VB DATE TIME DT I TID

ENa Yc Yc Yd Yd Ed Ed Nd N N N N

ANb Yc Yc Yd Yd Ed Ed N N N N N

VARCHAR(n) Yd Yd Yc Yc Yc Yc Yc Yc Yc Yc Ed

CHAR(n) Yd Yd Yc Yc Yc Yc Yc Yc Yc Yc Ed

BINARY Ed Ed Yc Yc Yc Yc Ed Ed Ed Ed Ed

VARBINARY(n) Ed Ed Yc Yc Yc Yc Ed Ed Ed Ed Ed

DATE Ec Ec Yc Yc Ed Ed Yc N N N N

TIME Ec Ec Yc Yc Ed Ed N Yc N N N

DATETIME Ec Ec Yc Yc Ed Ed N N Yc N N

INTERVAL Yc Ec Yc Yc Ed Ed N N N Yc N

TID N N Ed Ed Ed Ed N N N N Yc

a. EN—Exact Numeric (SMALLINT, INT[EGER], DEC[IMAL][(p[,s])], NUMERIC[(p[,s])])
b. AN—Approximate Numeric (FLOAT[(p)] or DOUBLE PRECISION, REAL)
c. Implicit conversion also supported
d. Conversion supported only with CAST
Chapter 8 239

Expressions
CAST Function
• If both source and target data type are character strings, the language of the result
string is the same as the source.

• If the source data type is a character string and the target data type is a numeric, then
the source value must only contain a character representation of a number. The result
of the conversion is the numeric value that string represented.

If the source value is not a numeric string, an error occurs.

• If the target data type is CHAR(n), and the source data type is an exact numeric, the
result is a character representation of that exact numeric. If the source value is less
than zero, the first character of the result is a minus sign. Otherwise, the first character
is a number or a decimal point.

If the length of the resulted string is less than n, then blanks are added on the right. If
the length of the resulted string is greater than n, an error occurs. The same algorithm
applies if the target data type is VARCHAR(n), except that there is no need to pad the
numeric string if its length is less than n.

• If the target data type is CHAR(n) and the source data type is an approximate numeric,
then the number is converted to a character representation in scientific notation.

If the length of the resulted string is less than n, then blanks are added on the right. If
the length of the resulted string is greater than n, then an error occurs. The same
algorithm applies if the target data type is VARCHAR(n), except that there is no need
to pad the numeric string if its length is less than n.

• Conversion between character and binary data types is supported implicity as well as
with CAST. The same rules still apply with CAST. If a target is shorter than the source,
truncation occurs. If the target is larger than the source, the target is zero-filled in the
case of BINARY(n), and blank-filled in the case of CHAR(n).

• When converting a non-character data type to BINARY(n) or VARBINARY(n), the data
is not modified. Only the type changes so that the data is treated as binary data. The
size of the source and the target in bytes must be equal in the case of BINARY(n), and
the size of the source must be less than or equal to the size of the target in the case of
VARBINARY(n). Otherwise, an error occurs.

For decimal numbers, each digit of precision contributes 4 bits and 4 bits for the sign.
The overall size is rounded up to a 4-byte boundary. The storage size for DATE, TIME,
DATETIME, and INTERVAL is 16 bytes.

• When converting from BINARY(n) or VARBINARY(n) into a non-character data type,
the data is not modified. Only the type changes so that the data is treated as a number
of the target data type. The actual size of the source and the target in bytes must be
equal, or an error occurs.

• Conversion between binary data types and numeric data types is an ALLBASE
extension and is not allowed according to the ANSI SQL2 standard.

• Converting a character string to a DATE, TIME, DATETIME or INTERVAL with CAST
is equivalent to using the respective date/time function, TO_DATE, TO_TIME,
TO_DATETIME, or TO_INTERVAL. All the same rules apply.

• Using CAST to convert numeric types directly to date/time types is not allowed. This
240 Chapter 8

Expressions
CAST Function
should be done by nesting the CAST functions so that the numeric value is first
converted to a character string, and then converted to the date/time data type.

• Converting a date/time data type to:

• A character type with CAST is equivalent to using the TO_CHAR date/time function.
All the same rules apply.

• An INTEGER is equivalent to using the TO_INTEGER date/time function. This
function converts date/time column value into an INTEGER value which represents
a portion of the date/time column. If the source data type of CAST is date/time data
type, and the target data type is INTEGER, all rules for TO_INTEGER to convert
date/time into INTEGER will be applied. The FormatSpec must be used to specify a
single component of the date/time data type (i.e. HH, MM, SS, DAYS, etc.).

• Other numeric types are also allowed using CAST. In this case, the date/time data
type is first converted to an INTEGER applying all the TO_INTEGER rules, then is
converted from INTEGER to the target data type.

Examples

1. You will see the result has VendorNumber presented as: Vendor9000,
Vendor9020,....

 CREATE TABLE PurchDB.SupplyPrice
 (PartNumber CHAR(16) NOT CASE SENSITIVE not null unique,
 VendorNumber INTEGER,
 VendPartNumber CHAR(16) lang=german NOT CASE SENSITIVE,
 UnitPrice DECIMAL(10,2),
 DeliveryDays CHAR(2),
 DiscountQty SMALLINT)

 SELECT PartNumber, 'Vendor' || CAST(VendorNumber AS VARCHAR(4))
 FROM PurchDB.SupplyPrice

WHERE VendorNumber BETWEEN 9000 AND 9020;

2. You will see the INTERVAL constant shown as: 0 23:00:00:000

 SELECT PartNumber, CAST(CAST(23,CHAR(2)),INTERVAL,'HH')
 FROM PurchDB.SupplyPrice;

3. You will see the INTEGER constant shown as: 99

 SELECT PartNumber, CAST('9999-12-31',INTEGER,'CC')
 FROM PurchDB.SupplyPrice;

4. SELECT SUM with CAST

 SELECT SUM(CAST(DeliveryDays, SMALLINT))
 FROM PurchDB.SupplyPrice
 WHERE VendorNumber BETWEEN 9000 AND 9020;

5. EXEC SQL with CAST

 EXEC SQL begin declare section;
 char hostvar1[16];
 sqlbinary hostvar2[8];
 EXEC SQL end declare section;
Chapter 8 241

Expressions
CAST Function
Assume there is only one row qualified for the following query.

 EXEC SQL select PartNumber, CAST(UnitPrice,BINARY(8))
 INTO :hostvar1, :hostvar2
 FROM PurchDB.SupplyPrice
 WHERE VendorNumber BETWEEN 9000 AND 9020;

6. You will see the DECIMAL constant shown as: 99.99

 SELECT PartNumber, CAST(99.99,VARCHAR(10))
 FROM PurchDB.SupplyPrice;
242 Chapter 8

Expressions
Constant
Constant
A constant is a specific numeric, character, or hexadecimal value.

Scope

SQL Data Manipulation Statements

SQL Syntax
{ IntegerValue

FloatValue
FixedPointValue
‘CharacterString’
OxHexadecimalString}

Parameters

IntegerValue is a signed or unsigned whole number compatible with INTEGER or
SMALLINT data types, for example:

 -16746
 155
 5

FloatValue is a signed or unsigned floating point number compatible with the FLOAT
or REAL data types, for example:

 .2E-4

FixedPointValue is a signed or unsigned fixed-point number compatible with the
DECIMAL data type, for example:

 -15.99
 +1451.1

CharacterString is a character string compatible with CHAR, VARCHAR, DATE,
TIME, DATETIME, or INTERVAL data types. String constants are
delimited by single quotation marks, for example:

 'DON''T JUMP!'

However, two single quotation marks in a row are interpreted as a single
quotation mark, not as string delimiters.

HexadecimalString is a string of hexadecimal digits 0 through 9 and A through F (the
lowercase a through f are also accepted) compatible with the BINARY and
VARBINARY data types. A HexadecimalString constant must be
prefaced with the characters 0x, for example:

 0xFFFAB0880088343330FFAA7
 0x000V001231
Chapter 8 243

Expressions
Current Functions
Current Functions
Current functions return a value that represents a current DATE, TIME, or DATETIME.
The value returned is a string with the format of a DATE, TIME, or DATETIME data type.

Scope

SQL Data Manipulation Statements

SQL Syntax
{ CURRENT_DATE

CURRENT_TIME
CURRENT_DATETIME}

Description

• CURRENT_DATE returns the current date as a string of the form 'YYYY-MM-DD',
where YYYY represents the year, MM is the month, and DD is the day.

• CURRENT_TIME returns the current time as a string of the form 'HH:MI:SS', where
HH represents hours, MI is minutes, and SS is seconds.

• CURRENT_DATETIME returns the current date and time as a string of the form
'YYYY-MM-DD HH:MI:SS.FFF', where YYYY represents the year, MM is the month,
DD is the day, HH represents the hours, MI the minutes, SS the seconds, and FFF the
thousandths of a second.

Examples

Set a column to the current DATE.

 UPDATE ManufDB.TestData
 SET TestDate = CURRENT_DATE
 WHERE BatchStamp = '1984-07-25 10:15:58.159'

Set a column to the current DATETIME.

 UPDATE ManufDB.SupplyBatches
 SET BatchStamp = CURRENT_DATETIME
 WHERE BatchStamp = '1984-07-25 10:15:58.159'
244 Chapter 8

Expressions
Date/Time Functions
Date/Time Functions
The following text describes the two types of date/time conversion functions:

• The input functions convert character values into date/time values. With TO_DATE,
TO_TIME, TO_DATETIME, and TO_INTERVAL you can enter date/time values in a
format other than the default format.

• The output functions convert date/time values out to integer or character values. With
TO_CHAR you can specify an output format for a date/time column value other than
the default format. With TO_INTEGER you can extract an element as an INTEGER
value.

Date/time columns are displayed in the default format.

Scope

SQL Data Manipulation Statements

SQL Syntax—Conversion Functions
{ { TO_DATE

TO_TIME
TO_DATETIME
TO_INTERVAL } (StringExpression [, FormatSpecification])

TO_CHAR (DateTimeExpression [, FormatSpecification])
TO_INTEGER (DateTimeExpression , FormatSpecification) }

Parameters—Conversion Functions

TO_DATE, TO_TIME,
TO_DATETIME, TO_INTERVAL produce a result which is of the DATE, TIME,

DATETIME, or INTERVAL type, respectively. Use these
functions in any expression.

TO_CHAR produces the character string representation of the value
in the column named in the first parameter in the format
specified in the second parameter. The result type is
VARCHAR with the length as specified by the format
specification. If a format is not specified, the default
format for the data type (and length) is used. Use this
output function in any expression.

TO_INTEGER produces an INTEGER value which represents a portion of
the date/time column. The format specification is not
optional in this case, and must consist of a single element
(of the format specification). Use this output function in
any expression.

StringExpression is a string expression. Refer to the "Expression" section in
this chapter for details on the syntax. The expression must
Chapter 8 245

Expressions
Date/Time Functions
be a CHAR or VARCHAR data type.

DateTimeExpression is a Date/Time expression. See the "Expression" section of
this chapter for more details on the syntax. The expression
must be a DATE, TIME, DATETIME, or INTERVAL data
type.

FormatSpecification specifies the format of ColumnName or CharacterValue .
Refer to the syntax for FormatSpecification later in
this section. Format elements are presented in the
"Description" section below.

SQL Syntax—FormatSpecification
{‘FormatString’

: HostVariable [[INDICATOR]: IndicatorVariable]
?
: LocalVariable
: ProcedureParameter
:: Built-inVariable }

Parameters—FormatSpecification

FormatString is a character string literal representing the format of
DateTimeExpression or StringExpression . It must be a string literal,
of maximum length 72 characters. Format is composed of one or more
elements. Available format elements for the date/time data types are
described below. Only n-computer characters are allowed in the
FormatString . The syntax for the format string follows:

{ FormatElement {Punctuation or Blank } [...] }

The format elements are listed in the "Description" section.

HostVariable identifies a host variable that contains the format specification which
determines how the DateTimeExpression or StringExpression is to
be converted.

IndicatorVariable names an indicator variable, whose value
determines whether the associated host variable contains
a NULL value:

> = 0

the value is not NULL

< 0

the value is NULL (The value in the host variable will be
ignored.)

? is a place holder for a dynamic parameter in a prepared SQL statement in
an application program. The value of the dynamic parameter is supplied at
run time.

LocalVariable contains a value in a procedure.
246 Chapter 8

Expressions
Date/Time Functions
ProcedureParameter contains a value that is passed into or out of a procedure.

::Built-inVariable is one of the following built-in variables used for error handling:

• ::sqlcode

• ::sqlerrd2

• ::sqlwarn0

• ::sqlwarn1

• ::sqlwarn2

• ::sqlwarn6

• ::activexact

The first six of these have the same meaning that they have as fields in the
SQLCA in application programs. ::activexact indicates whether a
transaction is in progress or not. For additional information, refer to the
application programming guides and to Chapter 4 , “Constraints,
Procedures, and Rules.”

Description

• If the format specification is optional and it is not supplied, the proper default format is
used. If a date/time column or string literal appears in an expression without a
conversion function, it is changed, if necessary, to the default format.

• Date format is used by the TO_DATE function and by the TO_CHAR function on DATE
expressions. The default format is 'YYYY-MM-DD'.

Listed here are format elements made up of numeric characters (digits 0 through 9):

CC Century (00 to 99)

YYYY Year (0000 to 9999)

YY Year of century (00 to 99)

ZYY YY with leading zeroes suppressed (0 to 99) (TO_CHAR only)

Q Quarter (1 to 4) (TO_CHAR only)

MM Month (01 to 12)

ZMM MM with leading zeroes suppressed (1 to 12) (TO_CHAR only)

DAYS Days since January 1, 0000 (0000000 to 3652436)

ZDAYS DAYS with leading zeroes suppressed (0 to 3652436) (TO_CHAR only)

DDD Day of year (001 to 366)

ZDDD DDD with leading zeroes suppressed (1 to 366) (TO_CHAR only)

DD Day of month (01 to 31)

ZDD DD with leading zeroes suppressed (1 to 31) (TO_CHAR only)

D Day of week (1 to 7) (TO_CHAR only)
Chapter 8 247

Expressions
Date/Time Functions
The Z prefix and Q and D are only allowed for the function TO_CHAR. If YY is used
without CC, the default CC is 19. The following elements are for representing
alphabetic characters:

MONTH Name of month

MON Abbreviated name of month

DAYOFWEEK Name of day

DAY Abbreviated name of day

-/:., Punctuation marks reproduced in value (includes spaces)

"string" Quoted string reproduced in value

Delimiting punctuation marks must be the same in the value parameter and the format
specification parameter.

• Capitalization in alphabetic representations follows the capitalization of the
corresponding format element. Elements may be represented in uppercase, lowercase,
or initial caps. Other mixtures of uppercase and lowercase letters result in an error. For
example:

 'DAYOFWEEK' —--> MONDAY
 'Dayofweek' —--> Monday
 'dayofweek' —--> monday
 'dAyOfWeEk' —--> error condition

• Time format is used by the TO_TIME function and by the TO_CHAR functions on
TIME expressions. The default format is 'HH:MI:SS'.

Listed here are formats for elements made up of numeric characters:

HH or HH24 Hour of day (00 to 23)

ZHH or ZHH24 HH or HH24 with leading zeroes suppressed (0 to 23) (TO_CHAR only)

HH12 Hour of day (00 to 12)

ZHH12 HH12 with leading zeroes suppressed (0 to 12) (TO_CHAR only)

MI Minute (00 to 59)

ZMI MI with leading zeroes suppressed (0 to 59) (TO_CHAR only)

SS Second (00 to 59)

ZSS SS with leading zeroes suppressed (0 to 59) (TO_CHAR only)

SECONDS Seconds past midnight (00000 to 86399)

ZSECONDS SECONDS with leading zeroes suppressed (0 to 86399) (TO_CHAR
only)

Z is not allowed for the input functions. The following elements are for representing
alphabetic characters:

AM or PM AM/PM indicator (use capital letters)

A.M. or P.M. A.M./P.M. indicator with periods (use capital letters)
248 Chapter 8

Expressions
Date/Time Functions
./:., Punctuation marks reproduced in value (includes spaces)

"string" Quoted string reproduced in value

Delimiting punctuation marks must be the same in the value parameter and the format
specification parameter.

• The TO_DATETIME function and the TO_CHAR function on TIME expressions use the
date/time default format 'YYYY-MM-DD HH:MI:SS.FFF'.

In addition to all formats shown for the date and time format specifications above, the
following are also allowed for date/time formats (made up of the numeric characters 0
through 9):

F Tenth of a second (.0 to .9)

FF Hundredth of a second (.00 to .99)

FFF Thousandth of a second (.000 to .999)

• The TO_INTERVAL function and the TO_CHAR function on INTERVAL expressions
use the interval default format 'DAYS HH:MI:SS.FFF'.

The following formats are allowed in an interval format specification:

 DAYS MI SECONDS FFF
 ZDAYS ZMI ZSECONDS -/:.,
 HH or HH24 SS F "string"
 ZHH or ZHH24 ZSS FF

These were described in the TIME and DATETIME format specifications above.

• Literals for date/time data types which do not specify all elements of the date/time
value are expanded and filled as described below:

• INTERVAL is zero filled on the left and the right.

• DATE, TIME, and DATETIME are left-filled with the current values from the
system clock, and right-filled with appropriate portions of the default '0000-01-01
00:00:00.000'.

• When YY is specified in the FormatSpecification and if its value in
StringExpression is less than 50, then the century part of DATE and DATETIME
defaults to 20, else it is set to 19. This behavior can be overridden by setting the
environment variable HPSQLsplitcentury to a value between 0 and 100. If the YY part
is less than the value of environment variable HPSQLsplitcentury then the century
part is set to 20, else it is set to 19.

• Output values are truncated, not rounded, to fit in the specified format.

• The TO_INTEGER format specification is not optional, and must consist of one of the
following single elements only:

 CC MM DAYS SS
 YYYY DDD HH or HH24 SECONDS
 YY DD HH12 F, FF, or FFF
 Q D MI

• ADD_MONTHS is a related function. ADD_MONTHS adds a duration of months to a
Chapter 8 249

Expressions
Date/Time Functions
DATE or DATETIME column. Refer to the Add Months Function for further
information.

Examples

1. Date format

In the example below, the format MM/DD/YY is used to enter a date instead of using the
default format, which is YYYY-MM-DD:

 INSERT INTO ManufDB.TestData(batchstamp, testdate)
VALUES (TO_DATETIME ('07/02/89 03:20.000', 'MM/DD/YY HH12:MI.FFF'),

TO_DATE('10/02/84','MM/DD/YY'))

To return the date entered in the above example, in a format other than the default
format, the desired format is specified in the second parameter of the TO_CHAR
conversion function:

 SELECT TO_CHAR(testdate, 'Dayofweek, Month DD')
 FROM ManufDB.TestData
 WHERE labtime < '0 05:00:00.000'

The value "Friday, July 13" is selected from TestData.

The following statement inserts different date values depending on the value of the
environment variable HPSQLsplitcentury, if it is set.

 INSERT INTO ManufDB.TestData(testdata)
 VALUES (TO_DATE ('30/10','YY/MM'))

Case 1: HPSQLsplitcentury is not set; inserts 2030-10-01

Case 2: HPSQLsplitcentury is set to 0; inserts 1930-10-01

Case 3: HPSQLsplitcentury is set to 70; inserts 2030-10-01

2. Time format

 INSERT INTO ManufDB.TestData(teststart, batchstamp)
 VALUES (TO_TIME('01:53 a.m.','HH12:MI a.m.'),
 TO_DATETIME('12.01.84 02.12 AM', 'DD.MM.YY HH12.MI AM'))

3. Datetime format

 UPDATE ManufDB.TestData
SET batchstamp = TO_DATETIME('12.01.84 02.12 AM', 'DD.MM.YY HH12.MI AM')

WHERE batchstamp = TO_DATETIME('11.01.84 1.11 PM', 'DD.MM.YY HH12.MI PM')

4. Interval format

 UPDATE ManufDB.TestData
 SET labtime = TO_INTERVAL('06 10:12:11.111', 'DAYS HH:MI:SS.FFF')
 WHERE testdate = TO_DATE('10.02.84','MM.DD.YY')
250 Chapter 8

Expressions
Long Column Functions
Long Column Functions
Long column functions return information from the long column descriptor.

Scope

SQL Data Manipulation Statements

SQL Syntax
{ OUTPUT_DEVICE(LongColumnName)

OUTPUT_NAME(LongColumnName) }

Parameters

OUTPUT_DEVICEreturns an integer value indicating the output device type stored in the
long column descriptor for LongColumnName. The values returned are
shown in the table below:

OUTPUT_NAMEreturns the output device name stored in the long column descriptor for
LongColumnName. The string returned is a 44 byte value.

LongColumnName is the name of the column that has a long data type (LONG BINARY or
LONG VARBINARY).

Description

• The long column functions can appear in the select list or search condition of an SQL
data manipulation statement.

• The long column functions are useful when you need information about the long column
descriptors, but do not want to fetch the data.

• For more information on long column data types, see the "Data Types" chapter.

• Referencing a LONG column in a LONG column function does not cause the LONG
data to be written out to the output device.

Value Returned Output Device Type

0 none specified

1 system file

2 shared memory
Chapter 8 251

Expressions
Long Column Functions
Examples

1. OUTPUT_DEVICE example

Change the PartPicture output device name to NewHammer in any row whose output
device type for PartPicture is a system file.

 UPDATE PartsIllus
 SET PartPicture = '> NewHammer'
 WHERE OUTPUT_DEVICE(PartPicture) = 1

2. OUTPUT_NAME example

Select the output device name of the PartPicture column for any row with a
PartNumber of 100.

 SELECT OUTPUT_NAME(PartPicture)
 FROM PartsIllus
 WHERE PartNumber = 100

Change all occurrences of the output device name of the PartPicture column to
NewHammer if the current output device name is Hammer.

 UPDATE PartsIllus
 SET PartPicture = '> NewHammer'
 WHERE OUTPUT_NAME(PartPicture) = 'Hammer'
252 Chapter 8

Expressions
String Functions
String Functions
String functions return partial values or attributes of character and BINARY (including
LONG) string data.

With the G3 release of ALLBASE/SQL and IMAGE/SQL, the supported SQL syntax has
been enhanced to include the following string manipulation functions: UPPER, LOWER,
POSITION, INSTR, TRIM, LTRIM and RTRIM. These string functions allow you to
manipulate or examine the CHAR and VARCHAR values within the SQL syntax, allowing for
more sophisticated queries and data manipulation commands to be formed. These string
functions were designed to be compatible with functions specified in the ANSI SQL '92
standard and functions used in ORACLE. In cases where the ANSI SQL '92 standard and
the ORACLE functions were not compatible (such as the LTRIM and RTRIM in ORACLE
versus TRIM in the ANSI standard), both versions were implemented. The specifications for
each of these functions follows.

Function Specification

LOWER

Converts all the characters in stringexpr to lower case

Syntax [LOWER (stringexpr)]

UPPER

Converts all the characters in stringexpr to upper case

Syntax [UPPER (stringexpr)]

POSITION

Searches for the presence of the string stringexpr1 in the string stringexpr2 and
returns a numeric value that indicates the position at which stringexpr1 is found in
stringexpr2

Syntax [POSITION (stringexpr,stringexpr2)]

INSTR

Searches stringexpr1 beginning with its nth character for the mth occurrence of
stringexpr2 and returns the position of the character in stringexpr1 that is the first
character of this occurrence. If n is negative, Instr counts and searches backward from the
end of stringexpr1 . The value of mmust be positive. The default values of both n and mare
1, meaning Instr begins searching at the first character of stringexpr1 for the first
occurrence of stringexpr2 . The return value is relative to the beginning of stringexpr1
regardless of the value of n, and is expressed in characters. If the search is unsuccessful (if
stringexpr2 does not appear m times after the nth character of stringexpr1) the return
value is 0.

If n and m are not specified the function is equivalent to the ANSI SQL-92 POSITION
Chapter 8 253

Expressions
String Functions
function, except that the syntax is slightly different.

Syntax [INST (stringexpr1 , stringexpr2 [, n[, m]])]

LTRIM

LTRIM function trims the characters specified in charset from the beginning of the string
stringexpr .

Syntax [LTRIM (charset , stringexpr)]

RTRIM

RTRIM function trims the characters specified in charset from the end of the string
stringexpr .

Syntax [RTRIM (charset , stringexpr)]

TRIM

TRIM function allows you to strip the characters specified in charset from the beginning
and/or the end of the string stringexpr . If charset is not specified, then blank characters
would be stripped from stringexpr .

Syntax
[TRIM ({ LEADING | TRAILING | BOTH} (, charset , stringexpr)]

Examples:

Example 1

SELECT LOWER (OWNER) || '.' || LOWER (NAME)
FROM SYSTEM.TABLE

WHERE NAME = UPPER ('vendors');

Returns "purchdb .vendors "

Example 2

SELECT POSITION ('world', 'hello world')
FROM SYSTEM.TABLE

WHERE NAME = UPPER('vendors');

Returns the numeric value 7

Example 3

SELECT INSTR ('hello world hello world', 'world', 5, 2)
FROM SYSTEM.TABLE

WHERE NAME = UPPER('vendors');

Returns the numeric value 18 (starting position of the second occurrence of the string
'world').
254 Chapter 8

Expressions
String Functions
Example 4

SELECT * FROM SYSTEM.TABLE
WHERE NAME = LTRIM ('?*', 'VENDORS?*???***')
AND OWNER = 'PURCHDB';

Returns the system table entry for PURCHDB.VENDORS

Example 5

SELECT TRIM (BOTH '?*' FROM '??**?*hello ?* world???*')
FROM SYSTEM.TABLE

WHERE NAME = 'VENDORS';

Returns 'hello ?* world'.

Scope

SQL Data Manipulation Statements

SQL Syntax
{ STRING_LENGTH (StringExpression)

SUBSTRING (StringExpression , StartPosition,Length)}

Parameters

STRING_LENGTHreturns an integer indicating the length of the parameter. If
StringExpression is a fixed length string type, STRING_LENGTH will
return the fixed length. If StringExpression is a variable length string,
the actual length of the string will be returned.

StringExpression is an expression of a string type. See the "Expression" section in this
chapter for the syntax. The expression must be a CHAR, VARCHAR,
BINARY, VARBINARY, Long Binary, or Long VARBINARY data type.

For example, the following are acceptable:

 VendorName
 'Applied Analysis'
 SUBSTRING(VendorName,1,10)

SUBSTRING returns the portion of the SourceString parameter which begins at
StartPosition and is Length bytes long.

StartPosition is an integer constant or expression. See the "Expression" section in this
chapter for this syntax.

Length is an integer constant or expression. See the "Expression" section in this
chapter for this syntax. The following are examples of acceptable lengths:

 5
 STRING_LENGTH(VendorName)-28
Chapter 8 255

Expressions
String Functions
Description

• The string functions can appear in an expression, a select list, or a search condition of
an SQL data manipulation statement.

• The string functions can be applied to any string data type, including binary and long
column data types.

• The string returned by the SUBSTRING function is truncated if (StartPosition +
Length -1) is greater than the length of the StringExpression . Only (Length -
StartPosition +1) bytes is returned, and a warning is issued.

• If Length is a simple constant, the substring returned has a maximum length equal to
the value of the constant. Otherwise, the length and data type returned by the
SUBSTRING function depend on the data type of StringExpression , as shown in the
following table:

Examples

1. STRING_LENGTH example

In the SELECT statement below, the PartsIllus table is searched for any row whose
PartPicture contains more than 10000 bytes of data, and whose PartName is longer
than 10 bytes.

 CREATE TABLE PartsIllus
 (PartName VARCHAR(16),
 PartNumber INTEGER,
 PartPicture LONG VARBINARY(1000000) in PartPictureSet)
 IN PartsIllusSet
 SELECT PartNumber, PartName
 FROM PartsIllus
 WHERE STRING_LENGTH(PartPicture) > 10000
 AND STRING_LENGTH(PartName) > 10

Table 8-1. Data Type Returned by SUBSTRING

StringExpression Data Type SUBSTRING Data Type SUBSTRING Maximum Length

CHAR VARCHAR fixed length of SourceString

VARCHAR VARCHAR maximum length of SourceString

BINARY VARBINARY fixed length of SourceString

VARBINARY VARBINARY maximum length of SourceString

LONG BINARY VARBINARY 3996 a

a. 3996 is the maximum length of a VARBINARY data type

LONG VARBINARY VARBINARY 3996a
256 Chapter 8

Expressions
String Functions
2. SUBSTRING example

For every row in PartsIllus, the PartNumber and the first 350 bytes of the PartPicture
are inserted into the DataBank table:

 CREATE TABLE DataBank
 (IdNumber INTEGER,
 Data VARBINARY(1000))

 INSERT INTO DataBank
 SELECT PartNumber, SUBSTRING(PartPicture,1,350)
 FROM PartsIllus

Display a substring of the PartPicture column in the PartsIllus table if the Data column
in the DataBank table contains more than 133 bytes:

 SELECT DATA
 FROM DataBank
 WHERE STRING_LENGTH(Data) > 133
Chapter 8 257

Expressions
TID Function
TID Function
Used in a select list, the TID function returns the database address of a row (or rows for
BULK SELECT) of a table or an updatable view. Used in a WHERE clause, the TID function
takes a row address as input and allows direct access to a single row of a table or an
updatable view.

Scope

SQL Data Manipulation Statements

SQL Syntax
TID ([[Owner.] TableName

[Owner.] ViewName
CorrelationName])

Parameters

TID is an 8 byte value representing the database address of a row of a table or
an updatable view. A TID contains these elements:

() indicates that the row address is to be obtained from the first table or view
specified (in the FROM clause of a SELECT statement or in an UPDATE
statement).

Owner indicates the owner of the table or view.

TableName indicates the table from which to obtain the row address.

ViewName indicates the updatable view from which to obtain row address.

CorrelationName indicates the correlation name of the table or view from which to
obtain the row address.

Description

• The TID function can be used with user tables and updatable views and with system
base tables and system views. It cannot be used with non-updatable views (those
containing JOIN, UNION, GROUP BY, HAVING, or aggregate functions) nor on system

Table 8-2. SQLTID Data Internal Format

Content Byte Range

Always = 0 1 thru 2

File Number 3 thru 4

Page Number 5 thru 7

Slot 8
258 Chapter 8

Expressions
TID Function
pseudotables.

• In order to assure optimization (through the use of TID access) the expressions in the
WHERE clause of a single query block must be ANDed together. No OR is allowed. In
addition, only the following TID expressions can be optimized:

TID ([[Owner.] TableName
[Owner.] ViewName
CorrelationName]) =

{ Constant
HostVariableName [[INDICATOR]: IndicatorVariable]
?
: LocalVariable
: ProcedureVariable }

• Only equal and not equal comparison operators are supported.

• The TID function cannot appear in an arithmetic expression.

• The TID function can be used in a restricted set of SELECTstatements. A valid SELECT
statement must not specify the following:

• An ORDER BY or GROUP BY on the TID function.

• A HAVING clause containing the TID function.

• The TID function in the select list when a GROUP BY or HAVING clause is used.

• An aggregate function on the TID function.

• Any TID function along with an aggregate function in the select list.
Chapter 8 259

Expressions
TID Function
Example
 isql=> SELECT tid(), PartNumber
 > FROM PurchDB.Parts;

 select tid(), PartNumber from PurchDB.Parts;
 -----------------------+----------------
 TID |PARTNUMBER
 -----------------------+----------------
 3:3:0|1123-P-01
 3:3:1|1133-P-01
 3:3:2|1143-P-01
 3:3:3|1153-P-01
 3:3:4|1223-MU-01
 3:3:5|1233-MU-01
 3:3:6|1243-MU-01
 3:3:7|1323-D-01
 3:3:8|1333-D-01
 3:3:9|1343-D-01
 3:3:10|1353-D-01
 3:3:11|1423-M-01
 3:3:12|1433-M-01
 3:3:13|1523-K-01
 3:3:14|1623-TD-01

 3:3:15|1723-AD-01

 First 16 rows have been selected.
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >
260 Chapter 8

Search Conditions
9 Search Conditions

This chapter discusses search condition clauses and the predicates used in them. The
following sections are presented:

• Search Condition

• BETWEEN Predicate

• Comparison Predicate

• EXISTS Predicate

• IN Predicate

• LIKE Predicate

• NULL Predicate

• Quantified Predicate

A search condition specifies criteria for choosing rows to select, update, delete, insert,
permit in a table, or fire rules on. Search conditions are parameters in the following
statements:

• In the SELECT statement, search conditions are used for two purposes as follows:

• In the WHERE clause, to determine rows to retrieve for further processing. The only
expressions not valid in this clause are aggregate functions and expressions
containing LONG columns that are not in long column functions.

• In the HAVING clause, to specify a test to apply to each group of rows surviving the
GROUP BY clause test(s). If a GROUP BY clause is not used, the test is applied to
all the rows meeting the WHERE clause conditions. References in a HAVING clause
to non-grouping columns must be from within aggregate functions. Grouping
columns can be referred to by name or with an aggregate function.

• In the UPDATE statement, search conditions in the WHERE clause identify rows that
qualify for updating.

• In the DELETE statement, search conditions in the WHERE clause identify rows that
qualify for deletion.

• In the INSERT statement, search conditions in the embedded SELECT statement
identify rows to copy from one or more tables or views into a table.

• In the DECLARE CURSOR statement, search conditions in the embedded SELECT
statement identify rows and columns to be processed with a cursor.

• In the CREATE VIEW statement, search conditions in the embedded SELECT statement
identify rows and columns that qualify for the view.

• In table CHECK constraints, the search condition identifies valid rows that a table may
contain.

• In rule firing conditions, search conditions identify conditions that cause rules to fire.
Chapter 9 261

Search Conditions
Search Condition
Search Condition
A search condition is a single predicate or several predicates connected by the logical
operators AND or OR. A predicate is a comparison of expressions that evaluates to a value
of TRUE, FALSE, or unknown. If a predicate evaluates to TRUE for a row, the row
qualifies for the select, update, or delete operation. If the predicate evaluates to FALSE or
unknown for a row, the row is not operated on.

Scope

SQL Data Manipulation Statements

SQL Syntax
[NOT] { BetweenPredicate

ComparisonPredicat e
ExistsPredicate
InPredicate
LikePredicate
NullPredicate
QuantifiedPredicate
(SearchCondition) } [{ AND

OR} [NOT] { BetweenPredicate
ComparisonPredicate
ExistsPredicate
InPredicate
LikePredicate
NullPredicate
QuantifiedPredicate
(SearchCondition) }] [...]

Parameters

NOT, AND, OR are logical operators with the following functions:

NOT reverses the value of the predicate that follows it.

AND evaluates predicates it joins to TRUE if they are both
TRUE.

OR evaluates predicates it joins to TRUE if either or both are
TRUE.

BetweenPredicate determines whether an expression is within a certain
range of values.

ComparisonPredicate compares two expressions.

ExistsPredicate determines whether a subquery returns any non-null
values.

InPredicate determines whether an expression matches an element
within a specified set.
262 Chapter 9

Search Conditions
Search Condition
LikePredicate determines whether an expression contains a particular
character string pattern.

NullPredicate determines whether a value is null.

QuantifiedPredicate determines whether an expression bears a particular
relationship to a specified set.

(SearchCondition) is one of the above predicates, enclosed in parentheses.

Description

• Predicates in a search condition are evaluated as follows:

• Predicates in parentheses are evaluated first.

• NOT is applied to each predicate.

• AND is applied next, left to right.

• OR is applied last, left to right.

• When a predicate contains an expression that is null, the value of the predicate is
unknown. Logical operations on such a predicate result in the following values, where a
question mark (?) represents the unknown value:

Figure 9-1. Logical Operations on Predicates Containing NULL Values

When the search condition for a row evaluates to unknown, the row does not satisfy the
search condition and the row is not operated on. Check constraints are an exception; see
the section on CREATE TABLE or CREATE VIEW.

• You can compare only compatible data types. INTEGER, SMALLINT, DECIMAL,
FLOAT, and REAL are compatible. CHAR and VARCHAR are compatible, regardless of
length. You can compare items of type DATE, TIME, DATETIME, and INTERVAL to
literals of type CHAR or VARCHAR. ALLBASE/SQL converts the literal before the
comparison. BINARY and VARBINARY are compatible, regardless of length.

• You cannot include a LONG BINARY or LONG VARBINARY data type in a predicate
except within a long column function.

• A SubQuery expression cannot appear on the left-hand side of a predicate.

• Refer to Chapter 7 , “Data Types,” and Chapter 8 , “Expressions,” for information
concerning value extensions and type conversion during comparison operations.
Chapter 9 263

Search Conditions
BETWEEN Predicate
BETWEEN Predicate
A BETWEEN predicate determines whether a value is equal to or greater than a second
value and equal to or less than a third value. The predicate evaluates to true if a value falls
within the specified range. If the NOT option is used, the predicate evaluates to true if a
value does not fall within the specified range.

Note that the second value must be less than or equal to the third value for BETWEEN to
possibly be TRUE and for NOT BETWEEN to possibly be FALSE.

Scope

SQL Data Manipulation Statements

SQL Syntax

Expression1 [NOT] BETWEENExpression2 AND Expression3

Parameters

Expression1, 2, 3 specify values used to identify columns, screen rows, or
define new column values. The syntax for expressions is
defined in the "Expressions" chapter. Both numeric and
non-numeric expressions are allowed in BETWEEN
predicates.

NOT is a logical operator and reverses the value of the predicate
that follows it.

Description

• Expression2 and Expression3 constitute a range of possible values for which
Expression2 is the lowest possible value and Expression3 is the highest possible
value. In the BETWEENpredicate, the low value must come before the high value. Also in
the BETWEEN predicate, subqueries are not allowed.

• Comparisons are conducted as described under "Comparison Predicates" later in this
chapter.

Example

Parts sold for under $250.00 and over $1500.00 are discounted by 25 percent.

 UPDATE PurchDB.Parts SET SalesPrice = SalesPrice * .75
 WHERE SalesPrice NOT BETWEEN 250.00 AND 1500.00
264 Chapter 9

Search Conditions
Comparison Predicate
Comparison Predicate
A comparison predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression is related to the second expression as
specified in the comparison operator.

Scope

SQL Data Manipulation Statements

SQL Syntax
Expression { =

<>
>
>=
<
<=} [Expression

SubQuery]

Parameters

Expression specifies a value used to identify columns, screen rows, or define new
column values. The syntax of expressions is defined in Chapter 8 ,
“Expressions.” Both numeric and non-numeric expressions are allowed in
comparison predicates. Predicates cannot include LONG columns.

SubQuery is a QueryExpression whose result is used in evaluating another query.
The syntax of QueryExpression is presented in the description of the
SELECT statement.

= is equal to. A comparison predicate using = is also known as an EQUAL
predicate.

<> is not equal to.

> is greater than.

>= is greater than or equal to.

< is less than.

<= is less than or equal to.

Description

• Character strings are compared according to the HP eight-bit ASCII collating sequence
for ASCII data, or the collation rules for the native language of the DBEnvironment for
NLS data. Column data would either be ASCII data or NLS data depending on how the
column was declared upon its creation. Constants are ASCII data or NLS data
depending on whether you are using NLS or not.

If a case insensitive ASCII expression is compared to a case insensitive NLS expression,
Chapter 9 265

Search Conditions
Comparison Predicate
the two expressions are compared using the NLS collation rules. The case insensitive
NLS comparison is done by using the NLSCANMOVEand NLSCOLLATEintrinsics. The same
ASCII characters in upper and lower case are equivalent. Accent characters (extended
character) in upper and lower case are also equivalent. However, an accent character
may not be the same as its ASCII equivalent, depending on the specific language
collation table.

Extended upper and lower case characters are not equivalent to the ASCII expression.
They are compared to the NLS collation table.

If a case sensitive character column is compared to a character column that is not case
sensitive, both columns are treated as case sensitive. If a string constant is compared to
a column that is not case sensitive, then the string constant is treated as not case
sensitive.

• Refer to Chapter 7 , “Data Types,” for type conversion that ALLBASE/SQL performs
when you compare values of different types.

• For purposes of the Comparison Predicate, a NULL value on either or both sides of the
predicate causes it to evaluate to unknown. Thus, two NULL values on either side of an
equals predicate will not result in a TRUE result but rather in unknown.

• A NULL value in an expression causes comparison operators to evaluate to unknown.
Refer to the "Search Condition" section at the beginning of this chapter for more
information on evaluation of operators.

• A subquery must return a single value (one column of one row). If the subquery returns
more than one value, an error is given. If the subquery returns no rows, the predicate
evaluates to unknown.

Example

The part numbers of parts that require fewer than 20 days for delivery are retrieved.

 SELECT PartNumber
 FROM PurchDB.SupplyPrice
 WHERE DeliveryDays < 20
266 Chapter 9

Search Conditions
EXISTS Predicate
EXISTS Predicate
An EXISTS predicate tests for the existence of a row satisfying the search condition of a
subquery. The predicate evaluates to TRUE if at least one row satisfies the search
condition of the subquery.

Scope

SQL Data Manipulation Statements

SQL Syntax

EXISTS SubQuery

Parameters

SubQuery A subquery is a nested query. The syntax of subqueries is presented in the
description of the SELECT statement in Chapter 12 , “SQL Statements S -
Z.”

Description

Unlike other places in which subqueries occur, the EXISTS predicate allows the subquery
to specify more than one column in its select list.

Example

Get supplier names for suppliers who provide at least one part.

 SELECT S.SNAME
 FROM S
 WHERE EXISTS (SELECT * FROM SP
 WHERE SP.SNO = S.SNO);
Chapter 9 267

Search Conditions
IN Predicate
IN Predicate
An IN predicate compares an expression with a list of specified values or a list of values
derived from a subquery. The predicate evaluates to TRUE if the expression is equal to one
of the values in the list. If the NOT option is used, the predicate evaluates to TRUE if the
expression is not equal to any of the values in the list.

Scope

SQL Data Manipulation Statements

SQL Syntax
Expression [NOT] IN { SubQuery

{ValueList) }

Parameters

Expression An expression specifies a value to be obtained. The syntax
of expressions is presented in Chapter 8 , “Expressions.”
Both numeric and non-numeric expressions are allowed in
quantified predicates. The expression may not include
subqueries or LONG columns.

NOT reverses the value of the predicate that follows it.

SubQuery A subquery is a nested query. The syntax of subqueries is
presented in the description of the SELECT statement in
Chapter 12 , “SQL Statements S - Z.”

ValueList defines a list of values to be compared against the
expression's value. The syntax for ValueList is:

{ USER
CurrentFunction
[+ -] { Integer

Float
Decimal }

‘CharacterString’
OxHexadecimalString
: HostVariable [[INDICATOR]: IndicatorVariable]
?
: Local Variable
: ProcedureParameter
:: Built-inVariable
LongColumnFunction

 StringFunction } [, ...]

USER USER evaluates to the DBEUserID. In ISQL, it evaluates
to the DBEUserID of the ISQL user. From an application
program, it evaluates DBEUserID of the individual
268 Chapter 9

Search Conditions
IN Predicate
running the program. USER behaves like a CHAR(20)
constant, with trailing blanks if the login name has fewer
than 20 characters.

CurrentFunction indicates the value of the current DATE, TIME, or
DATETIME.

Integer indicates a value of type INTEGER or SMALLINT.

Float indicates a value of type FLOAT.

Decimal indicates a value of type DECIMAL.

CharacterString specifies a CHAR, VARCHAR, DATE, TIME, DATETIME,
or INTERVAL value. Whichever is shorter -- the string or
the expression value -- is padded with blanks before the
comparison is made.

HexadecimalString specifies a BINARY or VARBINARY value. If the string is
shorter than the target column, it is padded with binary
zeroes; if it is longer than the target column, the string is
truncated.

HostVariable contains a value in an application program being input to
the expression.

IndicatorVariable names an indicator variable, whose value determines
whether the associated host variable contains a NULL
value:

> = 0 the value is not NULL

< 0 the value is NULL (The value in the host variable will be
ignored.)

? is a place holder for a dynamic parameter in a prepared
SQL statement in an application program. The value of
the dynamic parameter is supplied at run time.

LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

Built-inVariable is one of the following built-in variables used for error
handling:

• ::sqlcode

• ::sqlerrd2

• ::sqlwarn0

• ::sqlwarn1

• ::sqlwarn2

• ::sqlwarn6

• ::activexact
Chapter 9 269

Search Conditions
IN Predicate
The first six of these have the same meaning that they
have as fields in the SQLCA in application programs. Note
that in procedures, sqlerrd2 returns the number of rows
processed for all host languages. However, in application
programs, sqlerrd3 is used in COBOL, Fortran, and
Pascal, while sqlerr2 is used in C. ::activexact indicates
whether a transaction is in progress or not. For additional
information, refer to the application programming guides
and to Chapter 4 , “Constraints, Procedures, and Rules.”

StringFunction returns partial values or attributes of character and
binary (including LONG) string data.

LongColumnFunction returns information from the long column descriptor.

Description

• If X is the value of Expression and (a,b, ..., z) represent the result of a SubQuery or
the elements in a ValueList , then the following are true:

• X IN (a,b,...,z) is equivalent to X = ANY (a,b,...,z)

• X IN (a,b,...,z) is equivalent to X = a OR X = b OR...OR X = z

• X NOT IN (a,b,...,z) is equivalent to NOT (X IN (a,b,...,z))

• Refer to the "Data Types" chapter for information about the type conversions that
ALLBASE/SQL performs when you compare values of different types.

• You can use host variables in the ValueList . If an indicator variable is used and
contains a value less than zero, the value in the corresponding host variable is
considered to be unknown.

NOTE To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a −1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

• If all values in the ValueList are NULL, the predicate evaluates to unknown.

Example

Get part numbers of parts whose weight is 12, 16, or 17.

 SELECT P.PNO
 FROM P
 WHERE P.WEIGHT IN (12, 16, 17)

Get the names of suppliers who supply part number 'P2'.

 SELECT S.SNAME
 FROM S
 WHERE S.SNO IN (SELECT SP.SNO FROM SP
 WHERE SP.SNO = 'P2')
270 Chapter 9

Search Conditions
IN Predicate
If the indicator variable is >= 0 and PartNumber is one of '1123-P-01', '1733-AD-01', or
:PartNumber, then the predicate evaluates to true.

If the indicator variable is < 0, the rows containing the part numbers 1123-P-01 and
1733-AD-01 are selected; but no rows will be selected based upon the value in
:PartNumber.

 EXEC SQL SELECT PartNumber
 FROM PurchDB.Parts
 WHERE PartNumber
 IN ('1123-P-01', '1733-AD-01', :PartNumber :PartInd)
Chapter 9 271

Search Conditions
LIKE Predicate
LIKE Predicate
A LIKE predicate determines whether an expression contains a given pattern. The
predicate evaluates to TRUE if an expression contains the pattern. If the NOT option is
used, the predicate evaluates to TRUE if the expression does not contain the pattern.

Scope

SQL Data Manipulation Statements

SQL Syntax
Expression [NOT] LIKE { ‘PatternString’

:HostVariable1 [[INDICATOR]: IndicatorVariable1]
?
: LocalVariable1
: ProcedureParameter1 }

[ESCAPE{ ‘EscapeChar’
: HostVariable2 [[INDICATOR]: IndicatorVariable2]
?
: LocalVariable2
: ProcedureParameter2 }]

Parameters

Expression specifies a value used to identify columns, screen rows, or
define new column values. The syntax of expressions is
presented in the "Expressions" chapter. Only CHAR and
VARCHAR expressions are valid in LIKE predicates.
Date/time columns cannot be referred to directly; however,
they can be placed inside the conversion function
TO_CHAR and be converted to a CHAR value.
Expression cannot be a subquery.

NOT reverses the value of the predicate.

PatternString describes what you are searching for in the expression.

The pattern can consist of characters only (including
digits). For example, NAME LIKE 'Annie' evaluates to
true only for a name of Annie. Uppercase and lowercase
are significant.

You can also use the predicate to test for the existence of a
partial match, by using the following symbols in the
pattern:

_ represents any single character; for example, BOB and
TOM both satisfy the predicate NAME LIKE '_O_'.
272 Chapter 9

Search Conditions
LIKE Predicate
% represents any string of zero or more characters; for
example, THOMAS and TOM both satisfy the predicate
NAME LIKE '%O%'.

The _ and % symbols can be used multiple times and in
any combination in a pattern. You cannot use these
symbols literally within a pattern unless the ESCAPE
clause appears, and the escape character precedes them.
Note that they must be ASCII and not your local
representations.

HostVariable1 identifies the host variable in which the pattern is stored.

IndicatorVariable1 names an indicator variable, an input host
variable whose value determines whether the associated
host variable contains a NULL value:

>= 0

the value is not NULL

< 0

the value is NULL

EscapeChar describes an optional escape character which can be used
to include the symbols _ and % in the pattern.

The escape character must be a single character, although
it can be a one- or two-byte NLS character. When it
appears in the pattern, it must be followed by the escaped
character, host variable or, _, or %. Each such pair
represents a single literal occurrence of the second
character in the pattern. The escape character is always
case sensitive. All other characters are interpreted as
described before.

HostVariable2 identifies the host variable containing the escape
character.

IndicatorVariable2 names an indicator variable, an input host
variable whose value determines whether the associated
host variable contains a NULL value:

>=0

the value is not NULL

< 0

the value is NULL

If the escape character is NULL, the predicate evaluates
to unknown.

LocalVariable2 contains the escape character.
Chapter 9 273

Search Conditions
LIKE Predicate
ProcedureParameter2 contains the escape character that is passed into or out of
a procedure.

? indicates a dynamic parameter in a prepared SQL
statement. The value of the parameter is supplied when
the statement is executed.

Description

• If an escape character is not specified, then the _ or % in the pattern continues to act as
a wildcard. No default escape character is available. If an escape character is specified,
then the wildcard or escape character which follows an escape character is treated as a
constant. If the character following an escape character is not a wildcard or the escape
character, an error results.

• If the value of the expression, the pattern, or the escape character is NULL, then the
LIKE predicate evaluates to unknown.

Example

Vendors located in states beginning with an A are identified.

 SELECT VendorName FROM PurchDB.Vendors
 WHERE VendorState LIKE 'A%'

Vendors whose names begin with ACME_ are identified.

 SELECT VendorName FROM PurchDB.Vendors
 WHERE VendorName LIKE 'ACME!_%' ESCAPE '!'
274 Chapter 9

Search Conditions
NULL Predicate
NULL Predicate
A NULL predicate determines whether a primary has the value NULL. The predicate
evaluates to true if the primary is NULL. If the NOT option is used, the predicate
evaluates to true if the primary is not NULL.

Scope

SQL Data Manipulation Statements

SQL Syntax
{ColumnName

: HostVariable [[INDICATOR]: IndicatorVariable]
?
:LocalVariable
:ProcedureParameter
:: Built-inVariable
AddMonthsFunction
AggregateFunction
Constant
DateTimeFunction
CurrentFunction
LongColumnFunction
StringFunction
CASTFunction
TIDFunction
(Expression) } IS [NOT] NULL

Parameters

ColumnName is the name of a column from which a value is to be taken;
column names are defined in Chapter 6 , “Names.”.

HostVariable contains a value in an application program being input to
the expression.

IndicatorVariable names an indicator variable, whose value
determines whether the associated host variable contains
a NULL value:

> = 0

the value is not NULL

< 0

the value is NULL (The value in the host variable will be
ignored.)

? is a place holder for a dynamic parameter in a prepared
SQL statement in an application program. The value of
the dynamic parameter is supplied at run time.
Chapter 9 275

Search Conditions
NULL Predicate
LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

Built-inVariable is one of the following built-in variables used for error
handling:

• ::sqlcode
• ::sqlerrd2
• ::sqlwarn0
• ::sqlwarn1
• ::sqlwarn2
• ::sqlwarn6
• ::activexact

The first six of these have the same meaning that they
have as fields in the SQLCA in application programs. Note
that in procedures, sqlerrd2 returns the number of rows
processed for all host languages. However, in application
programs, sqlerrd3 is used in COBOL, Fortran, and
Pascal, while sqlerr2 is used in C. ::activexact indicates
whether a transaction is in progress or not. For additional
information, refer to the application programming guides
and to Chapter 4 , “Constraints, Procedures, and Rules.”

AddMonthsFunction returns a value that represents a DATE or DATETIME
value with a certain number of months added to it.

AggregateFunction is a computed value; aggregate functions are defined in
this chapter.

Constant is a specific value; constants are defined later in this
chapter.

ConversionFunction returns a value that is a conversion of a date/time data
type into an INTEGER or CHAR value, or from a CHAR
value.

CurrentFunction returns a value that represents the current DATE, TIME,
or DATETIME.

LongColumnFunction returns information from a long column descriptor.

StringFunction returns a partial value or attribute of string data.

TIDFunction returns the database address of a row (or rows for a BULK
SELECT) of a table or an updatable view. You cannot use
mathematical operators with this function except to
compare it to a value, host variable, or dynamic parameter
(using =, or <>) .

(Expression) is one or more of the above primaries, enclosed in
parentheses.

NOT reverses the value of the predicate that follows it.
276 Chapter 9

Search Conditions
NULL Predicate
Description

The primary may be of any data type except LONG BINARY or LONG VARBINARY.

Example

Vendors with no personal contact named are identified.

 SELECT *
 FROM PurchDB.Vendors
 WHERE ContactName IS NULL
Chapter 9 277

Search Conditions
Quantified Predicate
Quantified Predicate
A quantified predicate compares an expression with a list of specified values or a list of
values derived from a subquery. The predicate evaluates to true if the expression is related
to the value list as specified by the comparison operator and the quantifier.

Scope

SQL Data Manipulation Statements

SQL Syntax
Expression { =

<>
>
>=
<
<=} { ALL

ANY
SOME} { SubQuery

(ValueList)}

Parameters

Expression An expression specifies a value to be obtained. The syntax of expressions is
presented in Chapter 8 , “Expressions.”

= is equal to.

<> is not equal to.

> is greater than.

>= is greater than or equal to.

< is less than.

<= is less than or equal to.

ALL, ANY, SOME are quantifiers which indicate how many of the values from the
ValueList or SubQuery must relate to the expression as indicated by the
comparison operator in order for the predicate to be true. Each quantifier
is explained below:

ALL the predicate is true if all the values in the ValueList or
returned by the SubQuery relate to the expression as
indicated by the comparison operator.

ANY the predicate is true if any of the values in the ValueList
or returned by the SubQuery relate to the expression as
indicated by the comparison operator.

SOME a synonym for ANY.
278 Chapter 9

Search Conditions
Quantified Predicate
SubQuery A subquery is a nested query. Subqueries are presented fully in the
description of the SELECT statement.

ValueList defines a list of values to be compared against the expression's value. The
syntax for ValueList is:

{ USER
CurrentFunction
[+

-] { Integer
Float
Decimal }

‘CharacterString’
OxHexadecimalString
: HostVariable [[INDICATOR]: IndicatorVariable]
?
: Local Variable
: ProcedureParameter
:: Built-inVariable
LongColumnFunction

 StringFunction } [, ...]

USER USER evaluates to login name. In ISQL, it evaluates to
the login name of the ISQL user. From an application
program, it evaluates to the login name of the individual
running the program. USER behaves like a CHAR(20)
constant, with trailing blanks if the login name has fewer
than 20 characters.

CurrentFunction indicates the value of the current DATE, TIME, or
DATETIME.

Integer indicates a value of type INTEGER or SMALLINT.

Float indicates a value of type FLOAT.

Decimal indicates a value of type DECIMAL.

CharacterString specifies a CHAR, VARCHAR, DATE, TIME,
DATETIME, or INTERVAL value. Whichever is shorter --
the string or the expression value -- is padded with blanks
before the comparison is made.

HexadecimalString specifies a BINARY or VARBINARY value. If the
string is shorter than the target column, it is padded with
binary zeroes; if it is longer than the target column, it is
truncated.

HostVariable identifies the host variable containing the column value.
Chapter 9 279

Search Conditions
Quantified Predicate
IndicatorVariable1 names an indicator variable, an input host
variable whose value determines whether the associated
host variable contains a NULL value:

>= 0

the value is not NULL

< 0

the value is NULL

LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

? indicates a dynamic parameter in a prepared SQL statement. The value of
the parameter is supplied when the statement is executed.

Description

• If X is the value of Expression , and (a,b, ..., z) represent the result of a SubQuery or
the elements in a ValueList , and OP is a comparison operator, then the following are
true:

• X OP ANY (a,b,...,z) is equivalent to X OP a OR X OP b OR...OR X
OP z

• X OP ALL (a,b,...,z) is equivalent to X OP a AND X OP b AND...AND
X OP z

• Character strings are compared according to the HP 8-bit ASCII collating sequence for
ASCII data, or the collation rules for the native language of the DBEnvironment for
NLS data. Column data would either be ASCII data or NLS data depending on how the
column was declared upon its creation. Constants will be ASCII data or NLS data
depending on whether the user is using NLS or not. If an ASCII expression is compared
to an NLS expression, the two expressions are compared using the NLS collation rules.

• Refer to Chapter 7 , “Data Types,” for information about the type conversions that
ALLBASE/SQL performs when you compare values of different types.

• If any value of any element in the value list is a NULL value, then that value is not
considered a part of the ValueList .

NOTE To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a −1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.
280 Chapter 9

Search Conditions
Quantified Predicate
Example

Get supplier numbers for suppliers who supply at least one part in a quantity greater than
every quantity in which supplier S1 supplies a part.

 SELECT DISTINCT SP.SNO
 FROM SP
 WHERE SP.QTY > ALL (SELECT SP.QTY
 FROM SP
 WHERE SP.SNO = 'S1')

An alternative, possibly faster form of the query is:

 SELECT DISTINCT SP.SNO
 FROM SP
 WHERE SP.QTY > (SELECT MAX(SP.QTY)
 FROM SP
 WHERE SP.SNO = 'S1')
Chapter 9 281

Search Conditions
Quantified Predicate
282 Chapter 9

SQL Statements A - D
SQL Statement Summary
10 SQL Statements A - D

Chapters 10, 11 and 12 describe all the SQL statements in alphabetical order, giving
syntax, parameters, descriptions, authorization requirements, and examples for each
statement. Examples often consist of groups of statements so you can see how each
statement is related to other statements functionally.

SQL Statement Summary
SQL statements fall into four groups. General-purpose statements are used
programmatically, interactively, and in procedures. Application programming statements
are used in application programs. Database administration statements are usually used
interactively. Procedure, control flow, and status statements are used only in procedures.
Within each of these groups, the SQL statements fall into categories, as shown in Table
10-1.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use

General Purpose Statements

DBEnvironment session management

CONNECT Begins a DBEnvironment session.

DISCONNECT Terminates a connection to a
DBEnvironment, or all connections.

SET CONNECTION Sets the current connection within
the currently connected set of
DBEnvironments.

SET MULTI
TRANSACTION

Switches between
single-transaction mode and
multi-transaction mode.

RELEASE Terminates a DBEnvironment
session.

Data definition

Databases CREATE SCHEMA Defines a database and associates it
with an authorization name.

Indexes CREATE INDEX Defines an index for a table based
on one or more of its columns.

DROP INDEX Deletes an index.
Chapter 10 283

SQL Statements A - D
SQL Statement Summary
Tables ALTER TABLE Adds to a table new columns and
constraints, or drops constraints
from a table, and assigns a table to a
partition or removes it from a
partition.

RENAME COLUMN Defines a new name for an existing
column.

RENAME TABLE Defines a new name for an existing
table.

CREATE TABLE Defines a table and assigns it to a
partition.

TRUNCATE TABLE Deletes all rows from a table.

DROP TABLE Deletes a table and any authorities,
indexes, rules, and views based on
it.

Views CREATE VIEW Defines a view based on a table,
another view, or a combination of
tables and views.

DROP VIEW Deletes the definition of a view as
well as authorities or views based
on the view.

Rules CREATE RULE Defines a rule for a table and
associates it with INSERTS,
UPDATES, and/or DELETES.

DROP RULE Deletes a rule.

Groups,
DBEFileSet,
DBEFiles

Refer to the database
administration
statements.

Procedures CREATE PROCEDURE Defines a procedure for storage in
the DBEnvironment.

DROP PROCEDURE Deletes a procedure.

Partitions CREATE PARTITION Defines a partition for audit logging
in the DBEnvironment.

DROP PARTITION Deletes a partition.

Data manipulation

DELETE Deletes one or more rows from a
single table or view.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
284 Chapter 10

SQL Statements A - D
SQL Statement Summary
INSERT Adds a row to a single table or view.

SELECT Retrieves data from one or more
tables or views.

UPDATE Changes the values of one or more
columns in all rows of a specific
table or view that satisfy a search
condition.

DROP MODULE Deletes a preprocessed module.

EXECUTE Executes dynamically preprocessed
statements.

EXECUTE IMMEDIATE Defines and executes dynamic
statements.

PREPARE Dynamically preprocesses
statements, storing them as a
module if issued interactively.

Transaction management

BEGIN WORK Begins a transaction and optionally
sets its isolation level and priority.

COMMIT WORK Ends a transaction and makes
permanent any changes it made to
the DBEnvironment.

ROLLBACK WORK Ends a transaction and undoes
changes made to the
DBEnvironment during the whole
transaction or back to a savepoint
within the transaction.

SAVEPOINT Defines a point within a transaction
back to which you can roll back
work.

SET DML ATOMICITY Sets the general error checking
level.

SET CONSTRAINTS Sets the level of constraint error
checking.

SET SESSION Sets transaction attributes for a
session.

SET TRANSACTION Sets execution attributes for a
transaction.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
Chapter 10 285

SQL Statements A - D
SQL Statement Summary
Executing
procedures

EXECUTE PROCEDURE Invokes a procedure.

Other RAISE ERROR Causes a user-defined error to occur
and specifies the error number and
text to be raised.

Concurrency

CREATE TABLE Defines the automatic locking
strategy and implicit authority
grants used for a table.

LOCK TABLE Locks a table, explicitly overriding
ALLBASE/SQL's automatic locking
strategy.

START DBE Defines the maximum number of
transactions that can execute
concurrently, when used with the
TRANSACTION= parameter.

Module maintenance

DROP MODULE Deletes a module from the system
catalog, optionally retaining
authorization information.

GENPLAN Places optimizer's access plan in
SYSTEM.PLAN (from ISQL only).

SETOPT Modifies access optimization plan
used by queries.

VALIDATE Validates modules and procedures.

Application Programming Statements

Single row data manipulations

FETCH Retrieves a single row from an
active set associated with a cursor.

INSERT Inserts a single row into a table.

SELECT Retrieves a single row not
associated with a cursor.

Bulk manipulations

BULK FETCH Retrieves multiple rows from an
active set associated with a cursor.
(See FETCH.)

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
286 Chapter 10

SQL Statements A - D
SQL Statement Summary
BULK INSERT Inserts multiple rows into a single
table. (See INSERT.)

BULK SELECT Retrieves multiple rows not
associated with a cursor. (See
SELECT.)

Cursor management

ADVANCE Advances a procedure cursor.

CLOSE Closes a cursor currently in the
open state.

DECLARE CURSOR Associates a cursor with a specific
SELECT or EXECUTE PROCEDURE
statement.

DELETE WHERE CURRENT Deletes the current row of an active
set.

FETCH Advances the position of an open
cursor to the next row of the active
set and copies columns into host
variables.

REFETCH Copies columns from the current
cursor position in the active set into
host variables. Used with the RU
and RC isolation levels to verify the
continued existence of data and to
obtain stronger locks prior to
updating.

OPEN Makes an active set available to
manipulation statements.

UPDATE WHERE CURRENT Changes columns in the current row
of the active set.

Preprocessor directives

BEGIN DECLARE
SECTION

Indicates the beginning of the host
variable declarations in an
application program.

END DECLARE SECTION Indicates the end of the host
variable declarations in an
application program.

INCLUDE Includes declarations for structures
used to pass information between
ALLBASE/SQL and a program.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
Chapter 10 287

SQL Statements A - D
SQL Statement Summary
WHENEVER Specifies an action to be taken
depending on the outcome of an
SQL statement.

Dynamically preprocessed queries

DESCRIBE Obtains information about the
results of a dynamic statement.

EXECUTE
EXECUTE IMMEDIATE
PREPARE

Refer to general-purpose
statements.

Status
messages

SQLEXPLAIN Retrieves a message describing the
status of SQL statement execution.

Database Administration Statements

Authorization

GRANT Grants authorities to all users,
specific users, or groups.

REVOKE Revokes authorities from all users,
specific users, or groups.

TRANSFER OWNERSHIP Makes a different user or
authorization group the owner of a
table, view, authorization group, or
procedure.

Authorization groups

ADD TO GROUP Adds one or more users or groups to
an authorization group.

CREATE GROUP Defines an authorization group.

DROP GROUP Removes the definition of an
authorization group from the
system catalog.

REMOVE FROM GROUP Removes one or more users or
groups from an authorization group.

DBEnvironment configuration and use

START DBE NEW Configures a new DBEnvironment.

START DBE Makes a DBEnvironment available
in a mode different from that
defined in the DBECon file; also
starts up a DBEnvironment when
the autostart flag is off.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
288 Chapter 10

SQL Statements A - D
SQL Statement Summary
STOP DBE

Terminates all DBE
sessions and causes a
checkpoint to be taken,
recovering log file space if
nonarchive logging is in
effect.

TERMINATE QUERY Terminates a running Query.

TERMINATE
TRANSACTION

Stops the transaction.

TERMINATE USER Stops the DBE session for a specific
user.

DBEnvironment settings

ENABLE RULES Turns rule checking on for the
current DBEnvironment session.

DISABLE RULES Turns rule checking off for the
current DBEnvironment session.

SET PRINTRULES Specifies whether rule names and
statement types are to be issued as
messages when the rules are fired
during a DBEnvironment session.

SET USER TIMEOUT Specifies the amount of time the
user waits if requested database
resource is unavailable.

Space Management

DBEFiles ADD DBEFILE Associates a DBEFile with a
DBEFileSet.

ALTER DBEFILE Changes the type attribute of a
DBEFile.

CREATE DBEFILE Defines and creates a DBEFile.

DROP DBEFILE Removes the definition of an empty
DBEFile not associated with a
DBEFileSet.

REMOVE DBEFILE Disassociates a DBEFile from a
DBEFileSet.

DBEFileSets CREATE DBEFILESET Defines a DBEFileSet.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
Chapter 10 289

SQL Statements A - D
SQL Statement Summary
SET DEFAULT
DBEFILESET

Sets a default DBEFileSet.

DROP DBEFILESET Removes the definition of a
DBEFileSet from the system
catalog.

Temporary sort space

CREATE TEMPSPACE Defines and creates a temporary
storage space.

DROP TEMPSPACE Removes the definition of a
temporary storage space from the
system catalog.

Logging

Recovery of
log space

BEGIN ARCHIVE
COMMIT ARCHIVE

Starts a new archive log file before a
DBEnvironment is back up.

CHECKPOINT Causes an ALLBASE/SQL system
checkpoint to be taken. A system
checkpoint causes data and log
buffers to be written to disk and
makes old log space, occupied by
completed transactions, available
for reuse if nonarchive logging is in
effect. Returns values in host
variable.

START DBE NEWLOG Reinitializes log file(s) when you
need to change the size. Makes
audit logging effective when used
with AUDIT LOG option.

START DBE Initiates the first DBE session if the
DBE is not in autostart mode and
causes a checkpoint to be taken,
recovering log file space if
nonarchive logging is in effect.

STOP DBE Terminates all DBE sessions and
causes a checkpoint to be taken,
recovering log file space if
nonarchive logging is in effect.

Dual logging START DBE NEW Causes ALLBASE/SQL to maintain
two separate, identical logs, when
used with the DUAL LOG option.
Makes audit logging effective when
used with AUDIT LOG option.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
290 Chapter 10

SQL Statements A - D
SQL Statement Summary
Audit
logging

DISABLE AUDIT
LOGGING

Disables current audit logging for a
session.

Log
comment

LOG COMMENT Enters a user comment in the log
file.

ENABLE AUDIT LOGGING Enables audit logging for a session
after being disabled.

Recovery Rollback

START DBE Rolls back transactions that were
incomplete the last time the
DBEnvironment was shut down.

TERMINATE USER Ends a user's transactions, backing
out any work not committed.

STOP DBE Terminates all DBE sessions and
causes a checkpoint to be taken,

Rollforward BEGIN ARCHIVE
COMMIT ARCHIVE

Creates an archive record in the
rollforward log(s) and initiates
archive mode logging.

DBEnvironment statistics

RESET Resets ALLBASE/SQL accounting
and statistical data activity
management.

UPDATE STATISTICS Updates system catalog information
used to optimize data access
operations on a per table basis.

Procedure Statements

General statements

Assignment (=) Assigns a value to a local variable or
parameter in a procedure.

DECLAREVariable Defines a local variable within a
procedure.

PRINT Stores information to be displayed
by ISQL or an application program.

Control flow statements

BEGIN Begins a single statement or group
of statements within a procedure.

GOTO Permits a jump to a labeled
statement within a procedure.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
Chapter 10 291

SQL Statements A - D
SQL Statement Summary
Label Labels a statement in a procedure.

IF Allows conditional execution of one
or more statements within a
procedure.

RETURN Permits an exit from a procedure
with an optional return code.

WHILE Allows looping within a procedure.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
292 Chapter 10

SQL Statements A - D
ADD DBEFILE
ADD DBEFILE
The ADD DBEFILE statement updates a row in SYSTEM.DBEFile to show the DBEFileSet
with which the file is associated.

Scope

ISQL or Application Program

SQL Syntax
ADD DBEFILE DBEFileName TO DBEFILESET DBEFileSetName

Parameters

DBEFileName is the name of a DBEFile previously defined and created
by the CREATE DBEFILE statement.

DBEFileSetName is the name of a previously defined DBEFileSet. You can
use the CREATE DBEFILESET statement to define
DBEFileSets.

Description

• You cannot insert any rows or create any indexes for a table or put any non-null values
in a LONG column until the DBEFileSet it is located in has DBEFiles associated with
it.

• You can add DBEFiles to the SYSTEM DBEFileSet.

• Before a DBEFile can be added to the SYSTEM DBEFileSet, other users' transactions
must complete. Other users must wait until the transaction that is adding the DBEFile
to SYSTEM has completed.

• ADD DBEFILE increases the number of files associated with the DBEFileSet shown in
the DBEFSNDBEFILES column of SYSTEM.DBEFileSet by one.

Authorization

You must have DBA authority to use this statement.

Example

 CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
 NAME = 'ThisFile', TYPE = TABLE

 CREATE DBEFILESET Miscellaneous

 ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, a
Chapter 10 293

SQL Statements A - D
ADD DBEFILE
DBEFile to store rows of the index is created:

 CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
 NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE ThatDBEFile

 TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

 REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

 ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM

 ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

All rows are later deleted from the table, so you can reclaim file space.

 REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

 DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

 DROP DBEFILESET Miscellaneous
294 Chapter 10

SQL Statements A - D
ADD TO GROUP
ADD TO GROUP
The ADD TO GROUP statement adds one or more users or groups, or a combination of users
and groups, to an authorization group.

Scope

ISQL or Application Program

SQL Syntax
ADD { DBEUserID

GroupName
ClassName }[,...] TO GROUPTargetGroupName

Parameters

DBEUserID identifies a user to be added. You cannot specify the name
of the DBECreator.

GroupName identifies a group to be added.

ClassName identifies a class to be added.

TargetGroupName is the name of the authorization group to which the
specified users, groups, and classes are to be added.

Description

• You can specify a single parameter chosen from the available types. You can also specify
multiple parameters (using the same or multiple types) separating them with commas.

• Two authorization groups cannot be members of each other, that is group membership
cannot follow a circular chain. If, for example, group3 is a member of group2, and
group2 is a member of group1, group1 cannot be a member of group2 or group3.

• You cannot add an authorization group to itself.

• When you specify several users or groups in one ADD TO GROUP statement,
ALLBASE/SQL ignores any invalid names, but processes the valid names.

Authorization

You can use this statement if you have OWNER authority for the authorization group or if
you have DBA authority.

Example

 CREATE GROUP Warehse

 GRANT CONNECT TO Warehse
Chapter 10 295

SQL Statements A - D
ADD TO GROUP
 GRANT SELECT,
 UPDATE (BinNumber,QtyOnHand,LastCountDate)
 ON PurchDB.Inventory
 TO Warehse

These two users will be able to start DBE sessions on PartsDBE, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

 ADD Clem, George TO GROUP Warehse

Clem will no longer have any of the authorities associated with group Warehse.

 REMOVE Clem FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

 DROP GROUP Warehse
296 Chapter 10

SQL Statements A - D
ADVANCE
ADVANCE
The ADVANCE statement is a procedure cursor manipulation statement. It is used in
conjunction with procedures having one or more multiple row result sets to advance the
position of an opened procedure cursor to the first or next query result set and to initialize
information in the associated sqlda_type and sqlformat_type data structures.

Scope

Application Programs Only

SQL Syntax
ADVANCECursorName [USING [SQL] DESCRIPTOR { SQLDA

AreaName}]

Parameters

CursorName identifies a procedure cursor. The procedure cursor's
current active query result set, the procedure's
statements, and the values of any procedure input
parameters, determine the format information to be
returned by each successive ADVANCE statement.

USING [SQL] DESCRIPTOR defines where to place the data format information of a
query result for an EXECUTE PROCEDURE statement on
which a procedure cursor has been defined. Specify a
location that does not conflict with that of another SQL
statement such as OPEN, CLOSE, DESCRIBE, EXECUTE,
or any FETCH that is not associated with this ADVANCE
statement.

SQLDA specifies that a data structure of sqlda_type named
SQLDA is to be used to pass information about the next
result set between the application and ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of
sqlda_type that is to be used to pass information about the
next result set between the application and
ALLBASE/SQL.

Description

• The query result set to which the procedure cursor points is called the active result set.
You use the information in the associated sqlda_type and sqlformat_type data
structures to process the query result set via FETCH statements.

• For a procedure that returns multiple row results of a single format, if the procedure
was created with the WITH RESULT clause, it is unnecessary to issue an ADVANCE
statement to get format information for each result set, since the format is already
Chapter 10 297

SQL Statements A - D
ADVANCE
known from the DESCRIBE RESULT statement.

• The ADVANCE statement cancels any current, active query result set. It can be used as
an efficient way to throw away any unread rows resulting from the most recently
executed multiple row result set SELECT statement in the procedure. The execution of
the procedure continues with the next statement. Control returns to the application
when the next multiple row result set statement is executed, or when procedure
execution terminates.

• Refer to the ALLBASE/SQL Advanced Application Programming Guide for further
explanation and examples of how to use the ADVANCE statement.

Authorization

You do not need authorization to use the ADVANCE statement.

Example

Refer to the ALLBASE/SQL Advanced Application Programming Guide for a pseudocode
example of procedure cursor usage.
298 Chapter 10

SQL Statements A - D
ALTER DBEFILE
ALTER DBEFILE
The ALTER DBEFILE statement changes the TYPE attribute of a DBEFile.

Scope

ISQL or Application Program

SQL Syntax
ALTER DBEFILE DBEFileName SET TYPE = { TABLE

INDEX
MIXED}

Parameters

DBEFileName specifies the DBEFile to be altered.

TYPE = specifies the new setting of the DBEFile's TYPE attribute. The following
are valid settings:

TABLE Only data (table, LONG column, or HASH) pages can be
stored in the DBEFile.

INDEX Only index pages can be stored in the DBEFile.

MIXED A mixture of data and index pages can be stored in the
DBEFile.

Description

• The type of an empty DBEFile, that is, a DBEFile in which no table or index entries
exist, can be changed without restriction.

• The type of a nonempty DBEFile can be changed from TABLE or INDEX to MIXED; no
other changes are allowed.

• Once a DBEFile contains primary pages for a HASH table, no other nonhash table,
index, or LONG data can be placed in that DBEFile.

• Before you can alter the type of a DBEFile in the SYSTEM DBEFileSet, other users'
transactions must complete. Other users must wait until the transaction that is
altering the DBEFile has completed.

Authorization

You must have DBA authority to use this statement.
Chapter 10 299

SQL Statements A - D
ALTER DBEFILE
Example

 CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
 NAME = 'ThisFile', TYPE = TABLE

 CREATE DBEFILESET Miscellaneous

 ADD DBEFILE ThisDBEFile
 TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs a DBEFile in
which to store an index, one is created as follows:

 CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
 NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE ThatDBEFile
 TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

 REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

 ADD DBEFILE ThatDBEFile
 TO DBEFILESET SYSTEM

 ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

All rows are later deleted from the table, so you can reclaim file space.

 REMOVE DBEFILE ThisDBEFile
 FROM DBEFILESET Miscellaneous

 DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

 DROP DBEFILESET Miscellaneous
300 Chapter 10

SQL Statements A - D
ALTER TABLE
ALTER TABLE
The ALTER TABLE statement is used to add one or more new columns or constraints, to
drop one or more constraints, or to reassign the table audit partition. This statement is
also used to change the type of table access, updatability, and locking strategies. New
columns are appended following already existing columns of a table. New column
definitions must either allow null values or provide default values if the table is not empty.
Added columns may specify constraints.

Scope

ISQL or Application Programs

SQL Syntax
ALTER TABLE [Owner.] TableName { AddColumnSpecification

AddConstraintSpecification
DropConstraintSpecification
SetTypeSpecification
SetPartitionSpecification }

Parameters—ALTER TABLE

[Owner.] TableName designates the table to be altered.

AddColumnSpecification allows a new column to be added to an existing table. This
parameter is discussed in a separate section below.

AddConstraintSpecification allows a new constraint to be added to an existing
table. This parameter is discussed in a separate section
below.

DropConstraintSpecification allows an existing constraint to be dropped from an
existing table. This parameter is discussed in a separate
section below.

SetTypeSpecification allows the locking mode of the table and related
authorities to be changed. This parameter is discussed in a
separate section below.

SetPartitionSpecification allows a table or DBEnvironment partition to be
changed.

SQL Syntax—AddColumnSpecification
ADD { (ColumnDefinition [,...])

ColumnDefinition } [CLUSTERING ON CONSTRAINT [ConstraintID]]

Parameters—AddColumnSpecification

ColumnDefinition The syntax of ColumnDefinition is presented under the
Chapter 10 301

SQL Statements A - D
ALTER TABLE
CREATE TABLE statement.

CLUSTERING ON CONSTRAINTspecifies that the named unique or referential constraint
specified within the Column Definition be managed
through a clustered index structure rather than
nonclustered. The unique constraint's unique column list,
or referential constraint's referencing column list, becomes
the clustered key.

ConstraintID specifies the unique or referential constraint on which
clustering is to be applied. If not specified, the primary key
of the table is assumed. The ConstraintID must be for a
constraint being added with the ALTER TABLEstatement.

SQL Syntax—AddConstraintSpecification
ADD CONSTRAINT ({ UniqueConstraint

ReferentialConstraint
CheckConstraint }[,...])

[CLUSTERING ON CONSTRAINT [ConstraintID1]]

Parameters—AddConstraintSpecification

UniqueConstraint defines a unique constraint being added. This parameter
is described under the CREATE TABLE statement.

ReferentialConstraint defines a referential constraint being added. This
parameter is described under the CREATE TABLE
statement.

CheckConstraint defines a check constraint being added. This parameter is
described under the CREATE TABLE statement.

CLUSTERING ON CONSTRAINTspecifies that the named unique or referential constraint
be managed through a clustered index structure rather
than nonclustered. The unique constraint's unique column
list, or referential constraint's referencing column list,
becomes the clustered key.

ConstraintID1 specifies the unique or referential constraint name on
which clustering is to be applied. If not specified, the
primary key of the table is assumed. ConstraintID1
must be for a constraint being added with the ALTER
TABLE statement.

SQL Syntax—DropConstraintSpecification
DROP CONSTRAINT {(ConstraintID [,...])

ConstraintID }

Parameters—DropConstraintSpecification

ConstraintID is the name of the constraint optionally defined when the
302 Chapter 10

SQL Statements A - D
ALTER TABLE
constraint was defined.

SQL Syntax—SetTypeSpecification
SET TYPE { PRIVATE

PUBLICREAD
PUBLIC
PUBLICROW }[RESET AUTHORITY

PRESERVE AUTHORITY]

Parameters—SetTypeSpecification

PRIVATE enables the table to be used by only one transaction at a time. Locks are
applied at the table level. This is the most efficient option for tables that do
not need to be shared because ALLBASE/SQL spends less time managing
locks.

If RESET AUTHORITY is specified, the option automatically revokes all
authorities on the table from PUBLIC. Otherwise, the authority on the
table remains unchanged.

PUBLICREAD enables the table to be read by concurrent transactions, but allows no more
than one transaction at a time to update the table. Locks are applied at the
table level.

If RESET AUTHORITY is specified, the option automatically issues GRANT
SELECT on Owner.TableName to PUBLIC, and revokes all other authorities
on the table from PUBLIC. Otherwise, the authority on the table remains
unchanged.

PUBLIC enables the table to be read and updated by concurrent transactions. The
locking unit is a page. A transaction locks a page in share mode before
reading it and in exclusive mode before updating it.

If RESET AUTHORITY is specified, the option automatically issues GRANT
ALL on Owner.TableName to PUBLIC. Otherwise, the authority on the table
remains unchanged.

PUBLICROW enables the table to be read and updated by concurrent transactions. The
locking unit is a row. A transaction locks a row in share mode before
reading it and in exclusive mode before updating it.

If RESET AUTHORITY is specified, the option automatically issues GRANT
ALL on Owner.TableName to PUBLIC. Otherwise, the authority on the table
remains unchanged.

RESET AUTHORITY is used to indicate that the authority on the table should be changed
to reflect the new table type. If not specified, the authority on the table
remains unchanged.

PRESERVE AUTHORITYis used to indicate that the authority currently in effect on the
table should be preserved. This is the default.
Chapter 10 303

SQL Statements A - D
ALTER TABLE
SQL Syntax—SetPartitionSpecification
SET PARTITION { PartitionName

DEFAULT
NONE }

Parameters—SetPartitionSpecification

PartitionName specifies the new partition of the table.

DEFAULT specifies the new partition of the table to be the default
partition of the DBEnvironment. If the default partition
number is later changed, that change will automatically
be recorded the next time an INSERT, UPDATE, or DELETE
operation is executed on the table. If the default partition
is NONE at that time, audit logging of the operation is not
done.

NONE specifies that the table is no longer in any partition. No
further audit logging will be done on the table.

Description

• Unless the table is currently empty, you cannot specify the NOT NULL attribute for
any new columns unless you specify a default value.

• If no DEFAULT clause is given for an added column, an implicit DEFAULT NULL is
assumed. Any INSERT statement which does not include a column for which a default
has been declared causes the default value to be inserted into that column for all rows
inserted.

• All rows currently in the table are updated with the default value for any new column
which specifies default values.

• The ALTER TABLE statement can invalidate stored sections.

• Character strings are accepted as date/time default values.

• If an added constraint is violated when it is defined, an error message is immediately
issued and the ALTER TABLE statement has no effect.

• A unique constraint referenced by a FOREIGN KEY cannot be dropped without first
dropping the referential constraint.

• Constraints being added in AddConstraintSpecification must be on existing columns of
the table.

• The ALTER TABLE statement can be used to change the type of an existing table.
Changing the type of a table redefines the locking strategy that ALLBASE/SQL uses
when the table is accessed. You can decide whether to use page or row level locking for
your applications.

• No other transaction can access the table until the transaction that issued the ALTER
TABLE statement has committed.

• The type of a table is changed permanently when you issue a COMMIT WORK statement.
304 Chapter 10

SQL Statements A - D
ALTER TABLE
• When altering the type of an existing table, you can also specify the option to preserve
existing authority on the table or change the authority to the default for the new table
type. If you specify RESET AUTHORITY, the following changes are made to the table
authority:

• To indicate that a table is in no partition, the partition NONE can be specified.

• The PartitionName specified must be one previously defined in a CREATE
PARTITION statement, must be the DEFAULT partition, or must be specified as
NONE.

• Changing the partition number of the table causes all future audit logging on the table
to use the new partition number. Past audit log records will not be altered to reflect a
change in a table's partition number; that is, the effect of this statement is not
retroactively applied to existing log records. If NONE was specified, there will be no
more audit logging done on this table (until another ALTER TABLE SET PARTITION
statement is issued on the table).

• When specifiying CLUSTERING ON CONSTRAINT, an error is returned if the table is
already clustered on a constraint or index or if the table is hashed.

• Adding a clustered constraint does not affect the physical placement of rows already in
the table.

• See syntax for the CREATE TABLEand CREATE INDEXstatements for more information
on clustering.

Table 10-2. Changes to Table Authority in ALTER TABLE

Old Table Type New Table Type Changes to Authority

PRIVATE PUBLIC Grant ALL to PUBLIC

PUBLICROW Grant ALL to PUBLIC

PUBLICREAD Grant SELECT to PUBLIC

PUBLICREAD PUBLIC Grant ALL to PUBLIC

PUBLICROW Grant ALL to PUBLIC

PRIVATE Revoke ALL from PUBLIC

PUBLIC PUBLICROW No change

PUBLICREAD Revoke ALL from PUBLIC

Grant SELECT to PUBLIC

PRIVATE Revoke ALL from PUBLIC

PUBLICROW PUBLIC No change

PUBLICREAD Revoke ALL from PUBLIC

Grant SELECT to PUBLIC

PRIVATE Revoke ALL from PUBLIC
Chapter 10 305

SQL Statements A - D
ALTER TABLE
Authorization

You can issue this statement if you have ALTER or OWNER authority for the table or if
you have DBA authority.

To define added referential constraints, the table owner must have REFERENCES
authority on the referenced table and referenced columns, own the referenced table, or
have DBA authority.

To specify a DBEFileSetName for a long column, the table owner must have TABLESPACE
authority on the referenced DBEFileSet.

To specify a DBEFileSetName for a check constraint, the section owner must have
SECTIONSPACE authority on the referenced DBEFileSet.

Examples

Two new columns, ShippingWeight and PartDescription, are added to table
PurchDB.Parts. ShippingWeight must be greater than 0.

 ALTER TABLE PurchDB.Parts
 ADD (ShippingWeight DECIMAL(6,3) CHECK (ShippingWeight > 0)
 CONSTRAINT Check_Weight,
 PartDescription CHAR(40))

A constraint is added to table PurchDB.Parts to ensure that the sales price is greater than
$100.

 ALTER TABLE PurchDB.Parts
 ADD CONSTRAINT CHECK (SalesPrice > 100.) CONSTRAINT Check_Price

A column named DiscountPercent is added to table PurchDB.OrderItems, with a default
value of 0 percent.

 ALTER TABLE PurchDB.OrderItems
 ADD (DiscountPercent FLOAT DEFAULT 0)

The constraint named Check_Price is dropped.

 ALTER TABLE PurchDB.Parts
 DROP CONSTRAINT Check_Price

The type of a table is changed:

 ALTER TABLE PurchDB.OrderItems
 SET TYPE PUBLICROW

The table's partition is modified to be partition PartsPart2.

 ALTER TABLE PurchDB.Parts
 SET PARTITION PartsPart2;

No more audit logging will be done on the table.

 ALTER TABLE PurchDB.Parts
 SET PARTITION NONE;
306 Chapter 10

SQL Statements A - D
Assignment (=)
Assignment (=)
The assignment statement is used in a procedure to assign a value to a local variable or
procedure parameter.

Scope

Procedures only

SQL Syntax
{: LocalVariable

: ProcedureParameter }= Expression ;

Parameters

LocalVariable identifies the local variable to which a value is being
assigned. The variable name has a : prefix. Local variables
are declared in the procedure definition using the
DECLARE statement.

ProcedureParameter identifies the procedure parameter to which a value is
being assigned. The procedure parameter has a : prefix.
Parameters are declared in parentheses following the
procedure name in the procedure definition.

Expression identifies an expression whose value is assigned to the
local variable. The Expression may include anything
that is allowed in an SQL expression except host variables,
subqueries, column references, dynamic parameters,
aggregate functions, date/time functions involving column
references, string functions, TID functions, and long
column functions. Local variables, built-in variables, and
procedure parameters may be included. See Chapter 8 ,
“Expressions,” for more information.

Description

• Host variables are not allowed anywhere in procedures, including Expressions
assigned to local variables or parameters. However, local variables, built-in variables,
and parameters may be used in an Expression anywhere a host variable would be
allowed in an application program.

• The data type of the expression result must be compatible with that of the parameter or
variable to which it is being assigned.

Authorization

Anyone can use the assignment statement in a procedure definition.
Chapter 10 307

SQL Statements A - D
Assignment (=)
Example
 :msg = 'Vendor number found in "Orders" table.';
 :SalesPrice = :OldPrice;
 :NewPrice = :SalesPrice*.80;
 :nrows = ::sqlerrd2;
308 Chapter 10

SQL Statements A - D
BEGIN
BEGIN
The BEGINstatement is a compound statement and defines a group of statements within a
procedure.

Scope

Procedures only

SQL Syntax
BEGIN [Statement ;][...] END;

Parameters

Statement is the statement or statements between the begin and end of the
statement.

Description

• This statement can be used to improve readability.

Authorization

Anyone can use the BEGIN statement.

Example
 CREATE PROCEDURE PurchDB.DiscountPart(PartNumber CHAR(16))
 AS BEGIN
 DECLARE SalesPrice DECIMAL(6,2);

 SELECT SalesPrice INTO :SalesPrice
 FROM PurchDB.Parts
 WHERE PartNumber = :PartNumber;

 IF ::sqlcode = 0 THEN
 IF :SalesPrice > 100. THEN
 BEGIN
 :SalesPrice = :SalesPrice*.80;
 INSERT INTO PurchDB.Discounts
 VALUES (:PartNumber, :SalesPrice);
 END
 ENDIF;
 ENDIF;
 END;
Chapter 10 309

SQL Statements A - D
BEGIN ARCHIVE
BEGIN ARCHIVE
The BEGIN ARCHIVE statement in conjunction with the COMMIT ARCHIVE statement starts
a new archive log file before a static backup is done to a DBEnvironment. However, this
method is no longer recommended. The recommended approach to initiate archive logging
and dynamic backup is to use the SQLUtil STOREONLINE command.

Scope

ISQL or Application Programs

SQL Syntax

BEGIN ARCHIVE

Description

Use of the BEGIN ARCHIVEstatement is no longer recommended. Refer to the ALLBASE/SQL
Database Administration Guide for detailed backup and recovery procedures and
recommended practices.

Authorization

You must have DBA authority to use this statement.
310 Chapter 10

SQL Statements A - D
BEGIN DECLARE SECTION
BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION preprocessor directive indicates the beginning of the host
variable eclaration section in an application program.

Scope

Application Programs Only

SQL Syntax

BEGIN DECLARE SECTION

Description

• This directive cannot be used interactively.

• Use this directive in conjunction with the END DECLARE SECTION directive.

Authorization

You do not need authorization to use the BEGIN DECLARE SECTION statement.

Example

You define host variables here, including indicator variables, if any.

 BEGIN DECLARE SECTION

 END DECLARE SECTION
Chapter 10 311

SQL Statements A - D
BEGIN WORK
BEGIN WORK
The BEGIN WORK statement begins a transaction and, optionally, sets one or more
transaction attributes.

Scope

ISQL, Application Programs, or Procedures

SQL Syntax
BEGIN WORK [Priority][RR

CS
RC
RU][LABEL { ‘LabelString’

: HostVariable }][[PARALLEL
NO] FILL]

Parameters

Priority is an integer from 0 to 255 specifying the priority of the transaction.
Priority 127 is assigned if you do not specify a priority. ALLBASE/SQL
uses the priority to resolve a deadlock. The transaction with the largest
priority number is aborted to remove the deadlock.

For example, if a priority-0 transaction and a priority-1 transaction are
deadlocked, the priority-1 transaction is aborted. If two transactions
involved in a deadlock have the same priority, the deadlock is resolved by
aborting the newer transaction (the last transaction begun, either
implicitly or with a BEGIN WORK statement).

RR Repeatable Read. Means that the transaction uses locking strategies to
guarantee repeatable reads.

RR is the default isolation level.

CS Cursor Stability. Means that your transaction uses locking strategies to
assure cursor-level stability only.

RC Read Committed. Means that your transaction uses locking strategies to
ensure that you retrieve only rows that have been committed by some
transaction.

RU Read Uncommitted. Means that the transaction can read uncommitted
changes from other transactions. Reading data with RU does not place any
locks on the table being read.

LabelString is a user defined character string of up to 8 characters. The default is a
blank string.

The label is visible in the SYSTEM.TRANSACTION pseudo-table and also
in SQLMON. Transaction labels can be useful for troubleshooting and
performance tuning. Each transaction in an application program can be
312 Chapter 10

SQL Statements A - D
BEGIN WORK
marked uniquely, allowing the DBA to easily identify the transaction being
executed by any user at any moment.

HostVariable is a host variable containing the LabelString .

FILL is used to optimize I/O performance when loading data and creating
indexes.

PARALLEL FILL is used to optimize I/O performance for multiple, concurrent loads to the
same table. The PARALLEL FILL option must be in effect for each load.

NO FILL turns off the FILL or PARALLEL FILL option for the duration of the
transaction. This is the default fill option.

Description

• Detailed information about isolation levels is presented in the "Concurrency Control
through Locks and Isolation Levels" chapter.

• When you use most SQL statements, ISQL or the preprocessor automatically issues the
BEGIN WORK statement on your behalf, unless a transaction is already in progress.
However, to clearly delimit transaction boundaries and to set attributes for a
transaction (isolation level, priority, transaction label, and fill options), you can use
explicit BEGIN WORK statements.

The following statements do not force an automatic BEGIN WORK to be processed:

 ASSIGN BEGIN ARCHIVE BEGIN DECLARE SECTION
 BEGIN WORK CHECKPOINT COMMIT ARCHIVE
 COMMIT WORK CONNECT DECLARE VARIABLE
 DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING END DECLARE SECTION
 ASSIGN BEGIN ARCHIVE BEGIN DECLARE SECTION
 BEGIN WORK CHECKPOINT COMMIT ARCHIVE
 COMMIT WORK CONNECT DECLARE VARIABLE
 DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING END DECLARE SECTION
 GOTO IF INCLUDE
 PRINT RAISE ERROR RELEASE
 RESET RETURN ROLLBACK TO SAVEPOINT
 ROLLBACK WORK SET SESSION SET TIMEOUT
 SET TRANSACTION START DBE STOP DBE
 SQLEXPLAIN TERMINATE USER WHENEVER
 WHILE

• See Chapter 2 , “Using ALLBASE/SQL,” "Scoping of Transaction and Session
Attributes" section for information about statements used to set transaction attributes.

• Within a given transaction, the isolation level, priority, and label can be changed by
issuing a SET TRANSACTION statement. Attributes specified in a SET TRANSACTION
statement within a transaction override any attributes set by a BEGIN WORKstatement
for the same transaction.

• An application or ISQL can have one or more active transactions at a time. Refer to the
SET MULTITRANSACTION statement syntax in this chapter.
Chapter 10 313

SQL Statements A - D
BEGIN WORK
• The following sequences of statements must be in the same transaction in a program:

 PREPARE and EXECUTE

 PREPARE, DESCRIBE, OPEN, FETCH USING DESCRIPTOR, EXECUTE, and CLOSE

 OPEN, FETCH, DELETE WHERE CURRENT, UPDATE WHERE CURRENT, and CLOSE (unless
KEEP CURSOR is used)

• To end your transaction, you must issue a COMMIT WORKor ROLLBACK WORKstatement.
Otherwise, locks set by your transaction are held until a STOP DBE, DISCONNECT,
RELEASE, or TERMINATE USER statement is processed.

• If the maximum number of concurrent DBEnvironment transactions has been reached,
the application is placed on a wait queue. If the application times out while waiting, an
error occurs. Default and maximum timeout values are specified at the DBEnvironment
level. To set a timeout for a session or transaction, use the SET USER TIMEOUT
statement. Refer to Chapter 2 , “Using ALLBASE/SQL,” "Setting Timeout Values"
section for further information.

• To avoid lock contention in a given DBEnvironment, do not allow simultaneous
transactions when performing data definition operations.

• When using RC or RU, you should verify the existence of a row before you issue an
UPDATE statement. In application programs that employ cursors, you can use the
REFETCHstatement prior to updating. REFETCHis not available in ISQL. Therefore, you
should use caution in employing RC and RU in ISQL if you are doing updates.

• If the FILL or PARALLEL FILL option has already been set for the session with a SET
SESSION statement, and you do not want either of these options in effect for a given
transaction, specify NO FILL in the transaction's BEGIN WORK statement.

Authorization

You do not need authorization to use the BEGIN WORK statement.

Examples

1. BEGIN WORK and ROLLBACK WORK

Transaction begins:

 BEGIN WORK CS
statement-1

 SAVEPOINT :MyVariable
statement-2
statement-3

Work of statements 2 and 3 is undone:

 ROLLBACK WORK TO :MyVariable

Work of statement-1 is committed and the transaction ends:

 COMMIT WORK
314 Chapter 10

SQL Statements A - D
BEGIN WORK
2. BEGIN WORK and set attributes

Begin the transaction and set priority, isolation level, label name, and fill option:

 BEGIN WORK 32 CS LABEL 'xact1' FILL
 .
 .
 .

Execute SQL statements.
 .
 .
 .

Work is committed and the transaction ends.

 COMMIT WORK

Begin another transaction and set priority, isolation level, and label name. Note that
since a fill option is not specified, the default (NO FILL) is in effect.

 BEGIN WORK 64 RC LABEL 'xact2'
 .
 .
 .

Execute SQL statements.
 .
 .
 .

Work is committed and the transaction ends.

 COMMIT WORK;
Chapter 10 315

SQL Statements A - D
CHECKPOINT
CHECKPOINT
The CHECKPOINT statement causes an ALLBASE/SQL system checkpoint to be taken.

Scope

ISQL or Application Programs

SQL Syntax
CHECKPOINT [: HostVariable

: LocalVariable
 : ProcedureParameter]

Parameters

HostVariable identifies an output host variable used to communicate the
amount of log space available for use. The host variable is
an integer.

LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

Description

• Specifying a host variable with CHECKPOINT statement in an application allows you to
determine how much free space is available in the log file.

• The LocalVariable parameter is used in the stored procedure for obtaining free log
space.

• When you can use the host variable in a CHECKPOINT statement in an application
program or procedure, the host variable can be omitted if you don't need to know the
number of free blocks available.

• When you enter a CHECKPOINT statement interactively in ISQL, you cannot specify a
host variable. Returned information is displayed on the screen.

• Checkpoint processing is as follows:

• Contents of the log buffers are written to the log files(s).

• Data buffers containing changed pages are written to DBEFiles.

• A checkpoint record containing a list of the transactions currently in progress is
written in the log.

• When nonarchive logging is in effect, space containing log records written prior to
the beginning of the oldest incomplete transaction is made available for reuse. When
archive logging is in effect, however, this step is skipped and no log file space is
recovered by checkpoints.
316 Chapter 10

SQL Statements A - D
CHECKPOINT
• For a brief interval while a checkpoint is being taken, SQL statements that modify
the DBEnvironment continue to be accepted but their processing is temporarily
suspended. This suspension occurs for the amount of time needed to write the log
buffers and changed pages to permanent storage. Retrieval from the
DBEnvironment is not suspended during a checkpoint.

• Contents of the log buffer are also written to the log file(s) when a COMMIT WORK is
executed.

• When you submit a START DBE statement, ALLBASE/SQL processes all log records
created since the last checkpoint record. Therefore taking a checkpoint just before
stopping the DBE reduces the amount of time that is needed when a DBEnvironment is
started up.

• ALLBASE/SQL automatically takes a checkpoint when the log file is full, when the data
buffer is full, and when the STOP DBEand COMMIT ARCHIVEstatements are processed.
When the START DBE statement is processed, ALLBASE/SQL writes a checkpoint
record.

• Submitting a CHECKPOINT statement allows you to determine how much free space is
available in the log file.

Authorization

You must have DBA authority to use this statement.

Example

A stored procedure retrieves the number of free blocks of log space available. Create a
stored procedure with an output parameter.

 EXEC SQL create procedure cp (freeblock integer OUTPUT) as
 begin
 checkpoint :freeblock;
 end;

Pass the host variable as an output parameter to procedure.

 EXEC SQL execute procedure cp (hstfblk output);

 writeln('free log space available', hstfblk);
 if hstfblk <= TOOLOW then
 writeln('Add new log files ');

A log block is a 512-byte allocation of storage. When you submit the CHECKPOINTstatement
interactively, ISQL displays the amount of log space available for use.

 isql=> CHECKPOINT;
 Number of free log blocks is 240
 isql=>

ISQL assigns and displays the free log space.
Chapter 10 317

SQL Statements A - D
CHECKPOINT
A program retrieves the number of free blocks of log space available. In a Pascal
application program, declare a host variable.

 EXEC SQL begin declare section;
 hstfblk : integer;
 EXEC SQL end declare section;

Submit a checkpoint with host variable to obtain free log space available.

 EXEC SQL checkpoint :hstfblk;

 writeln('free log space: ',hstfblk);
 if hstfblk <= TOOLOW then
 writeln('Add new log files ');
318 Chapter 10

SQL Statements A - D
CLOSE
CLOSE
The CLOSE statement is used to close an open cursor.

Scope

Application Programs or Procedures

SQL Syntax
CLOSE CursorName [USING {[SQL] DESCRIPTOR { SQLDA

Areaname }
: HostVariable [[INDICATOR]: Indicator][,...]}]

Parameters

CursorName designates the open cursor to be closed.

USING defines where to place return status and output
parameters after closing a dynamic procedure cursor.

HostVariable identifies a host variable for holding return status and
output parameters after closing a dynamic procedure
cursor. These must be specified in the same order as in the
associated EXECUTE PROCEDURE statement.

Indicator names the indicator variable, an output host variable
whose value depends on whether the host variable
contains a null value. The following integer values are
svalid:

0 meaning the output parameter's value is not null

−1 meaning the output parameter's value is null

>0 meaning the output parameter's value is truncated (for
CHAR, VARCHAR, BINARY, and VARBINARY columns)

DESCRIPTOR defines where to place return status and output
parameters after closing a procedure cursor. Specify the
same location (SQLDA, area name, or host variable) as
you specified in the DESCRIBE OUTPUT statement.

SQLDA specifies that a data structure of sqlda_type named
SQLDA is to be used to pass information about the
prepared statement between the application and
ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of
sqlda_type that is to be used to pass information about the
prepared statement.
Chapter 10 319

SQL Statements A - D
CLOSE
Description

• When it applies to a select cursor (one that is declared for a SELECT statement), the
CLOSE statement can be issued in an application program or in a procedure.

When it applies to a procedure cursor (one that is declared for an EXECUTE
PROCEDURE statement), the CLOSE statement can be issued only in an application
program.

• The CLOSE statement cannot be used in ISQL.

• CLOSE returns an error if the cursor is not in the open state.

• The COMMIT WORKand ROLLBACK WORKstatements automatically close all cursors not
opened with the KEEP CURSOR option.

• To close a select cursor opened with the KEEP CURSOR option, you must perform an
explicit CLOSE followed by a COMMIT WORK.

• When you close a select cursor, its active set becomes undefined, and it can no longer be
used in DELETE, FETCH, or UPDATE statements. To use the cursor again you must
reopen it by issuing an OPEN statement.

• When you close a procedure cursor, its active result set becomes undefined, and it can
no longer be used in FETCH statements. To use the procedure cursor again you must
reopen it by issuing an OPEN statement.

• When used with a procedure cursor, CLOSE discards any pending rows or result sets
from the procedure. Execution of the procedure continues with the next statement.
Control returns to the application when the procedure terminates.

Note that following processing of the last multiple row result set, procedure execution
cannot continue until you close or advance the procedure cursor in the application.

• Upon execution of the CLOSEstatement used with a procedure cursor, return status and
output parameter values are available to the application in either the SQLDA or the
HostVariableSpecification of the USING clause or in any host variables specified
in the related DECLARE CURSOR statement.

• The USING clause is allowed only for dynamic procedure cursors.

Authorization

You do not need authorization to use the CLOSE statement.

Examples

Declare and open a cursor for use in updating values in column QtyOnHand.

 DECLARE NewQtyCursor CURSOR FOR
 SELECT PartNumber,QtyOnHand FROM PurchDB.Inventory
 FOR UPDATE OF QtyOnHand

 OPEN NewQtyCursor

Statements setting up a FETCH-UPDATE loop appear next.

 FETCH NewQtyCursor INTO :Num :Numnul, :Qty :Qtynul
320 Chapter 10

SQL Statements A - D
CLOSE
Statements for displaying a row to a user and accepting a new QtyOnHand value go here.
The new value is stored in :NewQty.

 UPDATE PurchDB.Inventory
 SET QtyOnHand = :NewQty
 WHERE CURRENT OF NewQtyCursor
 .
 .
 .
 CLOSE NewQtyCursor USING sqldaout
Chapter 10 321

SQL Statements A - D
COMMIT ARCHIVE
COMMIT ARCHIVE
The COMMIT ARCHIVE statement in conjunction with the BEGIN ARCHIVE statement starts
a new archive log file before a static backup is done to a DBEnvironment. However, this
method is no longer recommended. The recommended approach to initiate archive logging
and do a dynamic backup is to use the SQLUtil STOREONLINE command.

Scope

ISQL or Application Programs

SQL Syntax

COMMIT ARCHIVE

Description

• Use of the COMMIT ARCHIVE statement is no longer recommended.

Refer to the ALLBASE/SQL Database Administration Guide for detailed backup and
recovery procedures and recommended practices.

Authorization

You must have DBA authority to use this statement.
322 Chapter 10

SQL Statements A - D
COMMIT WORK
COMMIT WORK
The COMMIT WORK statement ends the current transaction. All changes made during the
transaction are committed (made permanent).

Scope

ISQL or Application Programs

SQL Syntax
COMMIT WORK [RELEASE]

Parameters

RELEASE terminates your DBE session after the changes made during the
transaction are committed. Specifying RELEASE has the same effect as
issuing a COMMIT WORK statement followed by a RELEASE statement.

Description

• The COMMIT WORK statement has no effect if you do not have a transaction in progress.

• The COMMIT WORK statement releases all locks held by the transaction, except those
associated with a kept cursor in an application program.

• In an application program, the COMMIT WORK statement closes all cursors opened
without the KEEP CURSOR option in the current transaction.

• For cursors opened with the KEEP CURSOR option, the COMMIT WORK statement (but
not the COMMIT WORK RELEASE statement) implicitly starts a new transaction that
maintains the current cursor position and inherits the isolation level. Whether or not
locks on data objects pointed to by these cursors are released depends on the use of the
WITH LOCKS or WITH NOLOCKS option in the OPEN statement.

• If a procedure invoked by a rule executes a COMMIT WORK statement, an error occurs.

• If a commit is done while constraints are deferred, and constraint errors exist, the
system will roll back the transaction and report that constraint errors exist.

• Short transactions (frequent COMMIT WORK statements) are recommended to improve
concurrency.

• If RELEASE is used, all cursors are closed and the current connection is terminated

• The RELEASE option is not allowed within a procedure.

Authorization

You do not need authorization to use the COMMIT WORK statement.
Chapter 10 323

SQL Statements A - D
COMMIT WORK
Example

Transaction begins.

 BEGIN WORK

statement-1

 SAVEPOINT :MyVariable

statement-2

statement-3

Work of statements 2 and 3 is undone.

 ROLLBACK WORK TO :MyVariable

Work of statement 1 is committed; the transaction ends.

 COMMIT WORK
324 Chapter 10

SQL Statements A - D
CONNECT
CONNECT
The CONNECT statement initiates a connection with a given DBEnvironment. This
connection is the current connection. Any SQL statements issued apply to the current
connection.

Scope

ISQL or Application Programs

SQL Syntax
CONNECT TO { ‘DBEnvironmentName’

: HostVariable1 }[AS { ‘ConnectionName’
:HostVariable2 }]

[USER { ‘UserID’
:HostVariable3 }[USING : HostVariable4]]

Parameters

DBEnvironmentName identifies the DBEnvironment to be used. Any path name
you specify, unless absolute, is assumed to be relative to
your current working directory.

HostVariable1 is a character string host variable containing the name of
a DBEnvironment.

ConnectionName is a string literal identifying the name associated with this
connection. This name must be unique for each
DBEnvironment connection within an application or an
ISQL session. If a ConnectionName is not specified,
DBEnvironmentName is the default. ConnectionName
cannot exceed 128 bytes.

HostVariable2 is a character string host variable containing the
ConnectionName associated with this connection.

UserID is a string literal identifying the user associated with this
connection. UserID cannot exceed 64 bytes.

HostVariable3 is a character string host variable containing the UserID
associated with this connection.

HostVariable4 is a character string host variable containing the
connection password associated with the specified user
identifier. The connection password assigned to
HostVariable4 cannot exceed 64 bytes.
Chapter 10 325

SQL Statements A - D
CONNECT
Description

• ALLBASE/SQL creates an implicit, brief transaction when the CONNECT statement is
issued.

• When the value of the autostart flag is ON, the CONNECT statement initiates a
single-user DBE session if the DBECon file user mode is currently set to single and no
other user is accessing the DBEnvironment. A multiuser DBE session is established if
the DBECon file user mode is currently set to MULTI.

• If the value of the autostart flag is OFF, the CONNECT statement is used to initiate a
multiuser session after a START DBE statement has been processed.

• When more than one CONNECT statement is issued, the application (or ISQL) is
currently connected to the DBEnvironment specified by the most recent CONNECT
statement. The current connection can be changed with the SET CONNECTION
statement.

• The USER and USING clauses are implementation-defined features intended for use in
determining if a CONNECT statement should be accepted or rejected. They are not
currently used by ALLBASE/SQL as criteria for accepting or rejecting a CONNECT
statement. However, other database products in a network environment may require
them in order to granulize authorization to a connection level.

Authorization

You can use this statement if you have CONNECT or DBA authority for the specified
DBEnvironment.

Example

A user whose current working directory is just above the sampledb directory begins a DBE
session; the value of the autostart mode is ON. The PartsDBE DBEnvironment is
currently configured to operate in multiuser mode, so other users can also initiate DBE
sessions.

 CONNECT TO 'sampledb/PartsDBE'

A second user starts a DBE session from a different directory.

 CONNECT TO '../sampledb/PartsDBE'

Specifying a connection name

 CONNECT TO 'sampledb/PartsDBE' AS 'Parts1'

Parts1 is the connection name to be used with multiconnect functionality.
326 Chapter 10

SQL Statements A - D
CREATE DBEFILE
CREATE DBEFILE
The CREATE DBEFILE statement defines and creates a DBEFile and places a row
describing the file in SYSTEM.DBEFile. A DBEFile is a file that stores tables, indexes,
hash structures, and/or LONG data.

Scope

ISQL or Application Programs

SQL Syntax
CREATE DBEFILE DBEFileName WITH PAGES = DBEFileSize , NAME = ‘SystemFileName’
[, INCREMENT = DBEFileIncrSize [, MAXPAGES = DBEFileMaxSize]]
[, TYPE = { TABLE

INDEX
MIXED}]

Parameters

DBEFileName is the logical name to be assigned to the new DBEFile.
Two DBEFiles in one DBEnvironment cannot have the
same logical name.

DBEFileSize specifies the number of 4096-byte pages in the new
DBEFile. The minimum DBEFile size is 2 pages. The
maximum DBEFile size is 524,287 pages.

SystemFileName identifies how the DBEFile is known to the operating
system. The system file name is in the format
[Pathname/]FileName . The DBEFile is created relative
to the directory where the DBECon file resides unless an
absolute path name is specified. The maximum length for
SystemFileName is 44 bytes.

DBEFileIncrSize is a number you must supply with the INCREMENT
clause when you want to expand the DBEFILE. The
DBEFileIncrSize should be 8 pages or greater but it
cannot exceed 65,535. No system default is provided by
ALLBASE/SQL; if this number is omitted, no DBEFile
expansion takes place.

DBEFileMaxSize is a number that you can supply with the MAXPAGES
clause if you have already specified a DBEFileIncrSize .
If the DBEFileMaxSize is not a multiple of
DBEFileIncrSize , the number may be rounded up or
down as follows: The smallest higher multiple is tried first.
If the smallest higher multiple is not a valid size, the
largest lower multiple is used. A warning message is
returned to let you know that the DBEFileMaxSize is
Chapter 10 327

SQL Statements A - D
CREATE DBEFILE
rounded based on the DBEFileIncrSize provided. If you
omit the MAXPAGES clause, the value defaults to the
ALLBASE/SQL DBEFile maximum size.

TYPE = specifies the setting of the DBEFile's TYPE attribute. The
following are valid settings:

TABLE Only data pages (table, HASH, or LONG) can be stored in
the DBEFile.

INDEX Only index pages can be stored in the DBEFile.

MIXED A mixture of data and index pages can be stored in the
DBEFile.

Description

• You use this statement to create all DBEFiles except DBEFile0, which is created when
a START DBE NEW statement is processed.

• The CREATE DBEFILEstatement formats the DBEFile. The name and characteristics of
the DBEFile are stored in the system catalog.

• The DBEFile created is owned by hpdb and has the following permissions:

 -rw-----

• To use a DBEFile for storing a table, LONG data, and/or an index, you add it to a
DBEFileSet with the ADD DBEFILE statement, then reference the name of the
DBEFileSet in the CREATE TABLEstatement. You may add a DBEFile to the SYSTEM
DBEFileSet.

• To delete the row describing a DBEFile from SYSTEM.DBEFile, use the DROP
DBEFILE statement.

• INCREMENT and MAXPAGES are optional clauses. If they are omitted, no DBEFile
expansion takes place.

• It is highly recommended that you provide the DBEFileMaxSize along with the
DBEFileIncrSize . Not specifying the DBEFileMaxSize causes it to be set to the
system maximum. This results in a high value for the ratio for this file. The
DBEFileMaxSize is stored internally as an integer multiple of the DBEFileIncrSize ;
if the DBEFileMaxSize is not a multiple of DBEFileIncrSize , rounding can occur.
Refer to the description of DBEFileMaxSize in the previous section for information on
the rounding process.

• The DBEFileMaxSize , after rounding, should be equal to or greater than the
DBEFileSize . It should not exceed the maximum DBEFile size of 524,287 pages.

• The optimal DBEFileIncrSize depends on the expected rate of expansion for the file.
Refer to the section "Calculating Storage for Database Objects" in the ALLBASE/SQL
Database Administration Guide for information about estimating size requirements for
tables and indexes.

• Expandable DBEFiles do not expand dynamically during the creation of hash tables.
328 Chapter 10

SQL Statements A - D
CREATE DBEFILE
• DBEFiles that contain hash tables are not expanded even though they were specified as
expandable when created.

Authorization

You must have DBA authority to use this statement. hpdb must have write permission in
the directory where the DBEFile will reside.

Example
 CREATE DBEFILE ThisDBEFile\
 WITH PAGES = 4, NAME = 'ThisFile', TYPE = TABLE

 CREATE DBEFILESET Miscellaneous

 ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, a
DBEFile is created to store an index:

 CREATE DBEFILE ThatDBEFile\
 WITH PAGES = 4, NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE ThatDBEFile TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

 REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

 ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM

 ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

All rows are later deleted from the table, so you can reclaim file space.

 REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

 DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

 DROP DBEFILESET Miscellaneous

 CREATE DBEFILE NewDBEFile\
 WITH PAGES = 4, NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE NewDBEFile TO DBEFILESET SYSTEM
Chapter 10 329

SQL Statements A - D
CREATE DBEFILESET
CREATE DBEFILESET
The CREATE DBEFILESET statement defines a DBEFileSet. A DBEFileSet is a group of
related DBEFiles; as such, it serves as a mechanism for allocating and deallocating file
space for tables.

Scope

ISQL or Application Programs

SQL Syntax
CREATE DBEFILESET DBEFileSetName

Parameters

DBEFileSetName specifies the name to be given to the new DBEFileSet. Two
DBEFileSets in the same DBEnvironment cannot have the same name.

Description

• The CREATE DBEFILESET statement records the new DBEFileSet name in the system
catalog with an indication that no physical storage is associated with the DBEFileSet.

• You associate physical storage with a DBEFileSet by associating DBEFiles with the
DBEFileSet, using the ADD DBEFILEstatement. Then you can associate a table and its
indexes with the DBEFileSet by using the CREATE TABLE statement. ALLBASE/SQL
allocates all data and index pages for a table to DBEFiles in the DBEFileSet named in
the IN clause of the CREATE TABLE statement. If automatic DBEFile expansion is not
being used when you need more space for a table, you add another DBEFile to the
DBEFileSet associated with the table when the CREATE TABLE statement was issued.

• To remove a DBEFile from a DBEFileSet, you use the REMOVE DBEFILE statement.

• If a LONG column uses the IN DBEFileSet clause, ALLBASE/SQL allocates all LONG
data pages for that column in DBEFiles in the DBEFileSet specified. If automatic
DBEFile expansion is not being used when more space is needed for the LONG column,
you add another DBEFile to the DBEFileSet associated with the LONG column when
the column was defined.

• To delete the definition of a DBEFileSet, use the DROP DBEFILESET statement.

• One DBEFileSet is created automatically when the START DBE NEW statement is
issued -- the SYSTEM DBEFileSet. The system catalog resides in the SYSTEM
DBEFileSet. Those parts of the system catalog that are needed to start up a
DBEnvironment reside in DBEFile0. You may add a DBEFile to the SYSTEM
DBEFileSet.
330 Chapter 10

SQL Statements A - D
CREATE DBEFILESET
Authorization

You must have DBA authority to use this statement.

Example

The DBEFile is used to store rows of a new table.

 CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
 NAME = 'ThisFile', TYPE = TABLE

 CREATE DBEFILESET Miscellaneous

 ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

When the table needs a DBEFile to hold an index, one is created as follows:

 CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
 NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE ThatDBEFile TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

 REMOVE DBEFILE ThatDBEFile
 FROM DBEFILESET Miscellaneous

 ADD DBEFILE ThatDBEFile
 TO DBEFILESET SomethingElse

 ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

Now you can use this DBEFile to store an index later if you need one.

All rows are later deleted from the table, so you can reclaim file space.

 REMOVE DBEFILE ThisDBEFile
 FROM DBEFILESET Miscellaneous

 DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

 DROP DBEFILESET Miscellaneous

 CREATE DBEFILE NewDBEFile

 ADD DBEFILE NewDBEFile
 TO DBEFILESET SYSTEM
Chapter 10 331

SQL Statements A - D
CREATE GROUP
CREATE GROUP
The CREATE GROUP statement defines a new authorization group.

Scope

ISQL or Application Programs

SQL Syntax
CREATE GROUP[Owner.] GroupName

Parameters

[Owner.] GroupName specifies the group name to be assigned to the new authorization
group. The group name must conform to the syntax rules for basic names,
described in the "Names" chapter.

You can specify the owner of the new group if you have DBA authority.
Non-DBA users can specify as owner the name of any group of which they
are a member. If you do not specify the owner name, your login name
becomes the owner of the new group.

Although the owner name can be specified as a prefix to the group name in
this statement, the owner name is not actually considered a part of the
group identifier. The group name by itself uniquely identifies a group
within the database.

The group name you specify cannot be the same as any of the following
names:

• Name of an existing authorization group.

• Owner name of an existing table, view, module, or authorization group.

• DBEUserID existing in the authorization tables of the system catalog.

• DBEUserID associated with any DBE session currently in progress.

• Special names PUBLIC, SYSTEM, CATALOG, HPRDBSS,
STOREDSECT, SEMIPERM, HPODBSS, and TEMP.

Description

• When you create an authorization group, its owner name and group name are entered
into the system catalog. You can then refer to the group in the ADD TO GROUP, REMOVE
FROM GROUP, GRANT, REVOKE, TRANSFER OWNERSHIP, and DROP GROUP
statements.

Authorization

You must have RESOURCE or DBA authority to use this statement.
332 Chapter 10

SQL Statements A - D
CREATE GROUP
Example

 CREATE GROUP Warehse

 GRANT CONNECT TO Warehse

 GRANT SELECT,
 UPDATE (BinNumber,QtyOnHand,LastCountDate)
 ON PurchDB.Inventory
 TO Warehse

These two users will be able to start DBE sessions for PartsDBE, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

 ADD Clem, George TO GROUP Warehse

Clem will no longer have any of the authorities associated with group Warehse.

 REMOVE Clem FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

 DROP GROUP Warehse
Chapter 10 333

SQL Statements A - D
CREATE INDEX
CREATE INDEX
The CREATE INDEX statement creates an index on one or more columns of a table and
assigns a name to the new index.

Scope

ISQL or Application Programs

SQL Syntax
CREATE [UNIQUE][CLUSTERING] INDEX [Owner.] Indexname ON
[Owner.] TableName ({ColumnName[ASC

DESC]}[,...])

Parameters

UNIQUE prohibits duplicates in the index. If UNIQUE is specified, each possible
combination of index key column values can occur in only one row of the
table. If UNIQUE is omitted, duplicate values are allowed. Because all
null values are equivalent, a unique index allows only one row with a null
value in an indexed column. When you create a unique index, all existing
rows must have unique values in the indexed column(s).

CLUSTERING can increase the efficiency of sequential processing.

If CLUSTERING is specified, rows added to the table after the index is
created are placed physically near other rows with similar key values
whenever space is available in the page. If CLUSTERING is omitted, the
key values in a newly inserted row do not necessarily have any
relationship with the row's physical placement in the database.

No more than one index for a table can have the CLUSTERING attribute.

If the table was declared to use a HASH structure, no clustering indexes
may be defined upon it. See the CREATE TABLE statement for information
on HASH structures.

[Owner.] IndexName is the name to be assigned to the new index. A table cannot have
two indexes with the same name. If the owner is specified, it must be the
same as the owner of the table. The default owner name is the owner name
of the table it is being defined on. The usual default owner rules do not
apply here.

[Owner.] TableName designates the table for which an index is to be created.

ColumnName is the name of a column to be used as an index key. You can specify up to
16 columns in order from major index key to minor index key. The data
type of the column cannot be a LONG data type.

ASC | DESC specifies the order of the index to be either ascending or descending,
respectively. The default is ascending. Specifying DESC does not create a
334 Chapter 10

SQL Statements A - D
CREATE INDEX
descending index. It is the same index as ascending. Therefore, SELECT
statements that require data to be retrieved in descending order must
specify ORDER BY columnID DESC.

Description

• If the table does not contain any rows, the CREATE INDEX statement enters the
definition of the index in the system catalog and allocates a root page for it. If the table
has rows, the CREATE INDEXstatement enters the definition in the system catalog and
builds an index on the existing data.

If the UNIQUE option is specified and the table already contains rows having duplicate
values in the index key columns, the CREATE INDEX statement is rejected.

The CLUSTERING option does not affect the physical placement of rows that are
already in the table when the CREATE INDEX statement is issued.

• The new index is maintained automatically by ALLBASE/SQL until the index is deleted
by a DROP INDEX statement or until the table it is associated with is dropped.

• The following equation determines the maximum key size for a B-tree or hash index:

 (NumberOfIndexColumns + 2)*2 + SumKeyLengths + 8 <= 1024

If the index contains only one column, the maximum length that column can be is 1010
bytes. At compile time, SumKeyLengths is computed assuming columns of NULL and
VARCHAR columns contain no data. At run time, the actual data lengths are assumed.

At most 16 columns are allowed in a user-defined index.

• Indexes cannot be created for views, including the system views and pseudotables.

• Index entries are sorted in ascending order. Null compares higher than other values for
sorting.

• An index is automatically stored in the same DBEFileSet as its table.

• The CREATE INDEX statement can invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

• The CREATE INDEX statement allocates file space for sorting under any available
TempSpace location, or in the default sort space. After the index has been created, this
file space is deallocated.

• Indexes created with the CREATE INDEX statement are not associated with referential
or unique constraints in any manner, and are not used to support any constraints. So a
unique index created with the CREATE INDEX statement cannot be referenced as a
primary key in a referential constraint.

Authorization

You can issue this statement if you have INDEX or OWNER authority for the table or if
you have DBA authority.
Chapter 10 335

SQL Statements A - D
CREATE INDEX
Example

This unique index ensures that all part numbers are unique.

 CREATE UNIQUE INDEX PurchDB.PartNumIndex
 ON PurchDB.Parts (PartNumber)

This clustering index causes rows for order items associated with one order to be stored
physically close together.

 CREATE CLUSTERING INDEX OrderItemIndex
 ON PurchDB.OrderItems (OrderNumber)
336 Chapter 10

SQL Statements A - D
CREATE PARTITION
CREATE PARTITION
The CREATE PARTITION statement defines a partition to be used for audit logging
purposes.

Scope

ISQL or Application Programs

SQL Syntax
CREATE PARTITION PartitionName WITH ID = PartitionNumber

Parameters

PartitionName specifies the logical name to be given to the new partition. Two
partitions in the same DBEnvironment cannot have the same name.
PartitionName may not be DEFAULT or NONE.

PartitionNumber is an integer specifying the partition number. It must be a positive
integer in the range 1 to 32767. The partition number identifies the
partition in the audit log record.

Description

• The CREATE PARTITION statement creates a new audit partition, which is a unit of
data logging for an audit DBEnvironment.

• The partition number may already be assigned to another partition, including the
default partition. For example, several partitions with different partition names may
have the same partition number in the audit log file. This allows the Audit Tool to
gather statistics for all of these partitions as one unit while preserving the ability to
manipulate each partition separately.

• Creation of a partition does not cause a check against the maximum number of
partitions. Only creation of audit log records in a partition checks if the maximum
number of partitions is exceeded. The process of determining the number of partitions
in a DBEnvironment is described under the START DBE NEW statement.

• One data partition can be defined with the START DBE NEW or START DBE NEWLOG
statements -- the DEFAULT partition. Before tables are assigned to a particular
partition, they are placed in the DEFAULT partition.

• To put a table in a partition, use the CREATE TABLEor ALTER TABLE SET PARTITION
statement.

• To remove a table from a partition, or change the partition it is in, use the ALTER
TABLE SET PARTITION statement.

• To delete the definition of a partition, use the DROP PARTITION statement.

• Partitions can be created and tables placed in them without audit logging being enabled
Chapter 10 337

SQL Statements A - D
CREATE PARTITION
for a DBEnvironment. However, the partition information is only used in audit log
records. Thus, partition information will not be utilized in logging until the
DBEnvironment has audit logging enabled.

• Data partition information (including the default partition) appears in the system view
SYSTEM.PARTITION. If the default partition is set to NONE, or is never defined, no
row appears in SYSTEM.PARTITION for it.

• The DROP PARTITION and CREATE PARTITION statements are used to change the
partition number assigned to a partition other than the default partition. The START
DBE NEWLOGstatement is used to change the partition number of the default partition.

• The partition number, not the partition name, is used in audit logging. A partition name
is used in the CREATE TABLEand ALTER TABLEstatements to associate a table with a
partition.

Authorization

You must have DBA authority to use this statement.

Example

To create a partition containing tables, first create the partition.

 CREATE PARTITION PartsPart WITH ID = 10;

Then assign tables(s) to the partition.

 ALTER TABLE PurchDB.Parts SET PARTITION PartsPart;

To drop a partition, first assign all tables in the partition to the NONE partition.

 ALTER TABLE PurchDB.Parts SET PARTITION NONE;

Then drop the partition.

 DROP PARTITION PartsPart;
338 Chapter 10

SQL Statements A - D
CREATE PROCEDURE
CREATE PROCEDURE
The CREATE PROCEDURE statement defines a procedure for storage in a DBEnvironment. A
procedure may subsequently be executed through the firing of a rule by an INSERT,
UPDATE, or DELETE statement, or by using the EXECUTE PROCEDURE statement or a
procedure cursor.

Scope

ISQL or Application Programs

SQL Syntax
CREATE PROCEDURE [Owner.] ProcedureName [LANG = ProcLangName]
[(ParameterDeclaration [, ParameterDeclaration][...])]
[WITH RESULT ResultDeclaration [, ResultDeclaration][...]]
AS BEGIN [ProcedureStatement][...] END [IN DBEFileSetName]

Parameters

[Owner.]ProcedureName specifies the owner and the name of the procedure. If an owner
name is not specified, the owner is the current user's DBEUserID or the
schema's authorization name, or the ISQL SET OWNER value. You can
specify the owner of the new procedure if you have DBA authority. If you
do not have DBA authority, you can specify as owner the name of any
group of which you are a member. Two procedures cannot have the same
owner and procedure name.

ProcLangName is the name of the default language used within the procedure for
parameters and local variables. This language may be either the language
of the DBEnvironment or n-computer. The default is the language of the
DBEnvironment.

ParameterDeclaration specifies the attributes of parameter data to be passed to or
from the procedure. The syntax of ParameterDeclaration is presented
separately below.

ResultDeclaration specifies the attributes of a result column in a multiple row result
set or sets returned from a procedure to an application or ISQL. The
syntax of ResultDeclaration is presented separately below.

ProcedureStatement Specifies a statement in the procedure body. The statement may
be any one of the following:

• Local variable declaration (see DECLAREVariable).

• Parameter or local variable assignment (see Assignment).

• Compound statement. A compound statement has the following syntax:

 BEGIN [Statement ;] [...] END;

• Control flow and status statements
Chapter 10 339

SQL Statements A - D
CREATE PROCEDURE
• IF...THEN...ELSEIF...ELSE...ENDIF

• WHILE...DO...ENDWHILE

• Jump statement (GOTO, GO TO, or RETURN)

• PRINT

• Any SQL statement allowed in an application except the following:

ADVANCE
BEGIN DECLARE SECTION
BULK statements
CLOSE (when the USING clause is specified)
COMMIT WORK RELEASE
CONNECT
CREATE PROCEDURE (including inside CREATE SCHEMA)
DECLARE CURSOR (when declaring a cursor for an EXECUTE
PROCEDURE statement)
DESCRIBE
DISCONNECT
END DECLARE SECTION
EXECUTE
EXECUTE IMMEDIATE
EXECUTE PROCEDURE
GENPLAN
INCLUDE
OPEN CURSOR USING DESCRIPTOR
OPEN CURSOR USING HostVariableList
PREPARE
RELEASE
ROLLBACK WORK RELEASE
SET CONNECTION
SET DML ATOMICITY
SET MULTITRANSACTION
SET SESSION
SET TRANSACTION
SQLEXPLAIN
START DBE
STOP DBE

A ProcedureStatement must be terminated by a semicolon.

DBEFileSetName identifies the DBEFileSet in which ALLBASE/SQL is to store sections
associated with the procedure. If not specified, the SECTIONSPACE
DBEFileSet is used.

SQL Syntax—ParameterDeclaration
ParameterName ParameterType [LANG = ParameterLanguage]
[DEFAULT DefaultValue][NOT NULL][OUTPUT [ONLY]]
340 Chapter 10

SQL Statements A - D
CREATE PROCEDURE
Parameters—ParameterDeclaration

ParameterName is the name assigned to a parameter in the procedure. No two
parameters in the procedure can be given the same name. You can define
no more than 1023 parameters in a procedure.

ParameterType indicates what type of data the parameter will contain. The
ParameterType cannot be a LONG data type. For a list of data types,
refer to the "Data Types" chapter.

ParameterLanguage specifies the language for the parameter. A LANG may only be
specified for a parameter with a character data type. This language may be
either the language of the procedure or n-computer. The default is the
language of the procedure.

DefaultValue specifies the default value for the parameter. The default can be a
constant, NULL, or a date/time current function. The data type of the
default value must be compatible with the data type of the column.

NOT NULL means that the parameter cannot contain null values. If NOT NULL is
specified, any statement that attempts to place a null value in the
parameter is rejected.

OUTPUT specifies that the parameter can be used for procedure output as well as
input (the default). If OUTPUT is not specified, the parameter can only be
used for input to the procedure.

If procedure output is required, OUTPUT must also be specified for any
corresponding parameter in the EXECUTE PROCEDURE statement.

ONLY specifies that the parameter can be used for procedure output only. ONLY
should be used, when applicable, to avoid unnecessary initialization of
procedure parameters.

You must also specify OUTPUT for any corresponding parameter in the
EXECUTE PROCEDURE statement.

The DEFAULT option cannot be specified for OUTPUT ONLY parameters.

SQL Syntax—ResultDeclaration
ResultType [LANG = ResultLanguage][NOT NULL]

Parameters—ResultDeclaration

ResultType indicates the data type of a result column in a query result for a query or
queries in the procedure. The "Data Types" chapter describes the data
types available in ALLBASE/SQL.

ResultLanguage specifies the language of the result column. A LANG may only be
specified for a result column with a character data type. This language
may be either the language of the procedure or n-computer. The default is
the language of the procedure.

NOT NULL indicates that the result column cannot contain null values.
Chapter 10 341

SQL Statements A - D
CREATE PROCEDURE
Description

• A procedure may be created through ISQL or through an application program.

• A procedure result set is the set of rows returned by a procedure SELECT, FETCH, or
REFETCH statement.

• A select cursor (one declared for a SELECT statement) opened in an application
program (i.e, outside the procedure) cannot be accessed within the procedure. However,
a procedure can open and access its own select cursors.

• A procedure cursor (one declared for an EXECUTE PROCEDURE statement) must be
opened and accessed outside of the specified procedure, in an application program. An
application can open more than one procedure cursor.

• A procedure with multiple row result sets is a procedure containing one or more
SELECTstatements with no INTO clause. In order to retrieve one or more multiple row
result sets from a procedure, you must execute the procedure using a procedure cursor.
The application can then either process data from a result (by issuing the FETCH
statement within the application) or advance past the result set (by issuing the
ADVANCE or the CLOSE statement within the application).

If you execute a procedure without using a procedure cursor in the above case, a
warning is returned to the application, no result set data is returned, and any return
status and output parameters are returned as usual.

• Transaction statements (COMMIT WORK, ROLLBACK WORK, WHENEVER .. STOP)
executed have the usual effect on non-KEEP cursors, i.e. such cursors are closed.

A procedure executing transaction statements can close a cursor defined on itself.
Therefore, transaction statements must be used with care in procedures containing
statements returning multiple row result sets.

• Procedures may reference the following set of built-in variables in non-SQL statements
only:

• ::sqlcode

• ::sqlerrd2

• ::sqlwarn0

• ::sqlwarn1

• ::sqlwarn2

• ::sqlwarn6

• ::activexact

The first six of these have the same meaning that they have as fields in the SQLCA in
application programs. Note that in procedures, sqlerrd2 returns the number of rows
processed for all host languages. However, in application programs, sqlerrd(3) is used in
COBOL and Fortran, sqlerrd[3] is used in Pascal, and sqlerr[2] is used in C. ::activexact
indicates whether a transaction is in progress or not. For additional information, refer
to the application programming guides and to the chapter "Constraints, Procedures,
and Rules."
342 Chapter 10

SQL Statements A - D
CREATE PROCEDURE
• Built-in variables cannot be referenced in any SQL statement. They may be referenced
in ASSIGNMENT, IF, WHILE, RETURN , and PRINT statements. Refer to the section
"Using Procedures" in the chapter "Constraints, Procedures, and Rules" for more
explanation of built-in variables.

• Control flow and status statements, local variable declarations, parameter or local
variable assignments, and labeled statements are allowed only within procedures.

• Each ProcedureStatement must be terminated with a semicolon.

• A label may appear only at the start of a ProcedureStatement that is not a compound
statement, a local variable declaration, or a WHENEVER directive.

• Host variables cannot be accessed within a procedure.

• No more than 1024 result columns can be defined in a procedure result set.

• Within a procedure, any SELECT, FETCH, or REFETCHstatement with an INTO clause
specifying parameters and/or local variables returns at most a one row result.

• A procedure with single format multiple row result sets is a procedure having
one or more multiple row result sets, whose result format is defined in the WITH
RESULT clause. Each SELECT statement with no INTO clause must return rows of a
format compatible with this defined result format. When using the WITH RESULT
clause, all such result sets in the procedure must return the same number of columns.
The corresponding result columns of each result set must be compatible in data type,
language and nullability. The corresponding result columns of each result set must be
no longer than defined in the WITH RESULT clause. (For more information about data
type compatibility, refer to chapter 7, "Data Types.")

• The WITH RESULT clause is used to describe the data format of a procedure's multiple
row result sets. Since, by definition, all single format multiple row result sets have the
same format, there is no distinction made between result sets. There is no need to issue
any ADVANCE statement in the application. Use the WITH RESULT clause only when
you do not need to know the boundary between result sets.

ALLBASE/SQL attempts to verify compatibility of each result set format with the
format defined in the WITH RESULT clause at the time the procedure is created. In
addition, since verification is not always possible at procedure creation time (sections
may be created as invalid), compatibility is also verified at procedure execution time for
each procedure result set. If incompatibility is detected during procedure creation, the
create statement returns a warning. If incompatibility is detected during procedure
execution, the execution of the procedure result set statement fails with an error, and
no more data is returned (For an ADVANCEor CLOSE, procedure execution continues with
the next statement).

• An attempt to execute a CREATE PROCEDURE statement containing a WITH RESULT
clause but no multiple row result set causes an error and the procedure is not created.

• When a procedure with single format multiple row result sets is created using the
WITH RESULT clause, the format specified in this clause is stored in the system
catalog PROCRESULT table. This format information can be returned after defining a
cursor on a procedure (at procedure execution time) with a DESCRIBE RESULT
statement before (opening and fetching) from the cursor.
Chapter 10 343

SQL Statements A - D
CREATE PROCEDURE
• Indicator variables are not allowed or needed inside procedures. However, you can
include an indicator variable with a host variable in supplying a value to a parameter in
EXECUTE PROCEDURE, DECLARE CURSOR, OPEN, or CLOSE statements.

Indicator variables specified for output host variables in CLOSE, DECLARE CURSOR, or
EXECUTE PROCEDURE statements are set by ALLBASE/SQL.

• Syntactic errors are returned along with an indication of the location of the error inside
the CREATE PROCEDURE statement.

• Statements that support dynamic processing are not allowed within a procedure.

• Within a procedure, a single row SELECT statement (one having an INTO clause) that
returns multiple rows will assign the first row to output host variables or procedure
parameters, and a warning is issued. In an application, this case would generate an
error.

• If the IN DBEFileSetName clause is specified, but the procedure owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead.

Authorization

You must have RESOURCE or DBA authority to create a procedure. If you do not have all
appropriate authorities on the objects referenced by the procedure when you create the
procedure, warnings are returned. If you do not have the appropriate authorities at
execution time, errors are returned but (except in a rule) the execution of the rest of the
procedure does not stop. The procedure owner becomes the owner of any object created by
the procedure with no owner explicitly specified. A user granted authority to execute a
procedure need not have any direct authority on the objects accessed by the procedure.

To specify a DBEFileSetName , the procedure owner must have SECTIONSPACE authority
on the referenced DBEFileSet.

Examples

1. DELETE

 CREATE PROCEDURE ManufDB.RemoveBatchStamp (BatchStamp DATETIME NOT NULL)
 AS
 BEGIN
 DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
 IF ::sqlcode < > 0 THEN
 PRINT 'Delete failed.';
 ENDIF;
 END;
344 Chapter 10

SQL Statements A - D
CREATE PROCEDURE
2. INSERT

 CREATE PROCEDURE PurchDB.ReportMonitor (Name CHAR(20) NOT NULL,
 Owner CHAR(20) NOT NULL, Type CHAR(10) NOT NULL)
 AS
 BEGIN
 INSERT INTO PurchDB.ReportMonitor
 VALUES (:Type, CURRENT_DATETIME,
 USER, :Name, :Owner);
 RETURN ::sqlcode;
 IN PurchFS;
 END

3. SELECT (multiple row and single row)

 CREATE PROCEDURE ReportOrder (OrderNumber INTEGER,
 TotalPrice DECIMAL (10,2) OUTPUT) AS
 BEGIN

Multiple row result set is returned to the application for processing using a procedure
cursor.

 SELECT ItemNumber, OrderQty, PurchasePrice
 FROM PurchDB.OrderItems
 WHERE OrderNumber = :OrderNumber;

Single row result set value is returned to the application via an OUTPUT parameter.

 SELECT SUM (OrderQty * PurchasePrice)
 INTO :TotalPrice
 FROM PurchDB.OrderItems
 WHERE OrderNumber = :OrderNumber;
 END;
Chapter 10 345

SQL Statements A - D
CREATE RULE
CREATE RULE
The CREATE RULE statement defines a rule and associates it with specific kinds of data
manipulation on a particular table. The rule definition specifies the name of a procedure to
be executed when the rule fires.

Scope

ISQL or Application Programs

SQL Syntax
CREATE RULE [Owner.] RuleName
AFTER StatementType [,...][ON

OF
FROM
INTO }[Owner.] TableName

[REFERENCING { OLD AS OldCorrellationName
NEW AS NewCorrelationName }[...]] [WHEREFiringCondition

EXECUTE PROCEDURE [OwnerName.] ProcedureName [(ParameterValue [,...])]
[IN DBEFileSetName]

Parameters

[Owner.]RuleName is the name of the new rule. Two rules cannot have the same owner
and rule names.

The rule owner must be the same as the owner of the table the rule is
defined upon. The default owner name is the owner name of the table it is
being defined on. The usual default owner rules do not apply here.

StatementType specifies which statements will cause the rule to fire for the given table.
StatementType must be one of the following:

• INSERT

UPDATE [(ColumnName [,...])]

• DELETE

Each statement type can be listed in the CREATE RULEstatement only once
for a given rule. If ColumnNames are specified for a StatementType of
UPDATE, they must exist in the table.

For UPDATE statements in which more than one column is specified, any
one of the column names listed here may be used in the UPDATEfor the rule
to affect the statement. When you issue the UPDATE, it is not necessary to
specify all the ColumnNames in the CREATE RULEstatement. At most, 1023
column names may be specified in this column name list.

[Owner.]TableName designates the table on which the rule is to operate. Rules cannot be
created on views.

OldCorrelationName specifies the correlation name to be used within the
346 Chapter 10

SQL Statements A - D
CREATE RULE
FiringCondition and ParameterValue to refer to the old values of the
row (before it was changed by the DELETE or UPDATE statement). The
default OldCorrelationName is OLD. If the StatementType is INSERT,
an OldCorrelationName will refer to the new values of the row, since no
old values are available.

NewCorrelationName specifies the correlation name to be used within the
FiringCondition and ParameterValue to refer to the new values of the
row (after it was changed by the INSERT or UPDATE statement). The
default NewCorrelationName is NEW. If the StatementType is DELETE,
a NewCorrelationName will refer to old values of the row, since no new
values are available.

FiringCondition specifies a search condition the current row must meet once the rule's
statement type has matched before the rule can fire on that row. Refer to
the "Search Conditions" chapter for possible predicates.

The search condition must evaluate to TRUE to invoke the specified
procedure. The search condition cannot contain any subqueries, aggregate
functions, host variables, local variables, procedure parameters, dynamic
parameters, or the TID function.

[Owner.]Procedure Name specifies the procedure to invoke when a rule fires. The
procedure must exist when the rule is created.

ParameterValue specifies a value for a parameter in the procedure. The parameter
values must correspond in sequential order to the parameters defined for
the procedure.

ParameterValue has the following syntax:

{ NULL
Expression }

The Expression may include anything allowed within an SQL expression
except a subquery, aggregate function, host variable, TID function, local
variable, procedure parameter, dynamic parameter, or a long column
value. Refer to the "Expressions" chapter for the complete syntax of
expressions. In particular, column references are allowed within the
EXECUTE PROCEDURE clause of the CREATE RULE statement. Column
references may be of the form:

{ OldCorrelationName.ColumnName
NewCorrelationName.ColumnName
 [[Owner.] TableName.] ColumnName }

DBEFileSetName specifies the DBEFileSet in which sections associated with the rule are
to be stored. If not specified, the default SECTIONSPACE DBEFileSet is
used. (Refer to syntax for the SET DEFAULT DBEFILESET statement.)
Chapter 10 347

SQL Statements A - D
CREATE RULE
Description

• A rule may be created through ISQL or through an application program.

• When a rule is created, information about the rule is stored in the system catalog, and
may be examined through the following system views: SYSTEM.RULE,
SYSTEM.RULECOLUMN, and SYSTEM.RULEDEF.

• The FiringCondition and ParameterValue can reference both the unchanged and
the changed values of the row being considered for the firing of a rule. The unchanged
values are known as old values and are referred to by using the
OldCorrelationName. Changed values are known as new values and are referred to
by using the NewCorrelationName .

• For an INSERT, there is no old value to reference, so the use of OldCorrelationName
will be treated as if NewCorrelationName had been specified.

• For a DELETE, there is no new value to reference, so the use of NewCorrelationName
will be treated as if OldCorrelationName had been specified.

• If no OldCorrelationName is defined, OLD is the default.

• If no NewCorrelationName is defined, NEW is the default.

• At most one OldCorrelationName and one NewCorrelationName can be specified.

• Use of the TableName has the same effect as use of the NewCorrelationName if the
StatementType is INSERT or UPDATE. Use of the TableName has the same effect as
use of the OldCorrelationName if the StatementType is DELETE.

• NewCorrelationName and OldCorrelationName must differ from each other. If
either is the same as the TableName , then the correlation name will be assumed to be
used wherever that name qualifies a column reference without an owner qualification
also being used. If the table is called OLD, reference it by using
OwnerName.OLD.ColumnName.

• Rules can execute in a forward-chaining manner. This occurs when a fired rule invokes
a procedure which contains a statement that causes other rules to fire. The maximum
nesting of rule invocations is 20 levels.

• If multiple rules are to be fired by a given statement, the order in which the rules fire
may change when the section is revalidated. You can use the SET PRINTRULES ON
statement to generate messages giving the names of rules as they fire.

• If an error occurs during the execution of a rule or its invoked procedure, it will have its
normal effect, that is, a message may be generated, the execution of the statement may
be halted, the effects of the statement may be rolled back, or the connection may be lost.
Even if the error has not caused the transaction to roll back or the connection to be lost,
the statement issued by the user and all rules fired on behalf of that statement (or
chained to by such rules) are undone and have no effect on the database.

• The procedure invoked by a rule cannot execute a COMMIT WORK, ROLLBACK WORK,
COMMIT/ROLLBACK ARCHIVE, or SAVEPOINT statement. If the procedure executes one
of these statements, an error occurs, and the effect of the statement that triggered the
procedure is undone.
348 Chapter 10

SQL Statements A - D
CREATE RULE
• If a CurrentFunction is used within the FiringCondition or a ParameterValue ,
it will be evaluated at the time of the statement that fires the rule.

• Any value returned by the procedure with a RETURN statement is ignored by the rule
and not returned to the statement firing the rule.

• An EXECUTE PROCEDURE call from within a rule is different from one issued as a
regular SQL statement. Within a rule, you cannot specify host variables, local variables,
procedure parameters, or dynamic parameters as parameter values, since host
variables are not accessible from the rule. Also, the key word OUTPUT cannot be
specified, since a procedure called from a rule cannot return any values. A rule does
permit the specification of columns within the procedure call, since in this context
column values are available to be passed to the procedure from the row the rule is firing
on.

• The CREATE RULE statement invalidates sections that contain dependencies upon the
table the rule is defined upon. This is to enable the rule to be included when those
sections are revalidated.

• If a procedure specified in a CREATE RULEstatement returns multiple row result set(s),
a warning is issued when the rule is created. Note that no warning is issued when the
procedure is invoked by the rule.

• If the IN DBEFileSetName clause is specified, but the rule owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DBEFILESET statement.)

Authorization

The CREATE RULE statement requires you to have OWNER authority for the table and
OWNER or EXECUTE authority for the procedure, or to have DBA authority. Once the
rule is defined, users issuing statements which cause the rule to fire need not have
EXECUTE authority for the procedure.

To specify a DBEFileSetName for a rule, the rule owner must have SECTIONSPACE
authority on the referenced DBEFileSet.

Example

First, create a procedure to monitor operations on the Reports table:

 CREATE PROCEDURE PurchDB.ReportMonitor (Name CHAR(20) NOT NULL,
 Owner CHAR(20) NOT NULL, Type CHAR(10) NOT NULL) AS
 BEGIN
 INSERT INTO PurchDB.ReportMonitor
 VALUES (:Type, CURRENT_DATETIME,
 USER, :Name, :Owner);
 RETURN ::sqlcode;
 END
 IN PurchDBFileSet;
Chapter 10 349

SQL Statements A - D
CREATE RULE
Next, create three rules that invoke the procedure with parameters:

 CREATE RULE PurchDB.InsertReport
 AFTER INSERT TO PurchDB.Reports
 EXECUTE PROCEDURE PurchDB.ReportMonitor (NEW.ReportName,
 NEW.ReportOwner, 'INSERT')
 IN PurchDBFileSet;

 CREATE RULE PurchDB.DeleteReport
 AFTER DELETE FROMPurchDB.Reports
 EXECUTE PROCEDURE PurchDB.ReportMonitor (OLD.ReportName,
 OLD.ReportOwner, 'DELETE')
 IN PurchDBFileSet;

 CREATE RULE PurchDB.UpdateReport
 AFTER UPDATE TO PurchDB.Reports
 EXECUTE PROCEDURE PurchDB.ReportMonitor (NEW.ReportName,
 NEW.ReportOwner, 'UPDATE')
 IN PurchDBFileSet;
350 Chapter 10

SQL Statements A - D
CREATE SCHEMA
CREATE SCHEMA
The CREATE SCHEMA statement creates a schema and associates an authorization name
with it. The schema defines a database containing tables, views, indexes, procedures, rules,
and authorization groups with the same owner name. Entries are created in the system
catalog views upon completion of the execution of this statement.

Scope

ISQL or Application Programs

SQL Syntax
CREATE SCHEMA AUTHORIZATIONAuthorizationName [TableDefinition

ViewDefinition
IndexDefinition
ProcedureDefinition
RuleDefinition
CreateGroup
AddToGroup
GrantStatement][...]

Parameters

AuthorizationName specifies the owner of the database objects.

If you have RESOURCE authority, the AuthorizationName must be your
DBEUserID, a class name, or an authorization group name to which you
belong. You cannot specify a different owner for the objects you create.

If you have DBA authority, the AuthorizationName can be any
DBEUserID, class name, or authorization group name. The owner of the
objects you create does not have to match the AuthorizationName if the
owner has DBA authority.

You must specify an AuthorizationName; there is no default.

TableDefinition defines a table and automatic locking strategy. For complete syntax,
refer to the CREATE TABLE syntax.

ViewDefinition defines a view of a table, another view, or a combination of tables and
views. For complete syntax, refer to the CREATE VIEW syntax.

IndexDefinition creates an index on one or more columns. For complete syntax, refer
to the CREATE INDEX syntax.

ProcedureDefinition creates a procedure which defines a sequence of SQL statements.
For correct syntax, refer to the CREATE PROCEDURE syntax.

RuleDefinition creates a rule to fire a stored procedure. For complete syntax, refer to
the CREATE RULE syntax.

CreateGroup defines an authorization group. For complete syntax, refer to the CREATE
GROUP syntax.
Chapter 10 351

SQL Statements A - D
CREATE SCHEMA
AddToGroup adds one or more users, authorization groups, or combination of users and
authorization groups to an authorization group. For complete syntax, refer
to the ADD TO GROUP syntax.

GrantStatement specifies the type of authorities for a table, view, or module. For
complete syntax, refer to the GRANT syntax.

Description

• Note that a comma or semicolon is not allowed between the object definitions in the
CREATE SCHEMA syntax.

• You cannot use the following CREATE statements within the CREATE SCHEMA
statement:

• CREATE DBEFILE

• CREATE DBEFILESET

• You cannot use this statement to add to a schema that already exists. A schema for a
given authorization name exists if there are any objects (tables, views, indexes,
procedures, rules, or groups) owned by that authorization name.

• When the CREATE SCHEMA statement is part of a procedure, no
ProcedureDefinition may be included.

Authorization

You can execute this statement if you have RESOURCE authority or DBA authority. With
RESOURCE authority you can create a schema by using your own name or the
authorization group name to which you belong. If you have DBA authority, then you can
create a schema with any AuthorizationName.

Example

In the following example, RecDB is the AuthorizationName (owner name). All the tables
created here are owned by RecDB; it is not necessary to repeat the owner name for each
creation statement.

 CREATE SCHEMA AUTHORIZATION RecDB
 CREATE PUBLIC TABLE Clubs
 (ClubName CHAR(15) NOT NULL
 PRIMARY KEY CONSTRAINT Clubs_PK,
 ClubPhone SMALLINT,
 Activity CHAR(18))
 IN RecFS

 CREATE PUBLIC TABLE Members
 (MemberName CHAR(20) NOT NULL,
 Club CHAR(15) NOT NULL,
 MemberPhone SMALLINT,
 PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
 FOREIGN KEY (Club) REFERENCES Clubs (ClubName)
 CONSTRAINT Members_FK)
 IN RecFS
352 Chapter 10

SQL Statements A - D
CREATE SCHEMA
 CREATE PUBLIC TABLE Events
 (SponsorClub CHAR(15),
 Event CHAR(30),
 Date DATE DEFAULT CURRENT_DATE,
 Time TIME,
 Coordinator CHAR(20),
 FOREIGN KEY (Coordinator, SponsorClub)

REFERENCES Members (MemberName, Club) CONSTRAINT Events_FK)
 IN RecFS
Chapter 10 353

SQL Statements A - D
CREATE TABLE
CREATE TABLE
The CREATE TABLE statement defines a table. It also defines the locking strategy that
ALLBASE/SQL uses automatically when the table is accessed and in some cases
automatically issues a GRANT statement. It can also define the storage structure of the
table and restrictions or defaults placed on values which the table's columns can hold. You
can also use this statement to assign a table to a partition for audit logging purposes.

Scope

ISQL or Application Programs

SQL Syntax—CREATE TABLE
CREATE [PRIVATE

PUBLICREAD
PUBLIC
PUBLICROW] TABLE [Owner.] TableName

[LANG = TableLanguageName]
({ ColumnDefinition

UniqueConstraint
ReferentialConstraint
CheckConstraint }[,...])

[UNIQUE HASH ON (HashColumnName [,...]) PAGES = PrimaryPages
HASH ON CONSTRAINT [ConstraintID] PAGES = PrimaryPages
CLUSTERING ON CONSTRAINT [ConstraintID]

[IN PARTITION { PartitionName
DEFAULT
NONE }]

[IN DBEFileSetName1]

Parameters—CREATE TABLE

PRIVATE enables the table to be used by only one transaction at a time. This is the
most efficient option for tables that do not need to be shared because
ALLBASE/SQL can spend less time managing locks.

This option is in effect by default; grants are not automatically issued.

PUBLICREAD enables the table to be read by concurrent transactions, but allows no more
than one transaction at a time to update the table.

This option automatically issues a statement GRANT SELECT ON
TableName TO PUBLIC. This gives any user with CONNECT authority
the ability to read the table. To change this grant, use the REVOKE
statement and the GRANT statement. The locking strategy remains
unchanged, even if you change the grant.

PUBLIC enables the table to be read and updated by concurrent transactions. In
general, a transaction locks a page in share mode before reading it and in
exclusive mode before updating it.

This option automatically issues the statement GRANT ALL ONTableName
354 Chapter 10

SQL Statements A - D
CREATE TABLE
TO PUBLIC. This gives any user with CONNECT authority the ability to
read and modify the table as well as to alter the table and create indexes
on it. To change this grant, use the REVOKE statement and the GRANT
statement. The locking strategy remains unchanged, even if you change
the grant.

PUBLICROW enables the table to be read and updated by concurrent transactions. The
locking unit is a row (tuple) in PUBLICROW tables. In general, a
transaction locks a row in share mode before reading it and in exclusive
mode before updating it. For small tables with small rows, concurrency can
be maximized by using the PUBLICROW type.

This option automatically issues the statement GRANT ALL ONTableName
TO PUBLIC. This gives any user with CONNECT authority the ability to
read and modify the table as well as to alter the table and create indexes
on it. To change this grant, use the REVOKE statement and the GRANT
statement. The locking strategy remains unchanged, even if you change
the grant.

[Owner.]TableName is the name to be assigned to the new table. Two tables cannot have
the same owner name and table name.

You can specify the owner of the new table if you have DBA authority. If
you do not have DBA authority, you can specify the owner as the name of
any group to which you belong. If you do not specify the owner name, your
DBEUserID, schema authorization name, procedure owner, or the ISQL
SET OWNER name becomes the owner of the new table. For more
information, refer to the section "Default Owner Rules" in the chapter
"Using ALLBASE/SQL."

TableLanguageName specifies the language for the new table. This name must be either
n-computer or the language of the DBEnvironment. The default is the
language of the DBEnvironment.

ColumnDefinition defines an individual column in a table. Each table must have at
least one column. The syntax for a CREATE TABLE column definition is
presented separately in another section below.

UniqueConstraint defines a uniqueness constraint for the table. Each table can have
multiple unique constraints, but can have only one specifying PRIMARY
KEY. The syntax for a UniqueConstraint is presented separately in
another section below.

ReferentialConstraint defines a referential constraint of this table with respect to
another (or the same) table. The referencing table (this one) and the
referenced table (the other one) satisfy the constraint if, and only if each
row in the referencing table contains either a NULL in a referencing
column, or values in the rows of the referencing columns equal the values
in the rows of the referenced columns. The syntax of a
ReferentialConstraint is presented separately in another section
below.

CheckConstraint defines a check constraint for the table. A table can have multiple
check constraints. The syntax for a check constraint is presented
Chapter 10 355

SQL Statements A - D
CREATE TABLE
separately in another section below.

UNIQUE HASH ON specifies a hash structure for the table. Only UNIQUE HASH
structures may be created, and updates on hash key columns are not
permitted (you must first delete, then insert the row with the new key
value).

HashColumnName specifies a column defined in the table that is to participate in the hash
key of this table.

PrimaryPages specifies the number of pages used as primary hash buckets. The
minimum is 1 and the maximum is determined by the formula
16*((|231)−2072). For good results, use a prime number.

HASH ON CONSTRAINTspecifies that the named unique constraint be managed through
the use of hash table storage. The unique constraint's columns become the
hash key columns.

ConstraintID is an optional name specified for the constraint. If none is supplied, one is
generated, as described under "Description" below.

IN PARTITION specifies what partition the table will be in for the purposes of audit
logging.

PartitionName specifies the partition for the table.

DEFAULT specifies that the default partition of the database will be used. The
number associated with the default partition is determined at the time the
INSERT, UPDATE , or DELETE is executed on the table. If the default
partition is NONE at that time, audit logging of the operation is not done.
Any change to the default partition number occurring in a START DBE
NEWLOG statement alters the partition number that audit logging uses on
tables that are in the default partition.

NONE specifies that this table is assigned to no partition, and so will have no
audit logging done on it.

CLUSTERING ON CONSTRAINTspecifies that the named unique or referential constraint
be managed through a clustered index structure rather than nonclustered.
The unique constraint's unique column list, or referential constraint's
referencing column list, becomes the clustered key.

IN DBEFileSetName1 causes the index and data pages in which table information is
stored to be allocated from DBEFiles associated with the specified
DBEFileSet. (Names of available DBEFileSets are recorded in the
SYSTEM.DBEFILESET view.) If a DBEFileSet name is not specified, the
table is created in the default TABLESPACE DBEFileSet. (Refer to syntax
for the SET DEFAULT DBEFILESET statement.)

You can create a nonhash table in an empty DBEFileSet, but cannot
INSERT any rows or create any indexes for the table until the DBEFileSet
has DBEFiles associated with it.

You cannot create a hash structure in an empty DBEFileSet.
356 Chapter 10

SQL Statements A - D
CREATE TABLE
SQL Syntax—Column Definition
ColumnName{ ColumnDataType

LongColumnType [IN DBEFileSetName2]}
[LANG = ColumnLanguageName]
[[NOT] CASE SENSITIVE]
[DEFAULT{ Constant

USER
NULL
CurrentFunction }]

[NOT NULL [{ UNIQUE
PRIMARY KEY} [CONSTRAINTConstraintID]]

REFERENCESRefTableName [(RefColumnName)][CONSTRAINTConstraintID]]
[...]

CHECK (SearchCondition) [CONSTRAINT ConstraintID]
[IN DBEFileSetName3]][...]

Parameters—Column Definition

ColumnName is the name to be assigned to one of the columns in the new table. No two
columns in the table can be given the same name. You can define a
maximum of 1023 columns in a table.

ColumnDataType indicates what type of data the column can contain. Some data types
require that you include a length. See the "Data Types" chapter for the
data types that can be specified.

LongColumnType specifies a LONG data type for the new column. At most 40 columns
with a LongColumnType may be defined in a single table.

DBEFileSetName2 specifies the DBEFileSet where long column data is to be stored. This
DBEFileSet may be different from that of the table. If a DBEFileSet is not
specified, the LONG data is stored in the DBEFileSet containing the table.

ColumnLanguageName specifies the language for the column. This can only be specified
for CHAR or VARCHAR columns. This name must be either n-computer or
the language of the DBEnvironment. The default is the language of the
DBEnvironment.

CASE SENSITIVE indicates that upper and lower case letters stored in the column are not
considered equivalent. If the column is defined as NOT CASE
SENSITIVE, then its upper and lower case letters are considered
equivalent. The default is CASE SENSITIVE. This clause is allowed only
with CHAR and VARCHAR columns.

DEFAULT specifies the default value to be inserted for this column. The default can
be a constant, NULL, or a date/time current function The data type of the
default value must be compatible with the data type of the column.
DEFAULT cannot be specified for LONG data type columns.

NOT NULL means the column cannot contain null values. If NOT NULL is specified,
any statement that attempts to place a null value in the column is
rejected. However, if atomicity is set to row level, only the NULL row
receives the error and the statement halts.
Chapter 10 357

SQL Statements A - D
CREATE TABLE
UNIQUE | PRIMARY KEY specifies a unique constraint placed on the column. The table
level constraint { UNIQUE | PRIMARY KEY } (ColumnName) is
equivalent. See the discussion on table level unique constraints below.

REFERENCES specifies a Referential Constraint placed on the column. This is equivalent
to the table level constraint FOREIGN KEY (ColumnName)
REFERENCES RefTableName [(RefColumnName)]. See the discussion on
table level referential constraint below.

CHECK specifies a check constraint placed on the column.

SearchCondition specifies a boolean expression that must not be false. The result of the
boolean expression may be unknown if a value in the expression is NULL.
See the discussion on a table level check constraint below. In addition, for a
column definition check constraint, the only column the search condition
can reference is ColumnName.

ConstraintID is an optional name specified for the constraint. If none is supplied, one is
generated, as described under "Description" below.

DBEFileSetName3 specifies the DBEFileSet to be used for storing the section associated
with the check constraint. If not specified, the default SECTIONSPACE
DBEFileSet is used. (Refer to syntax for the SET DEFAULT DBEFILESET
statement.)

SQL Syntax—Unique Constraint (Table Level)
{ UNIQUE

PRIMARY KEY}(ColumnName [,...]) [CONSTRAINTConstraintI D]

Parameters—Unique Constraint (Table Level)

UNIQUE Each ColumnName shall identify a column of the table, and the same
column shall not be identified more than once. Also, NOT NULL shall be
specified for each column in this unique constraint column list.

PRIMARY KEY In addition to the rules for the UNIQUE option, PRIMARY KEY may only
be specified once in a table definition. It provides a shorthand way of
referencing its particular unique constraint column list in a referential
constraint.

ColumnName [,...] is the unique constraint column list, or key list, of the constraint.
No two unique constraints may have identical column lists. The maximum
number of columns in a unique column list is 15. None of the columns may
be a LONG data type.

ConstraintID is an optional name specified for the constraint. If none is supplied, one is
generated, as described under "Description" below.

SQL Syntax—Referential Constraint (Table Level)
FOREIGN KEY (FKColumnName [,...])
REFERENCESRefTableName [(RefColumnName [,...])] [CONSTRAINTConstraintID]
358 Chapter 10

SQL Statements A - D
CREATE TABLE
Parameters—Referential Constraint (Table Level)

FKColumnName[,...] identifies the referencing column list. Each referencing column
shall be a column defined in the referencing table, and the same column
name shall not be identified more than once. The number of referencing
and referenced columns would be the same. The maximum number of
columns in a referencing column list is 15. None of the columns may be a
LONG data type.

RefTableName identifies the base table being referenced. If no RefColumnName list
follows this, the base table must contain a PRIMARY KEY unique
constraint with the correct number of columns, each of the correct data
type.

RefColumnName [,...] identifies the referenced column list. This column list must be
identical to a unique constraint column list of the referenced table.

ConstraintID is an optional name specified for the constraint. If none is supplied, one is
generated, as described under "Description" below.

SQL Syntax—Check Constraint (Table Level)
CHECK (SearchCondition) [CONSTRAINTConstraintID] [IN DBEFileSetName3]

Parameters—Check Constraint (Table Level)

CHECK specifies a check constraint.

SearchCondition specifies a boolean expression for the check constraint. The result of
the boolean expression must not be false for any row of the table. The
result may be unknown if a column that is part of the expression is NULL.
The search condition may only contain LONG columns if they are within
long column functions. (Refer to long column functions in the
"Expressions" and "Data Types" chapters.) The search condition cannot
contain a subquery, host variable, aggregate function, built-in variable,
local variable, procedure parameter, dynamic parameter, TID function,
current function, or USER. Refer to the chapter, "Constraints, Procedures,
and Rules," for more information on check constraints.

ConstraintID is an optional name specified for the constraint. If none is supplied, one is
generated, as described under "Description" below.

DBEFileSetName3 specifies the DBEFileSet to be used for storing the section associated
with the check constraint. If not specified, the default SECTIONSPACE
DBEFileSet is used. (Refer to syntax for the SET DEFAULT DBEFILESET
statement.)

Description

• PUBLIC, PUBLICROW, PUBLICREAD, and PRIVATE are locking modes. They define
the type of locking ALLBASE/SQL uses automatically when the table is accessed. The
LOCK TABLE statement can be used to override automatic locking during any
transaction, if the override is to a more restrictive lock. If no locking mode is specified,
Chapter 10 359

SQL Statements A - D
CREATE TABLE
PRIVATE is assumed. For complete information on locking, refer to the chapter
"Concurrency Control through Locks and Isolation Levels."

• For nonhash tables, CREATE TABLE simply enters the new table's definition into the
system catalog. Until you insert a row into the new table, the table does not occupy any
storage. For hash tables, the number of primary pages is allocated at CREATE TABLE
time.

• Data and index values of columns defined as NOT CASE SENSITIVE are not converted
to upper case when stored. However, during comparison, sorting, and indexing
operations, upper and lower case letters are considered equivalent. If a case sensitive
column is compared to a column that is not case sensitive, both columns are treated as
case sensitive. When defining a referential constraint, the case sensitivity of the
referenced and referencing columns must match.

The NOT CASE SENSITIVE clause has no effect if the character set does not
differentiate between upper and lower case, such as Chinese.

• Upper and lower case extended characters are treated as equivalent. They are
compared to the collation table of a specific language regardless of case.

• If no DEFAULT clause is given for a column in the table, an implicit DEFAULT NULL
is assumed. Any INSERT statement, which does not include a column for which a
default has been declared, causes the default value to be inserted into that column for
all rows inserted.

• For a CHAR column, if the specified default value is shorter in length than the target
column, it is padded with blanks. For a CHAR or VARCHAR column, if the specified
default value is longer than the target column, it is truncated.

• For a BINARY column, if the specified default value is shorter in length than the target
column, it is padded with zeroes. For a BINARY or VARBINARY column, if the specified
default value is longer than the target column, it is truncated.

• If a constraint is defined without a ConstraintID , one is generated of the following
form:

SQLCON_uniqueid

where the uniqueid is unique across all constraints. You cannot define a constraint
starting with SQLCON_. All constraint names must be unique for a given owner,
regardless of which table they are in.

• Unique constraints are managed through the use of B-tree indexes unless the
constraint is named and its name is referenced in the HASH ON CONSTRAINT clause.
If the name is referenced in the CLUSTERING ON CONSTRAINT clause, the B-tree
index is clustered.

• Referential constraints are managed through the use of virtual indexes. A virtual index
is created by ALLBASE/SQL. Virtual indexes can be clustered with respect to the
referencing columns' values if the constraint is named in the CLUSTERING ON
CONSTRAINT clause.

• The behavior by which integrity constraints are enforced is determined by the setting of
the SET DML ATOMICITY and SET CONSTRAINTS statements. Refer to the discussion
of these statements in this chapter for more information.
360 Chapter 10

SQL Statements A - D
CREATE TABLE
• Unique constraint indexes use space in this table's DBEFileSet; but referential
constraint virtual indexes use space in the referenced table's DBEFileSet.

• If the HASH or CLUSTERING ON CONSTRAINT clause is used without a constraint
name, the PRIMARY KEY of the table is used. If a PRIMARY KEY is not defined, an
error results.

• At most 15 columns may be used in a unique or referential constraint key. The
maximum length of the index key for unique or referential constraints is obtained from
the following formula:

 (NumberOfColumns + 3)* 2 + SumColumnLengths + 10 = 1024

An extra 2 bytes must be added for each column that allows NULLS or is a VARCHAR
data type.

• The data types of the corresponding columns in a referential constraint's referencing
and referenced column lists must be the same with the following exceptions. CHAR and
VARCHAR are allowed to refer to each other, as are the pairs BINARY and
VARBINARY, and NATIVE CHAR and NATIVE VARCHAR. DECIMAL columns must
exactly match in precision and scale. SMALLINT, INTEGER, FLOAT, and REAL
references cannot refer to a data type other than their same data type. LONG columns
may not be used in integrity constraints.

• You can use the same set of foreign key columns to reference two different primary
keys.

• The maximum size of a hash key is the same as a user-defined index key, which is
determined in the following formula:

 (NumberOfHashColumns +2)* 2 + SumKeyColumnLengths + 8 <= 1024

An extra 2 bytes must be added for each column that allows NULLS or is a VARCHAR
datatype.

At most 16 columns are allowed in a hash structure key.

• A hash structure may not be dropped, except by dropping the table upon which it is
defined with the DROP TABLE statement.

• You cannot create a hash structure as a PUBLICROW table.

• If the table is created with a HASH structure, enough empty data and mixed DBEFiles
must exist to contain the primary pages for the hash table data at the time the table is
created. Primary pages for hash tables cannot be placed in DBEFile0, an index
DBEFile, or a nonempty DBEFile. Similarly, data for nonhash tables cannot be placed
in a DBEFile containing primary pages for hash tables.

• The partition must be already created by the CREATE PARTITION statement, it must
be the default partition, or it must be specified as NONE.

• The partition number of a table's partition is recorded in any audit logging generated on
that table. Audit logging is done on any INSERT, UPDATE , or DELETE performed on a
table while the DBEnvironment is enabled for DATA audit logging, unless the table is
in the partition NONE.

• Audit logging is not done on any LONG column data for the table.
Chapter 10 361

SQL Statements A - D
CREATE TABLE
• If no partition is specified, the table is placed in the DEFAULT partition.

• To specify that a table is in no partition, the partition NONE can be specified.

• Partitions can be created and tables placed in them without DATA audit logging being
enabled for a DBEnvironment. However, the partition information is only used in audit
log records. Thus, partition information is not utilized until the DBEnvironment has
DATA audit logging enabled through the START DBE NEWLOG statement.

• If the IN DBEFileSetName1 clause is specified for the table or the IN
DBEFileSetName2 clause is specified for a long column, but the table owner does not
have TABLESPACE authority for the specified DBEFileSet, a warning is issued and the
default TABLESPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DEFAULT DBEFILESET statement.)

• If the IN DBEFileSetName3 clause is specified for a check constraint, but the table
owner does not have SECTIONSPACE authority for the specified DBEFileSet, a
warning is issued and the default SECTIONSPACE DBEFileSet is used instead. (Refer
to syntax for the GRANT statement and the SET DEFAULT DBEFILESET statement.)

Authorization

You must have RESOURCE or DBA authority to use this statement. To define referential
constraints, the table owner must have REFERENCES authority on the referenced table
and referenced columns, own the referenced table, or have DBA authority for the life of the
referential constraint. The REVOKE, DROP GROUP, and REMOVE FROM GROUPstatements are
not permitted if they remove REFERENCES authority from the table's owner until the
referential constraint or table is dropped or ownership is transferred to someone else.

To specify a DBEFileSetName for a long column, the table owner must have TABLESPACE
authority on the referenced DBEFileSet.

To specify a DBEFileSetName for a check constraint, the section owner must have
SECTIONSPACE authority on the referenced DBEFileSet.

Examples

1. Creating and accessing tables

This public table is accessible to any user or program that can start a DBE session. It is
also accessible by concurrent transactions.

 CREATE PUBLIC TABLE PurchDB.SupplyPrice
 (PartNumber CHAR(16) NOT NULL,
 VendorNumber INTEGER NOT NULL,
 VendPartNumber CHAR(16) NOT NULL,
 UnitPrice DECIMAL(10,2),
 DeliveryDays SMALLINT DEFAULT 0,
 DiscountQty SMALLINT)
 IN PARTITION PartsPart
 IN PurchFS;

 REVOKE ALL PRIVILEGES ON PurchDB.SupplyPrice FROM PUBLIC

 GRANT SELECT,UPDATE ON Purch.DB.SupplyPrice TO Accounting
362 Chapter 10

SQL Statements A - D
CREATE TABLE
Now only the DBA and members of authorization group Accounting can access the
table. Later, the accounting department manager is given control.

 TRANSFER OWNERSHIP OF PurchDB.SupplyPrice TO MgrAcct

2. Creating a table using constraints and LONG columns

In this example, the tables are created with the PUBLIC option so as to be accessible to
any user or program that can start a DBE session. RecDB.Clubs defines those clubs
which can have members and hold events, as shown by the constraint Members_FK.
RecDB.Members defines those members who can have events for certain clubs, as
shown by constraint Events_FK. The LONG column Results is used to hold a text file
containing the results of a completed event. No date can be entered for an event that is
prior to the current date. RecDB.Members and RecDB.Events are both created
PUBLICROW since they are small tables on which a large amount of concurrent access
is expected.

 CREATE PUBLIC TABLE RecDB.Clubs
 (ClubName CHAR(15) NOT NULL
 PRIMARY KEY CONSTRAINT Clubs_PK,
 ClubPhone SMALLINT,
 Activity CHAR(18))
 NOT CASE SENSITIVE
 IN RecFS

 CREATE PUBLICROW TABLE RecDB.Members
 (MemberName CHAR(20) NOT NULL,
 Club CHAR(15) NOT NULL,
 MemberPhone SMALLINT,
 PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
 FOREIGN KEY (Club) REFERENCES RecDB.Clubs (ClubName)
 CONSTRAINT Members_FK)
 IN RecFS

 CREATE PUBLICROW TABLE RecDB.Events
 (SponsorClub CHAR(15),
 Event CHAR(30),
 Date DATE DEFAULT CURRENT_DATE,

CHECK (Date >= '1990-01-01') CONSTRAINT Events_Date_Ck,
 Time TIME,
 Coordinator CHAR(20),
 Results LONG VARBINARY(10000) IN LongFS,
 FOREIGN KEY (Coordinator, SponsorClub)
 REFERENCES RecDB.Members (MemberName, Club)
 CONSTRAINT Events_FK)
 IN RecFS
Chapter 10 363

SQL Statements A - D
CREATE TABLE
3. Creating a table with a hash structure

 BEGIN WORK

Statements to create a DBEFile and add it to a DBEFileSet should be in the same
transaction as the statement to create the hash structure. This makes it impossible for
other transactions to use the new DBEFile for hashing before the hash structure is
created.

 CREATE DBEFILE PurchHashF1 WITH PAGES = 120,
 NAME = 'PurchHF1',
 TYPE = TABLE
 ADD DBEFILE PurchHashF1
 TO DBEFILESET PurchFS

 CREATE PUBLIC TABLE PurchDB.Vendors
 (VendorNumber INTEGER NOT NULL,
 VendorName CHAR(30) NOT NULL,
 ContactName CHAR(30),
 PhoneNumber CHAR(15),
 VendorStreet CHAR(30) NOT NULL,
 VendorCity CHAR(20) NOT NULL,
 VendorState CHAR(2) NOT NULL,
 VendorZipCode CHAR(10) NOT NULL,
 VendorRemarks VARCHAR(60))
 UNIQUE HASH ON (VendorNumber) PAGES = 101
 IN PurchFS
 COMMIT WORK

4. Specify a DBEFileSet for a Check Constraint in the Column Definition

 CREATE PUBLIC TABLE RecDB.Events
 (SponsorClub CHAR(15),
 Event CHAR(30),
 Date DATE DEFAULT CURRENT_DATE,
 CHECK (Date >= '1990-01-01') CONSTRAINT Events_Date_Ck
 IN RecFS,
 Time TIME,
 Coordinator CHAR(20),
 Results LONG VARBINARY(10000) IN LongFS,
 FOREIGN KEY (Coordinator, SponsorClub)
 REFERENCES RecDB.Members (MemberName, Club)
 CONSTRAINT Events_FK)
 IN RecFS;
364 Chapter 10

SQL Statements A - D
CREATE TEMPSPACE
CREATE TEMPSPACE
The CREATE TEMPSPACE statement defines and creates a temporary storage space known
as a TempSpace. A TempSpace is a location where ALLBASE/SQL creates temporary files
to store temporary data when performing a sort, if disk space permits.

Scope

ISQL or Application Programs

SQL Syntax
CREATE TEMPSPACE TempSpaceName
WITH [MAXFILEPAGES = MaxTempFileSize,] LOCATION =’PhysicalLocation’

Parameters

TempSpaceName is the logical name to be assigned to the new TempSpace. More than one
TempSpace can be defined but only one per physical location. All
TempSpace names must be unique within the DBEnvironment.

MaxTempFileSize specifies the maximum number of 4096-byte pages allocated for each
temporary file in the PhysicalLocation . The number of pages must be a
number between 128 and 524,284. The default is 256. Each file may grow
in size up to MaxTempFileSize .

PhysicalLocation identifies the directory path where the TempSpace will be located.
The directory must exist prior to defining a TempSpace. A TempSpace is
created relative to the directory where the DBECon file resides unless an
absolute path name is specified.

The maximum length for the path name is 35 bytes.

Description

• If no TempSpaces are defined for a DBEnvironment, sorting is done in the /tmp
directory.

• It is recommended that each TempSpace reside in a different disk partition. If
TempSpaces are located in different disk partitions, then the disk space of those
partitions is available for creating temporary files. Creating a single TempSpace per
partition is sufficient, because all TempSpaces on a particular partition would share the
space in that partition.

• When the size of a temporary file exceeds MaxTempFileSize pages, ALLBASE/SQL
opens a temporary file in another defined TempSpace. If additional TempSpace is not
available, then temporary files are created in the same TempSpace, if space permits.

• The total temporary space required for a DBEnvironment depends on the size of the
tables to be sorted or indexes to be created. It also depends on the expected number of
concurrent sort operations on the system at one time. The MaxTempFileSize (of each
Chapter 10 365

SQL Statements A - D
CREATE TEMPSPACE
file) should fit within the space available in the partition where the TempSpace is
located. Use the HP-UX bdf command to determine the space available in a partition.

• The location and characteristics of the TempSpace are stored in the system catalog.
TempSpace files are physically created only when needed. When the TempSpace is no
longer needed (the present task completes), the temporary file or files are deleted and
the space is available for use again.

• The directory specified must be accessible to the DBEnvironment. The directory must
be accessible to hpdb for both read and write operations. If this read-write (rw)
capability is not granted or if the directory does not exist when a TempSpace is created,
errors are returned.

If the TempSpace cannot be accessed when a statement requiring temporary space is
issued, a system error is returned due to failure in opening the temporary file.

• To delete the definition of a TempSpace, use the DROP TEMPSPACE statement.

Authorization

You must have DBA authority to use this statement. hpdb must have write permission in
the directory where the TempSpace files will reside.

Example

TempSpace temporary files are created in the /sort/PurchDB directory when SQL
Statements require sorting.

 CREATE TEMPSPACE ThisTempSpace WITH MAXFILEPAGES = 360,
 LOCATION = '/sort/PurchDB'

TempSpace temporary files are no longer available in the /sort/PurchDB, directory but can
be allocated under /tmp as needed.

 DROP TEMPSPACE ThisTempSpace
366 Chapter 10

SQL Statements A - D
CREATE VIEW
CREATE VIEW
The CREATE VIEW statement creates a view of a table, another view, or a combination of
tables and views.

Scope

ISQL or Application Programs

SQL Syntax
CREATE VIEW [Owner.] ViewName [(ColumnName[,...])]
AS QueryExpression [IN DBEFileSetName]
[WITH CHECK OPTION [CONSTRAINTConstraintID]]

Parameters

[Owner.] ViewName is the name to be assigned to the view. One owner cannot own more
than one view with the same name. The view name cannot be the same as
the table name.

You can specify the owner of the new view if you have DBA authority.
Non-DBA users can specify as owner the name of any group of which they
are a member. If you do not specify the owner name, your DBEUserID,
schema authorization name, procedure owner, or the ISQL SET OWNER
name becomes the owner of the new table. For more information, refer to
the section "Default Owner Rules" in the chapter "Using ALLBASE/SQL."

ColumnName specifies the names to be assigned to the columns of the new view. The
names are specified in an order corresponding to the columns of the query
result produced by the query expression. You can specify a maximum of
1023 columns for a view.

You must specify the column names if any column of the query result is
defined by a computed expression, aggregate function, reserved word, or
constant in the select list of the query expression. You must also specify
column names if the same column name (possibly from different table)
appears in the select list more than once.

If you do not specify column names, the columns of the view are assigned
the same names as the columns from which they are derived. The * is
expanded into the appropriate list of column names.

QueryExpression is the query expression from which the view is derived. The select list
can contain as many as 1023 columns. The query expression may refer to
tables or views or a combination of tables and views. The query expression
may include UNION and/or UNION ALL operations.

DBEFileSetName specifies the DBEFileSet to be used for storing the section associated
with the view. If not specified, the default SECTIONSPACE DBEFileSet is
used. (Refer to syntax for the SET DEFAULT DBEFILESET statement.)
Chapter 10 367

SQL Statements A - D
CREATE VIEW
ConstraintID is the optional name of the view check constraint.

Description

• A view definition with * in the select list generates a view that refers to all the columns
that exist in the base table(s) at the time the view is
created . Adding new columns to the base tables does not cause these columns to be
added to the view.

• A view is said to be updatable when you can use it in DELETE, UPDATE, or INSERT
statements to modify the base table. A view is updatable only if the query from which it
is derived matches the following updatability criteria:

• No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT
clause, and no aggregate appears in its select list.

• The FROM clause specifies exactly one table, which must be an updatable table. See
"Updatability of Queries" in the "SQL Queries" chapter.

• To use INSERT and UPDATE statements through views, the select list in the view
definition must not contain any arithmetic expressions. It must contain only column
names.

• For DELETE WHERE CURRENT and UPDATE WHERE CURRENT statements operating
on cursors defined with views, the view definition must not contain subqueries.

• For noncursor UPDATE, DELETE, and INSERT statements, the view definition must
not contain any subqueries which contain in their FROM clauses a table reference to
the same table as the outermost FROM clause.

• You cannot define an index on a view or alter a view.

• You cannot use host variables, local variables, procedure parameters, or dynamic
parameters in the CREATE VIEW statement.

• Creating a view causes a section to be stored in the system catalog. A description of the
section appears in the SYSTEM.SECTION view.

• If you use the CREATE VIEW statement within the CREATE SCHEMA statement, the
default owner of the view is the schema's AuthorizationName.

• When you create a view, an entry containing the SELECT statement in the view
definition is stored in the SYSTEM.VIEWDEF view in the system catalog. The view's
name is stored in SYSTEM.TABLE, and the description of its columns appears in
SYSTEM.COLUMN.

• If you use the CREATE VIEW statement with a CREATE PROCEDURE statement, the
default owner is the procedure owner.

• Any attempt to write through a view defined having a WITH CHECK OPTION must
satisfy any conditions specified in the query specification. All underlying view
definitions are also checked. Any constraints in the table on which the view is based are
also checked.

• View check constraints are not deferrable.

• To drop a constraint on a view, you must drop the view and recreate it without the
368 Chapter 10

SQL Statements A - D
CREATE VIEW
constraint.

• You cannot use an ORDER BY clause when defining a view.

• If the IN DBEFileSetName clause is specified, but the view owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DBEFILESET statement.)

Authorization

You can create a view if you have SELECT or OWNER authority for the tables and views
mentioned in the FROM clause of the SELECT statement or if you have DBA authority. To
operate on a table on which the view is based, the authority you need depends on whether
or not you own the view. The authority needed in either case is specified as follows:

• If you own the view, you need authority for the table(s) or view(s) on which the view is
based.

• If you do not own the view, you need authority granted specifically for the view. To
specify a DBEFileSetName for a view, the view owner must have SECTIONSPACE
authority on the referenced DBEFileSet.

Examples

1. The following view provides information on the value of current orders for each vendor.
Because the view is derived by joining tables, the base tables cannot be updated via this
view.

 CREATE VIEW PurchDB.VendorStatistics
 (VendorNumber,
 VendorName,
 OrderDate,
 OrderQuantity,
 TotalPrice)
 AS SELECT PurchDB.Vendors.VendorNumber,
 PurchDB.Vendors.VendorName,
 OrderDate,
 OrderQty,
 OrderQty*PurchasePrice
 FROM PurchDB.Vendors,
 PurchDB.Orders,
 PurchDB.OrderItems
 WHERE PurchDB.Vendors.VendorNumber =
 PurchDB.Orders.VendorNumber
 AND PurchDB.Orders.OrderNumber =
 PurchDB.OrderItems.OrderNumber
 IN PurchDBFileSet

2. The following view is updatable because it is created from one table. When the table is
updated through the view, column values in the SET or VALUES clause are checked
against the WHERE clause in the view definitions.
Chapter 10 369

SQL Statements A - D
CREATE VIEW
If the table on which the view is based has any check constraints of its own, these
conditions are checked along with the WITH CHECK OPTION of the view.

 CREATE VIEW RecDB.EventView
 (Event,
 Date)
 AS SELECT RecDB.Event,
 RecDB.Date
 FROM RecDB.Events
 WHERE Date >= CURRENT_DATE
 WITH CHECK OPTION CONSTRAINT EventView_WCO
370 Chapter 10

SQL Statements A - D
DECLARE CURSOR
DECLARE CURSOR
The DECLARE CURSOR statement associates a cursor with a specified SELECT or EXECUTE
PROCEDURE statement.

Scope

Application Programs and Procedures

SQL Syntax
DECLARECursorName [IN DBEFileSetName] CURSOR FOR
{ { QueryExpression

SelectStatementName }[FOR UPDATE OF { ColumnName}[,...]
FOR READ ONLY]

ExecuteProcedureStatement
ExecuteStatementName }

Parameters

CursorName is the name assigned to the newly declared cursor. Two cursors in an
application program cannot have the same name. The cursor name must
conform to the SQL syntax rules for a basic name, described in the
"Names" chapter of this manual, and must also conform to the
requirements of the application programming language.

DBEFileSetName identifies the DBEFileSet in which ALLBASE/SQL is to store the
section associated with the cursor. If not specified, the default
SECTIONSPACE DBEFileSet is used.

QueryExpression is a static SELECT statement. It determines the rows and columns to
be processed by means of a select cursor. The rows defined by the query
expression when you open the cursor are called the active set of the cursor.
Parentheses are optional.

The BULK and INTO clauses and dynamic parameters are disallowed.

SelectStatementName is specified when declaring a select cursor for a dynamically
preprocessed SELECTstatement. It is the StatementName specified in the
related PREPARE statement.

FOR UPDATE OFColumnName specifies the column or columns which may be updated
using this cursor. The order of the column names is not important. The
column(s) to be updated need not appear in the select list of the SELECT
statement. If you use a FOR UPDATE clause, the query expression must
be updatable.

FOR READ ONLY indicates that data is to be read and not updated. Specify this clause
when you preprocess and application using the FIPS 127.1 flagger, and the
cursor you are declaring reads and does not update columns. FOR READ
ONLY assures optimum performance in this case.
Chapter 10 371

SQL Statements A - D
DECLARE CURSOR

T

ExecuteProcedureStatement is a static EXECUTE PROCEDURE statement. It
determines the rows and columns of the query result set or sets to be
processed by means of a procedure cursor. The rows defined when you open
and advance the cursor are called the active set of the cursor.

ExecuteStatementName is specified when declaring a procedure cursor for a
dynamically preprocessed EXECUTE PROCEDURE statement. It is the
StatementName specified in the related PREPARE statement.

Dynamic parameters are allowed in ExecuteStatementName .

Description

• There are two types of cursors. A select cursor is a pointer used to indicate the current
row in a set of rows retrieved by a SELECTstatement. A procedure cursor is a pointer
used to indicate the current result set and row in result sets retrieved by SELECT
statements in a procedure and returned to a calling application or ISQL.

• The DECLARE CURSOR statement cannot be used interactively.

• A cursor must be declared before you refer to it in other cursor manipulation
statements.

• The active set is defined and the value of any host variables in the associated SELECTor
EXECUTE PROCEDURE statement is evaluated when you issue the OPEN statement.

• Use the FETCH statement to move through the rows of the active set.

• For procedure cursors only, use the ADVANCE statement to move to the next active set
(query) within a procedure.

• For select cursors only, you can operate on the current row in the active set (the most
recently fetched row) with the UPDATE WHERE CURRENTand DELETE WHERE CURREN
statements.

When using the Read Committed or Read Uncommitted isolation levels, use the
REFETCH statement to verify that the row you want to update or delete still exists.

• A select cursor is said to be updatable when you can use it in DELETE WHERE CURRENT
OF CURSOR or UPDATE WHERE CURRENT OF CURSOR statements to modify the base
table. A select cursor is updatable only if the query from which it is derived matches the
following updatability criteria:

• No ORDER BY, UNION, or UNION ALL operation is specified.

• No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT
clause, and no aggregate appears in its select list.

• The FROM clause specifies exactly one table, whether directly or through a view. If it
specifies a table, the table must be an updatable table. If it specifies a view, the view
definition must satisfy the cursor updatability rules stated here.

• For the UPDATE WHERE CURRENT statement, you can only update columns in the
FOR UPDATE list.

• For DELETE WHERE CURRENT and UPDATE WHERE CURRENT statements, the
SelectStatement parameter must not contain any subqueries or reference any
372 Chapter 10

SQL Statements A - D
DECLARE CURSOR
view whose view definition contains a subquery.

• For select cursors only, use the UPDATE statement with the CURRENT OF option to
update columns; you can update the columns identified in the FOR UPDATE OF clause
of the DECLARE CURSOR statement. The restrictions that govern updating via a select
cursor are described above.

• For select cursors only, use the DELETE WHERE CURRENT statement to delete a row in
the active set.

• Use the CLOSE statement when you are finished operating on the active set or (for a
procedure cursor) set(s).

• Declaring a cursor causes a section to be stored in the system catalog. A description of
the section appears in the SYSTEM.SECTION view.

• The ExecuteStatementName , SelectStatementName , and
ExecuteProcedureStatement parameters of the DECLARE CURSOR statement are
not allowed within a procedure.

• Host variables for return status and input and output parameters are allowed in
ExecuteProcedureStatement , which is a static EXECUTE PROCEDURE statement.
The appropriate values for input host variables must be set before the OPENstatement.
The output host variables, including return status and output parameters from
executing the procedure are accessible after the CLOSE statement.

• Dynamic parameters for return status and input and output parameters of the
procedure are allowed in ExecuteStatementName . The appropriate values for any
input dynamic parameters or host variables must be placed into the SQLDA or host
variables before issuing the OPEN statement. The USING DESCRIPTOR clause of the
FETCH statement is used to identify where to place selected rows and properly display
the returned data. Output host variables or values in the SQLDA, including return
status and output parameters from executing the procedure, are accessible after the
CLOSE statement executes.

• If the IN DBEFileSetName clause is specified, but the module owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DEFAULT DBEFILESET statement.)

Authorization

For a select cursor, you must have SELECT or OWNER authority for all the tables or views
listed in the FROM clause, or you must have DBA authority.

For a procedure cursor, you must have OWNER or EXECUTE authority on the procedure
or DBA authority.

If you specify the FOR UPDATE clause, you must also have authority to update the
specified columns.

To specify a DBEFileSetName for a cursor, the cursor owner must have SECTIONSPACE
authority on the referenced DBEFileSet.
Chapter 10 373

SQL Statements A - D
DECLARE CURSOR
Examples

1. Deleting with a cursor

The active set of this cursor will contain values for the OrderNumber stored in
:OrdNum.

 DECLARE DeleteItemsCursor CURSOR FOR
 SELECT ItemNumber,OrderQty FROM PurchDB.OrderItems
 WHERE OrderNumber = :OrdNum

Statements setting up a FETCH-DELETE WHERE CURRENT loop appear here.

 OPEN DeleteItemsCursor

Statements for displaying values and requesting whether the user wants to delete the
associated row go here.

 FETCH DeleteItemsCursor
 INTO :Lin :Linnul, :Orq :Orqnul

 DELETE FROM PurchDB.OrderItems
 WHERE CURRENT OF DeleteItemsCursor
 .
 .
 .
 CLOSE DeleteItemsCursor

2. Updating with a cursor

A cursor for use in updating values in column QtyOnHand is declared and opened.

 DECLARE NewQtyCursor CURSOR FOR
 SELECT PartNumber,QtyOnHand FROM PurchDB.Inventory
 FOR UPDATE OF QtyOnHand

 OPEN NewQtyCursor

Statements setting up a FETCH-UPDATE loop appear next.

 FETCH NewQtyCursor INTO :Num :NumNul, :Qty :Qtynul

Statements for displaying a row to and accepting a new QtyOnHand value from the
user go here. The new value is stored in :NewQty.

 UPDATE PurchDB.Inventory
 SET QtyOnHand = :NewQty
 WHERE CURRENT OF NewQtyCursor
 .
 .
 .
 CLOSE NewQtyCursor
374 Chapter 10

SQL Statements A - D
DECLARE CURSOR
3. Bulk fetching

In some instances, using the BULK option is more efficient than advancing the cursor a
row at a time through many rows, especially when you want to operate on the rows with
non-ALLBASE/SQL statements.

 DECLARE ManyRows CURSOR FOR
 SELECT *
 FROM PurchDB.Inventory

 OPEN ManyRows

 BULK FETCH ManyRows INTO :Rows, :Start, :NumRow

4. Dynamically preprocessed SELECT

If you know in advance that the statement to be dynamically preprocessed is not a
SELECTstatement, you can prepare it and execute it in one step. In other instances, it is
more appropriate to prepare and execute the statement in separate operations.

 EXECUTE IMMEDIATE :Dynam1

The statement stored in :Dynam1 is dynamically preprocessed.

 PREPARE Dynamic1 FROM :Dynam1

If Dynamic1 is not a SELECTstatement, the SQLD field of the SQLDA data structure is
0, and you use the EXECUTE statement to execute the dynamically preprocessed
statement.

 DESCRIBE Dynamic1 INTO SQLDA

 EXECUTE Dynamic1

If Dynamic1 is a SELECT statement and the language you are using supports
dynamically defined SELECT statements, use a cursor to manipulate the rows in the
query result.

After you open the cursor and place the appropriate values into the SQL Descriptor
Area (SQLDA), use the USING DESCRIPTOR clause of the FETCHstatement to identify
where to place the rows selected and properly display the returned data.

 DECLARE Dynamic1Cursor CURSOR FOR Dynamic1

 OPEN Dynamic1Cursor

 FETCH Dynamic1Cursor USING DESCRIPTOR SQLDA
 .
 .
 .
 CLOSE Dynamic1Cursor

5. Refer to the ALLBASE/SQL Advanced Application Programming Guide for a
pseudocode example of procedure cursor usage.
Chapter 10 375

SQL Statements A - D
DECLARE Variable
DECLARE Variable

The DECLAREVariable statement lets you define a local variable within a procedure. Local
variables are used only within the procedure.

Scope

Procedures only

SQL Syntax
DECLARE { LocalVariable}[,...] VariableType { LANG = VariableLangName]
[DEFAULT {Constant

NULL
 CurrentFunction}][NOT NULL]

Parameters

LocalVariable specifies the name of the local variable. A variable name may not be the
same as a parameter name in the same procedure.

VariableType specifies the data type of the local variable. All the ALLBASE/SQL data
types are permitted except LONG data types.

VariableLangName specifies the language of the data (for character data types only) to
be stored in the local variable. This name must be either n-computer or the
current language of the DBEnvironment.

DEFAULT specifies the default value of the local variable. The default can be a
constant, NULL, or a date/time current function. The data type of the
default value must be compatible with the data type of the variable.

NOT NULL means the variable cannot contain null values. If NOT NULL is specified,
any statement that attempts to place a null value in the variable is
rejected.

Description

• Declarations must appear at the beginning of the stored procedure body, following the
first BEGIN statement.

• No two local variables or parameters in a procedure may have the same name.

• Local variable declarations may not be preceded by labels.

• If no DEFAULT clause is given for a column in the table, an implicit DEFAULT NULL
is assumed. Any INSERT statement, which does not include a column for which a
default has been declared, causes the default value to be inserted into that column for
all rows inserted.

• For a CHAR column, if the specified default value is shorter in length than the target
column, it is padded with blanks. For a CHAR or VARCHAR column, if the specified
376 Chapter 10

SQL Statements A - D
DECLARE Variable
default value is longer than the target column, it is truncated.

• For a BINARY column, if the specified default value is shorter in length than the target
column, it is padded with zeroes. For a BINARY or VARBINARY column, if the specified
default value is longer than the target column, it is truncated.

Authorization

Anyone can use the DECLARE statement in a procedure.

Example

 DECLARE input, output CHAR(80);
 DECLARE nrows INTEGER;
 DECLARE PartNumber CHAR(16) NOT NULL;
Chapter 10 377

SQL Statements A - D
DELETE
DELETE
The DELETE statement deletes a row or rows from a table.

Scope

ISQL or Application Programs

SQL Syntax
DELETE [WITH AUTOCOMMIT] FROM {[Owner.] TableName

[Owner.] ViewName} [WHERESearchCondition

Parameters

WITH AUTOCOMMITexecutes a COMMIT WORK automatically at the beginning of the
DELETE statement and also after each batch of rows is deleted.

[Owner.] TableName designates a table from which any rows satisfying the search
condition are to be deleted.

[Owner.] ViewName designates a view based on a single table. ALLBASE/SQL finds
which rows of the view satisfy the search condition; the corresponding
rows of the view's base table are deleted. Refer to the CREATE VIEW
statement for restrictions governing modifications via a view.

WHERESearchCondition specifies which rows are to be deleted. If no rows satisfy the
search condition, the table is not changed. If the WHERE clause is
omitted, all rows are deleted.

Description

• If all the rows of a table are deleted, the table is empty but continues to exist until you
issue a DROP TABLE statement.

• Use the TRUNCATE TABLE statement to delete all rows from a table instead of the
DELETE statement. The TRUNCATE TABLE statement is faster, and generates fewer log
records.

• If ALLBASE/SQL detects an error during a DELETE statement, the action taken will
vary, depending on the setting of the SET DML ATOMICITY, and the SET CONSTRAINTS
statements. Refer to the description of both of these statements in this chapter for more
details.

• Using DELETE with views requires that the views be based on updatable queries. See
"Updatability of Queries" in the "SQL Queries" chapter.

• The target table of the DELETE statement is specified with TableName or is the base
table underlying the view definition of ViewName. It must be an updatable table, and it
must not appear in the FROM clause of any subquery specified in the
SearchCondition parameter or any subquery of ViewName.
378 Chapter 10

SQL Statements A - D
DELETE
• The search condition is effectively executed for each row of the table or view before any
row is deleted. If the search condition contains a subquery, each subquery in the search
condition is effectively executed for each row of the table or view and the results used in
the application of the search condition to the given row. If any executed subquery
contains an outer reference to a column of the table or view, the reference is to the value
of that column in the given row.

• A deletion from a table with a primary key (a referenced unique constraint) fails if any
primary key row affected by the DELETE statement is currently referred to by some
referencing foreign key row. In order to delete such referenced rows, you must first
change the referencing foreign key rows to refer to other primary key rows, to contain a
NULL value in one of the foreign key columns, or to delete these referencing rows.
Alternatively, you can defer error checking (with the SET CONSTRAINTstatement) and
fix the error later.

• The DELETE syntax is unchanged for use with LONG columns. It is limited in that a
LONG column cannot be used in the WHERE clause. When LONG data is deleted, the
space it occupied in the DBEnvironment is released when your transaction ends. But
the physical operating system data file created when you selected the long field earlier
still exists and you are responsible for removing it if you desire.

• A check constraint search condition defined on a table never prevents a row from being
deleted, whether or not constraint checking is deferred.

• A rule defined with a StatementType of DELETE will affect DELETE statements
performed on the rule's target table. When the DELETE is performed, each rule defined
on that operation for the table is considered. If the rule has no condition, it will fire for
all rows affected by the statement and invoke its associated procedure with the
specified parameters on each row. If the rule has a condition, it will evaluate the
condition on each row. The rule will fire on rows for which the condition evaluates to
TRUE and invoke the associated procedure with the specified parameters for each row.
Invoking the procedure could cause other rules, and thus other procedures, to be
invoked if statements within the procedure trigger other rules.

• If a DISABLE RULES statement is in effect, the DELETE statement will not fire any
otherwise applicable rules. When a subsequent ENABLE RULES is issued, applicable
rules will fire again, but only for subsequent DELETE statements, not for those
processed when rule firing was disabled.

• In a rule defined with a StatementType of DELETE, any column reference in the
Condition or any ParameterValue will refer to the value of the column as it exists in
the database before it is removed by the DELETE statement, regardless of the use of
OldCorrelationName , TableName , or NewCorrelationName in the rule definition.

• The set of rows to be affected by the DELETE statement is determined before any rule
fires, and this set remains fixed until the completion of the rule. If the rule adds to,
deletes from, or modifies this set, such changes are ignored.

• When a rule is fired by this statement, the rule's procedure is invoked after the changes
have been made to the database for that row and all previous rows. The rule's
procedure, and any chained rules, will thus see the state of the database with the
current partial execution of the statement.

• If an error occurs during processing of any rule considered during execution of this
Chapter 10 379

SQL Statements A - D
DELETE
statement (including execution of any procedure invoked due to a rule firing), the
statement and any procedures invoked by any rules have no effect, regardless of the
current DML ATOMICITY. Nothing has been altered in the DBEnvironment as a result
of this statement or the rules it fired. Error messages are returned in the normal way.

• When the WITH AUTOCOMMIT clause is not used, rows that qualify according to the
SearchCondition are deleted internally in batches by ALLBASE/SQL.

When the WITH AUTOCOMMIT clause is used, a COMMIT WORK statement is executed
automatically at the beginning of the DELETE statement and also after each batch of
rows is deleted. This can reduce both log-space and shared-memory requirements for
the DELETE statement. You cannot control the number of rows in each batch.

• The WITH AUTOCOMMIT clause cannot be used in these cases:

• When deleting rows from a TurboIMAGE data set.

• If a SET CONSTRAINTS DEFERRED statement is in effect.

• If a rule exists on the table and rules are enabled for the DBEnvironment. Consider
issuing a DISABLE RULES statement to temporarily disable rules for the
DBEnvironment, issuing the DELETE WITH AUTOCOMMIT statement, and then
issuing an ENABLE
RULES statement to turn rule checking back on.

• In the DELETE WHERE CURRENT statement.

• If an active transaction exists when the DELETE WITH AUTOCOMMITis issued, then the
existing transaction is committed.

• When WITH AUTOCOMMIT is used, any previously issued SET DML ATOMICITY
statements are ignored. For the duration of that DELETEcommand, row-level atomicity
is used.

• If the DELETE WITH AUTOCOMMIT statement fails, it may be true that some (but not
all) rows that qualify have been deleted.

• The DELETE WITH AUTOCOMMIT statement can be used in procedures, but a rule may
not execute that procedure.

Authorization

If you specify the name of a table, you must have DELETE or OWNER authority for that
table or you must have DBA authority.

If you specify the name of a view, you must have DELETE or OWNER authority for that
view or you must have DBA authority. Also, the owner of the view must have DELETE or
OWNER authority with respect to the view's base tables, or the owner must have DBA
authority.

Example

Rows for orders created prior to July 1983 are deleted.

 DELETE WITH AUTOCOMMIT FROM PurchDB.Orders
 WHERE OrderDate < '19830701'
380 Chapter 10

SQL Statements A - D
DELETE WHERE CURRENT
DELETE WHERE CURRENT
The DELETE WHERE CURRENT statement deletes the current row of an active set. The
current row is the row pointed to by a cursor after the FETCH or REFETCH statement is
issued.

Scope

Application Programs

SQL Syntax
DELETE FROM {[Owner.] TableName

[Owner.] ViewName} WHERE CURRENT OFCursorName

Parameters

[Owner.] TableName designates the table from which you are deleting a row.

[Owner.] ViewName designates a view based on a single table. ALLBASE/SQL finds the
row of the base table corresponding to the row of the view indicated by the
cursor, and deletes the row from the base table. Refer to the CREATE VIEW
statement for restrictions governing modifications via a view.

CursorName specifies the name of a cursor. The cursor must be open and positioned on a
row of the table. The DELETE WHERE CURRENTstatement deletes this row,
leaving the cursor with no current row. (The cursor is said to be positioned
between the preceding and following rows of the active set). You cannot
use the cursor for further updates or deletions until you reposition it using
a FETCH statement, or until you close and reopen the cursor.

Description

• This statement cannot be used interactively.

• Although the SELECT statement associated with the cursor may specify only some of
the columns in a table, the DELETE WHERE CURRENT statement deletes an entire row.

• The DELETE WHERE CURRENTstatement can be used on an active set associated with a
cursor defined using the FOR UPDATE clause.

• Do not use this statement in conjunction with rows retrieved using a BULK FETCH.

• Using the DELETE statement with the WHERE CURRENT OF CURSOR clause
requires that the cursor be defined on the basis of an updatable query. See
"Updatability of Queries" in the "SQL Queries" chapter.

• The target table of the DELETE WHERE CURRENT statement is specified with
TableName or is the base table underlying ViewName. The base table restrictions that
govern deletions via cursors are presented in the description of the DECLARE CURSOR
statement.
Chapter 10 381

SQL Statements A - D
DELETE WHERE CURRENT
• If a referential constraint should be violated during processing of the DELETE
statement, the row is not deleted (unless error checking is deferred and the violation is
corrected before you COMMIT WORK). Refer to the discussion of the SET CONSTRAINTS
statement in this chapter for more information.

• A deletion from a table with a primary key (a referenced unique constraint) will fail if
any primary key row affected by the DELETEstatement is currently referred to by some
referencing foreign key row. In order to delete such referenced rows, you must first
change the referencing foreign key rows to refer to other primary key rows, to contain a
NULL value in one of the foreign key columns, or to delete these referencing rows.
Alternatively, you can defer error checking (with the SET CONSTRAINTstatement) and
fix the error later.

• The DELETE syntax is unchanged for use with LONG columns. When LONG data is
deleted, the space it occupied in the DBEnvironment is released when your transaction
ends. But the physical operating system data file created when you selected the long
field earlier still exists and you are responsible for removing it if you desire.

• A rule defined with a StatementType of DELETE will affect DELETE WHERE CURRENT
statements performed on the rule's target table. When the DELETE WHERE CURRENTis
performed, each rule defined on that operation for the table is considered. If the rule
has no condition, it will fire and invoke its associated procedure with the specified
parameters on the current row. If the rule has a condition, it will evaluate the condition
and fire if the condition evaluates to TRUE and invoke the associated procedure with
the specified parameters on the current row. Invoking the procedure could cause other
rules, and thus other procedures, to be invoked if statements within the procedure
trigger other rules.

• If a DISABLE RULES statement is in effect, the DELETE WHERE CURRENT statement
will not fire any otherwise applicable rules. When a subsequent ENABLE RULES is
issued, applicable rules will fire again, but only for subsequent DELETE WHERE
CURRENT statements, not for those rows processed when rule firing was disabled.

• In a rule defined with a StatementType of DELETE, any column reference in the
Condition or any ParameterValue will refer to the value of the column as it exists in
the database before it is removed by the DELETE WHERE CURRENT statement,
regardless of the use of OldCorrelationName , TableName , or NewCorrelationName
in the rule definition.

• When a rule is fired by this statement, the rule's procedure is invoked after the changes
have been made to the database for that row. The rule's procedure, and any chained
rules, will thus see the state of the database with the current partial execution of the
statement.

• If an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the
statement and any procedures invoked by any rules will have no effect. Nothing will
have been altered in the DBEnvironment as a result of this statement or the rules it
fired. Error messages are returned in the normal way.

Authorization

If you specify the name of a table, you must have DELETE or OWNER authority for that
382 Chapter 10

SQL Statements A - D
DELETE WHERE CURRENT
table or you must have DBA authority.

If you specify the name of a view, you must have DELETE or OWNER authority for that
view or you must have DBA authority. Also, the owner of the view must have DELETE or
OWNER authority with respect to the view's base tables, or the owner must have DBA
authority.

Example

The active set of this cursor will contain values for the OrderNumber stored in :OrdNum.

 DECLARE DeleteItemsCursor CURSOR FOR
 SELECT ItemNumber,OrderQty FROM PurchDB.OrderItems
 WHERE OrderNumber = :OrdNum

Statements setting up a FETCH-DELETE WHERE CURRENT loop appear here.

 OPEN DeleteItemsCursor

Statements for displaying values and requesting whether the user wants to delete the
associated row go here.

 FETCH DeleteItemsCursor INTO :Lin :Linnul, :Orq :Orqnul

 DELETE FROM PurchDB.OrderItems
 WHERE CURRENT OF DeleteItemsCursor
 .
 .
 .
 CLOSE DeleteItemsCursor
Chapter 10 383

SQL Statements A - D
DESCRIBE
DESCRIBE
The DESCRIBE statement is used in an application program to pass information about a
dynamic statement between the application and ALLBASE/SQL. It must refer to a
statement preprocessed with the PREPARE statement.

Scope

C and Pascal Applications Only

SQL Syntax
DESCRIBE [OUTPUT

INPUT
RESULT] StatementName { INTO [[SQL] DESCRIPTOR]

USING [SQL] DESCRIPTOR} { SQLDA
AreaName}

Parameters

OUTPUT specifies that the characteristics of any output values in the prepared
StatementName be described in the associated sqlda_type and
sqlformat_type data structures. This applies to query result column
definitions in a SELECT statement or to dynamic return status or output
parameters specified as question marks in an EXECUTE PROCEDURE
statement.

OUTPUT is the default.

INPUT specifies that the characteristics of any dynamic input parameters in the
prepared StatementName be described in the associated sqlda_type and
sqlformat_type data structures. This applies to dynamic input parameters
specified as question marks in any DML statement.

RESULT specifies that the characteristics of any single format multiple row result
sets in a procedure created using the WITH RESULT clause be described
in the associated sqlda_type and sqlformat_type data structures. This
applies to any prepared EXECUTE PROCEDURE statement.

StatementName identifies a previously preprocessed (prepared) ALLBASE/SQL
statement.

INTO specifies the sqlda_type data structure where data is to be described.

USING specifies the sqlda_type data structure where data is to be described.

SQLDA specifies that a data structure of sqlda_type named sqlda is to be used to
pass information about the prepared statement between the application
and ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of sqlda_type that is to
be used to pass information about the prepared statement between the
application and ALLBASE/SQL.
384 Chapter 10

SQL Statements A - D
DESCRIBE
Description

• This statement cannot be used in ISQL, in COBOL and FORTRAN programs, or in
procedures.

• If StatementName refers to a SELECT statement, the DESCRIBE statement with the
(default) OUTPUT option sets the sqld field of the associated sqlda_type data
structure to the number of columns in the query result and sets the associated
sqlformat_type data structure to each column's name, length, and data type. On the
basis on this information, an application can parse a data buffer to obtain the column
values in the query result. The application reads the query result by associating the
StatementName with a select cursor and using select cursor manipulation statements
(OPEN, FETCH, and CLOSE).

• If StatementName does not refer to a SELECT statement, the DESCRIBE statement
used with the OUTPUT option sets the sqld field of the associated sqlda_type data
structure to zero.

• If StatementName refers to a statement in which dynamic parameters have been
specified, the DESCRIBEstatement with the INPUT option obtains the number of input
dynamic parameters (in the sqld field of the associated sqlda_type data structure) and
sets the associated sqlformat_type data structure to each column's name, length, and
data type. The application can use this information to load the appropriate data buffer
with dynamic parameter values.

• If StatementName refers to an EXECUTE PROCEDURE statement for a procedure with
multiple row result sets, the sqlmproc field of the associated sqlda_type data structure
is set to a non-zero value. The program reads the query results by associating the
StatementName with a procedure cursor name and using procedure cursor
manipulation statements (OPEN, ADVANCE, FETCH, and CLOSE).

• If StatementName refers to an EXECUTE PROCEDURE statement containing output
dynamic parameters, the DESCRIBE statement with the (default) OUTPUT option
returns the number of output dynamic parameters in the sqloparm field of the
associated sqlda_type data structure.

• If StatementName refers to an EXECUTE PROCEDUREstatement containing both input
and output dynamic parameters, you can issue the EXECUTE statement specifying the
USING INPUT AND OUTPUT option to execute the dynamically preprocessed
statement.

• If StatementName is an EXECUTE PROCEDURE statement containing single format
multiple row result set(s), the DESCRIBE statement with the RESULT option returns
the format information of the multiple row result set(s). If the procedure contains more
than one multiple row result set, all must return rows with compatible formats.

• If the RESULT option is specified when describing an EXECUTE PROCEDUREstatement
for a procedure created with no WITH RESULT clause, the sqld field of the related
SQLDA is set to zero, and no format information is written to the SQL descriptor area.

• If the RESULT option is specified when describing a statement other than an EXECUTE
PROCEDUREstatement, the DESCRIBE RESULTstatement returns an error, and nothing
is written to the SQL descriptor area.
Chapter 10 385

SQL Statements A - D
DESCRIBE
• Detailed descriptions of how to use this statement are found in the "Using Dynamic
Operations" chapters of the ALLBASE/SQL C Application Programming Guide and
the ALLBASE/SQL Advanced Application Programming Guide, and in the "Using
Parameter Substitution in Dynamic Statements" chapter and the "Using Procedures in
Application Programs" chapter of the ALLBASE/SQL Advanced Application
Programming Guide.

Authorization

To describe a previously preprocessed SELECT statement, you must have authority that
would permit you to execute the SELECT statement. To describe a previously preprocessed
EXECUTE PROCEDUREstatement, you must have authority that would permit you to execute
the procedure. You do not need authorization to describe other previously preprocessed
statements.

Examples

1. Prepared statement with known format

If you know in advance that the statement to be dynamically preprocessed is neither a
SELECT statement nor an EXECUTE PROCEDURE statement with results, and does not
contain dynamic parameters nor input/output host variables, you can prepare it and
execute it in one step, as follows:

 EXECUTE IMMEDIATE :Dynam1

2. Prepared statement with unknown format

In other instances, it is more appropriate to prepare and execute the statement in
separate operations. For example, if you don't know the format of a statement, you
could do the following:

 PREPARE Dynamic1 FROM :Dynam1

The statement stored in :Dynam1 is dynamically preprocessed.

 DESCRIBE Dynamic1 INTO SqldaOut

If Dynamic1 is neither a SELECT statement (Sqld field of the Sqlda data structure is 0)
nor an EXECUTE PROCEDURE statement with results (sqlmproc = 0) and you know there
are no dynamic parameters in the prepared statement, use the EXECUTE statement to
execute the dynamically preprocessed statement.

If Dynamic1 is an EXECUTE PROCEDURE statement containing dynamic output
parameters, the sqloparm field of the Sqlda data structure contains the number of such
parameters in the statement. You can access the appropriate format array and data
buffer to obtain the data.

If it is possible that dynamic input parameters are present in the prepared statement or
that the statement is an EXECUTE PROCEDURE statement for a procedure with multiple
row result sets, you must further describe it. See the exproc function below which
emphasizes steps needed to process an EXECUTE PROCEDURE statement for a procedure
with multiple row result sets.

To check for dynamic input parameters in any type of DML statement, describe the
386 Chapter 10

SQL Statements A - D
DESCRIBE
statement for input:

 DESCRIBE INPUT Dynamic1 USING SQL DESCRIPTOR SqldaIn

If dynamic input parameters are present, the appropriate data buffer or host variables
must be loaded with the values of any dynamic parameters. Then if the statement is not
a query, it can be executed, as in this example using a data buffer:

 EXECUTE Dynamic1 USING SQL DESCRIPTOR SqldaIn

If Dynamic1 is a SELECT statement and the language you are using supports
dynamically defined SELECT statements, use a cursor to manipulate the rows in the
query result:

 DECLARE Dynamic1Cursor CURSOR FOR Dynamic1

Place the appropriate values into the SQL descriptor areas. Use the USING
DESCRIPTOR clause of the OPEN statement to identify where dynamic input
parameter information is located. Load related dynamic parameter data into the input
data buffer.

 OPEN Dynamic1Cursor USING SQL DESCRIPTOR SqldaIn

Use the USING DESCRIPTOR clause of the FETCHstatement to identify where to place
the rows selected.

 FETCH Dynamic1Cursor USING DESCRIPTOR SqldaOut
 .
 .
 .

When all rows have been processed, close the cursor:

 CLOSE Dynamic1Cursor

3. Prepared statement is EXECUTE PROCEDURE

If the described statement is an EXECUTE PROCEDURE statement for a procedure with
multiple row result sets, the sqlmproc field of the sqlda data structure contains the
number of multiple row result sets (0 if there are none) following execution of the
DESCRIBE statement with default OUTPUT option. For example, if the statement you
described looks like the following, and the procedure was created with two multiple row
result SELECT statements and a WITH RESULT clause:

 DynamicCmd = "EXECUTE PROCEDURE ? = proc(?, ? OUTPUT)"

 PREPARE cmd FROM :DynamicCmd

Assuming you don't know the format of this prepared statement:

 DESCRIBE OUTPUT cmd INTO sqldaout

The sqld of sqlda is set to 0, sqlmproc to 2, and sqloparm to 2.

 DESCRIBE INPUT cmd USING sqldain
Chapter 10 387

SQL Statements A - D
DESCRIBE
The sqld of sqlda is set to 2, sqlmproc to 2, and sqloparm to 0.

a. If sqldaout.sqlmproc <> 0 then, use procedure cursor processing statements to
process multiple row result set(s) from the procedure.

 DESCRIBE RESULT cmd USING sqldaresult
 .
 .
 .
 DECLARE Dynamic1Cursor CURSOR FOR cmd
 OPEN Dynamic1Cursor USING sqldain
 .
 .
 .
 FETCH Dynamic1Cursor using DESCRIPTOR sqldaresult
 .
 .
 .
 CLOSE Dynamic1Cursor USING sqldaout
 .
 .
 .

b. Else, execute the procedure with both input and output dynamic parameters.

 EXECUTE cmd USING DESCRIPTOR INPUT sqldain AND OUTPUT
sqldaout;
388 Chapter 10

SQL Statements A - D
DISABLE AUDIT LOGGING
DISABLE AUDIT LOGGING
The DISABLE AUDIT LOGGING statement stops audit logging for the DBEnvironment
session. It allows you to avoid creating audit log records for SQL statements while hard
resynchronization is performed.

Scope

ISQL or Application Programs

SQL Syntax

DISABLE AUDIT LOGGING

Description

• This statement disables audit logging in the current session only. It suspends the
generation of audit log records for any statements issued during the session.

• This statement and ENABLE AUDIT LOGGING are not used to turn on and off the
AUDIT LOG option specified for processing of all sessions in the DBEnvironment.
These statements affect your current session only. (The statements that affect all
processing in the DBEnvironment are the START DBE NEW and START DBE NEWLOG
statements.)

• This statement is not affected by transaction management statements and remains in
effect until an ENABLE AUDIT LOGGING statement is issued, or until the end of the
current session.

Authorization

This statement requires DBA authority.

Example

Perform an initial load of a table without audit logging.

 DISABLE AUDIT LOGGING;

 LOAD FROM INTERNAL PartsData TO PurchDB.Parts;

 COMMIT WORK;

Reenable audit logging and continue.

 ENABLE AUDIT LOGGING;
Chapter 10 389

SQL Statements A - D
DISABLE RULES
DISABLE RULES
The DISABLE RULES statement turns rule checking off for the current DBEnvironment
session. The statement is for DBA use in testing the operation of rules.

Scope

ISQL or Application Programs

SQL Syntax

DISABLE RULES

Description

• DISABLE RULES turns rule invocation off in the DBEnvironment for the current
session or until the ENABLE RULES statement is issued.

• The statement only affects the current SID (session id). Other users are not affected.

• The DISABLE RULES statement is not cumulative; issuing additional DISABLE RULES
statements will have no effect, and a warning will be issued to this effect.

• Rules are not fired retroactively when the ENABLE RULESstatement is issued after the
DISABLE RULES statement has been issued. If a DISABLE RULES statement is issued,
rules that would otherwise be applicable will not fire. Then, when a subsequent ENABLE
RULESis issued, applicable rules fire again, but only for subsequent data manipulation
statements, not for those statements executed while rule firing was disabled.

• COMMIT WORK and ROLLBACK WORK statements have no effect on whether rules are
enabled or disabled.

Authorization

You must have DBA authority.

Example

The DBA turns off rule invocation for the current session.

 DISABLE RULES

The DBA performs operations without rule firing.

.

.

.

The DBA turns on rule invocation.

 ENABLE RULES

Normal firing of rules resumes.
390 Chapter 10

SQL Statements A - D
DISCONNECT
DISCONNECT
The DISCONNECTstatement terminates a connection with a DBEnvironment or terminates
all DBEnvironment connections established within an application or an ISQL session.

Scope

ISQL or Application Programs

SQL Syntax
DISCONNECT {‘ ConnectionName ’

‘ DBEnvironmentName ’
: HostVariable
ALL
CURRENT }

Parameters

ConnectionName is a string literal identifying the name associated with this connection.
ConnectionName must be unique for each DBEnvironment connection
within an application (or ISQL). ConnectionName cannot exceed 128
bytes.

'DBEnvironmentName ' is the DBEnvironment to which you have connected to using a
CONNECT TO 'DBEnvironmentName ' statement.

HostVariable is a character string host variable containing the ConnectionName
associated with this connection.

ALL specifies that all DBEnvironment connections in effect (for an application
or an ISQL session) are to be terminated.

CURRENT specifies that the current connection is to be terminated. Within an
application (or ISQL), the current connection to a DBEnvironment is
set by the most recent statement that connects to or sets the connection to
the DBEnvironment. If there is no current connection in effect, an error is
generated.

Description

• If a ConnectionName refers to a DBEnvironment that is not the one associated with
the current connection, the specified connection is terminated, and the context of the
currently connected DBEnvironment remains unchanged.

• Any active transaction associated with a connection is rolled back before the connection
is terminated.

• No stored section is created for the DISCONNECT statement. DISCONNECT cannot be
used with the PREPARE or EXECUTE IMMEDIATE statements.

• An active transaction is not required to execute a DISCONNECT statement. An
Chapter 10 391

SQL Statements A - D
DISCONNECT
automatic transaction will not be started when executing a DISCONNECT statement.

• Any connection name associated with a disconnected connection can be reused.

• A DISCONNECT CURRENT statement is equivalent to a RELEASE statement.

• Following a RELEASE or DISCONNECT CURRENT command, there is no current
connection until a SET CONNECTION command is used to set the current connection to
another existing connection, or a new connection is established by using the CONNECT,
START DBE, START DBE NEW, or START DBE NEW LOG commands.

Authorization

You do not need authorization to use the DISCONNECT statement.

Example

Connect three times to PartsDBE and once to SalesDBE:

 CONNECT TO :PartsDBE AS 'Parts1'
 CONNECT TO :PartsDBE AS 'Parts2'
 CONNECT TO :PartsDBE AS 'Parts3'
 CONNECT TO :SalesDBE AS 'Sales1'
 .
 .
 .

Terminate the connection associated with connection name Parts1:

 DISCONNECT 'Parts1'

Terminate the connection associated with the most recently connected DBEnvironment
(the current connection). Following the execution of this statement, SalesDBE is no longer
connected, and no current connection exists:

 DISCONNECT CURRENT

Note that another DISCONNECT CURRENT statement at this point would generate an error.
Also any SQL statement that operates on a transaction will fail since there is no current
connection and therefore no current transaction.

Set the current connection to Parts3:

 SET CONNECTION 'Parts3'

Terminate the connection associated with the most recently connected DBE (the current
connection). Following the execution of this statement, the Parts3 connection to PartsDBE
no longer exists, and no current connection exists:

 DISCONNECT CURRENT

Terminate all established connections. Following this statement, the Parts2 connection to
PartsDBE no longer exists:

 DISCONNECT ALL
392 Chapter 10

SQL Statements A - D
DROP DBEFILE
DROP DBEFILE
The DROP DBEFILE statement removes the row describing a DBEFile from the
SYSTEM.DBEFile.

Scope

ISQL or Application Programs

SQL Syntax

DROP DBEFILE DBEFileName

Parameters

DBEFileName is the name of the DBEFile to be dropped.

Description

• Before dropping a DBEFile previously associated with a DBEFileSet via an ADD
DBEFILE statement, you must use the DROP INDEX and DROP TABLE statements to
empty the DBEFile, then use the REMOVE DBEFILE statement to remove the DBEFile
from the DBEFileSet.

• Although information for the dropped DBEFile is removed from the SYSTEM.DBEFile,
the file is not removed until the transaction is committed.

Authorization

You must have DBA authority to use this statement.

Example

 CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
 NAME = 'ThisFile', TYPE = TABLE

 CREATE DBEFILESET Miscellaneous

 ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, one is
created.

 CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
 NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE ThatDBEFile to DBEFILESET Miscellaneous
Chapter 10 393

SQL Statements A - D
DROP DBEFILE
When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

 REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

 ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM

 ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

Now you can use this DBEFile to store an index later if you need one. All rows are later
deleted from the table, so you can reclaim file space.

 REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

 DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

 DROP DBEFILESET Miscellaneous
394 Chapter 10

SQL Statements A - D
DROP DBEFILESET
DROP DBEFILESET
The DROP DBEFILESETstatement removes the definition of a DBEFileSet from the system
catalog.

Scope

ISQL or Application Programs

SQL Syntax
DROP DBEFILESET DBEFileSetName

Parameters

DBEFileSetName is the name of the DBEFileSet to be dropped.

Description

• Before you can drop a DBEFileSet, you must use the REMOVE DBEFile statement to
remove any DBEFiles associated with the DBEFileSet.

• You cannot DROPa default DBEFileSet. You must first change the default to some other
DBEFileSet.

• DROPalso removes any authorities associated with the DBEFileSet. (Refer to syntax for
the GRANT statement with the ON DBEFILESET clause.)

Authorization

You must have DBA authority to use this statement.

Example
 CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
 NAME = 'ThisFile', TYPE = TABLE

 CREATE DBEFILESET Miscellaneous

 ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, one is
created as follows:

 CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
 NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE ThatDBEFile to DBEFILESET Miscellaneous
Chapter 10 395

SQL Statements A - D
DROP DBEFILESET
When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

 REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

 CREATE DBEFILESET OtherDBEFileSet

 ADD DBEFILE ThatDBEFile TO DBEFILESET OtherDBEFileSet

The following statement allows you to use ThisDBEFile to store an index later, if you need
one.

 ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

If, later, all rows are deleted from the table, you can reclaim file space.

 REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

 DROP DBEFILE ThisDBEFile

If it is not a default DBEFileSet, you can now drop its definition.

DROP DBEFILESET Miscellaneous
396 Chapter 10

SQL Statements A - D
DROP GROUP
DROP GROUP
The DROP GROUP statement removes the definition of an authorization group from the
system catalog.

Scope

ISQL or Application Programs

SQL Syntax
DROP GROUP GroupName

Parameters

GroupName identifies the authorization group to be dropped.

Description

• You cannot drop an authorization group if it owns any tables, views, modules, or
authorization groups.

• You cannot drop a group if it has access to a DBA or REFERENCES privilege which was
used to validate the creation of a currently existing foreign key in a table owned by the
group or one of its members.

• You can drop a group even if it still has members.

Authorization

You can use this statement if you have OWNER authority for the authorization group or if
you have DBA authority.

Example

 CREATE GROUP Warehse

 GRANT CONNECT TO Warehse

 GRANT SELECT,
 UPDATE (BinNumber,QtyOnHand,LastCountDate)
 ON PurchDB.Inventory
 TO Warehse
Chapter 10 397

SQL Statements A - D
DROP GROUP
These two users will be able to start DBE sessions, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

 ADD Clem, George TO GROUP Warehse

Clem no longer has any of the authorities associated with group Warehse.

 REMOVE Clem FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

 DROP GROUP Warehse
398 Chapter 10

SQL Statements A - D
DROP INDEX
DROP INDEX
The DROP INDEX statement deletes the specified index.

Scope

ISQL or Application Programs

SQL Syntax
DROP INDEX [Owner.] IndexName][FROM][Owner.] TableName]

Parameters

[Owner.] IndexName is the name of the index to be dropped. It may include the name of
the owner of the table which has the index.

[Owner.] TableName is the name of the table upon which the index was created.

Description

• If a table name is not specified, the index name must be unique for the specified or
implicit owner. The implicit owner, in the absence of a specified table or owner, is the
current DBEUserID.

• Only indexes appearing in the system view SYSTEM.INDEX may be removed with this
statement. Hash table structures cannot be dropped by using this statement; the hash
structure can only be removed by dropping the table with the DROP TABLE statement.
Neither unique constraint indexes nor referential constraint virtual indexes can be
dropped with this statement. Constraints can only be removed through the ALTER
TABLE DROP CONSTRAINT statement or the DROP TABLE statement.

• Issuing the DROP INDEX statement can invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

• If no index owner is specified and no table is specified, the default owner is the current
DBEUserID.

• If no index owner is specified and a table is specified, the default rule owner is the table
owner.

• If a table is specified and no owner is specified for it, the default table owner is the
current DBEUserID.

• The table and index owners must be the same.

Authorization

You can issue this statement if you have INDEX or OWNER authority for the table or if
you have DBA authority.
Chapter 10 399

SQL Statements A - D
DROP INDEX
Example

 DROP INDEX PartsOrderedIndex
 FROM PurchDB.OrderItems

Alternatively:

 DROP INDEX PurchDB.PartsOrderedIndex

If you discover that an index does not improve the speed of data access, you can delete it. If
applications change, you can redefine the index.
400 Chapter 10

SQL Statements A - D
DROP MODULE
DROP MODULE
The DROP MODULE statement deletes any sections associated with preprocessed SQL
statements from the ALLBASE/SQL system catalog.

Scope

ISQL or Application Programs

SQL Syntax

DROP MODULE [Owner.] ModuleName [PRESERVE]

Parameters

[Owner.] ModuleName identifies the module to be dropped.

PRESERVE causes ALLBASE/SQL to retain the module's authorization records. If you
preprocess a new version of an application program, you do not have to
repeat the process of granting RUN authority to everyone who will run the
program. If you do not specify the PRESERVE option, all authority that
had been granted for the module is revoked.

Description

• When an application program is preprocessed, information needed for efficient database
access is stored as a module in the system catalog. The system catalog also contains a
record of the module's owner and any GRANT statements that have been issued to
authorize other users to run the program. The DROP MODULEstatement deletes all this
information unless the PRESERVE option is specified; if the PRESERVE option is
specified, the DROP MODULE statement deletes all but the RUN authorization
information.

• A module name can also identify a set of one or more dynamically preprocessed
statements created in the interactive environment with the PREPAREstatement. The
DROP MODULE statement can be used to drop such a set of dynamically preprocessed
statements, and optionally any associated authorization data, in addition to the uses of
the DROP MODULE statement described above.

• The DROP MODULE statement can invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

Authorization

You can use the DROP MODULEstatement if you have OWNER authority for the module or if
you have DBA authority.
Chapter 10 401

SQL Statements A - D
DROP MODULE
Examples

1. Dropping preprocessed application programs

A module for the application program MyProg is created and stored in the system
catalog by one of the preprocessors.

 GRANT RUN ON MyProg TO PUBLIC

 DROP MODULE MyProg PRESERVE

Authorization information for MyProg is retained, but the module is deleted from the
system catalog. You can re-preprocess MyProg and not have to redefine its
authorization.

2. Dropping interactively prepared modules

Two sections for a module named Statistics are stored in the system catalog.

 PREPARE Statistics (1)
 FROM 'UPDATE STATISTICS FOR TABLE PurchDB.Orders'

 PREPARE Statistics (2)
 FROM 'UPDATE STATISTICS FOR TABLE PurchDB.OrderItems'

This only executes Statistics(1). The statistics for table PurchDB.Orders are updated:

 EXECUTE Statistics

The statistics for table PurchDB.OrderItems are updated:

 EXECUTE Statistics(2)

Both sections of the module are deleted.

 DROP MODULE Statistics
402 Chapter 10

SQL Statements A - D
DROP PARTITION
DROP PARTITION
The DROP PARTITION statement removes the definition of a partition for audit logging
purposes.

Scope

ISQL or Application Programs

SQL Syntax

DROP PARTITION PartitionName

Parameters

PartitionName specifies the name of the partition to be dropped.

Description

• The partition being dropped must not have any tables associated with it. Use the ALTER
TABLE SET PARTITION statement to remove any tables associated with it before
dropping the partition.

• The DEFAULT partition cannot be dropped. It can be reset to NONE or to another
partition with the START DBE NEWLOG statement.

Authorization

You must have DBA authority to use this statement.

Example

A partition can be dropped after all tables in it are assigned to PARTITION NONE.

 CREATE PARTITION PartsPart WITH ID = 10;

 ALTER TABLE PurchDB.Parts SET PARTITION PartsPart;

 ALTER TABLE PurchDB.Parts SET PARTITION NONE;

 DROP PARTITION PartsPart;
Chapter 10 403

SQL Statements A - D
DROP PROCEDURE
DROP PROCEDURE
The DROP PROCEDURE statement deletes the specified procedure.

Scope

ISQL or Application Programs

SQL Syntax

DROP PROCEDURE [Owner.] ProcedureName [PRESERVE]

Parameters

[Owner.]ProcedureName specifies the name of the procedure that is to be dropped.

PRESERVE specifies that EXECUTE authorities associated with the procedure should
be retained in the system catalog.

Description

• If you do not specify PRESERVE, the EXECUTE authorities associated with the
procedure are removed.

• If a rule attempts to execute a procedure that has been dropped, the rule will fail and
all the effects of the statement that fired the rule are undone.

• The DROP PROCEDURE statement does not drop rules that invoke the procedure. All
rules invoking the procedure are preserved.

• The DROP PROCEDURE statement will invalidate stored sections that depend on
invoking the procedure from a rule. The loss of the procedure will be reported as an
error when there is an attempt to revalidate these sections.

Authorization

You must be the owner of the procedure or have DBA authority to use the DROP PROCEDURE
statement.

Example

 DROP PROCEDURE Process12 PRESERVE
404 Chapter 10

SQL Statements A - D
DROP RULE
DROP RULE
The DROP RULE statement deletes the specified rule.

Scope

ISQL or Application Programs

SQL Syntax

DROP RULE [Owner.] RuleName [FROM TABLE [Owner.] TableName]

Parameters

[Owner.]RuleName identifies the rule to be dropped.

[Owner.]TableName identifies the table the rule is defined on.

Description

• If a TableName is specified, the rule must exist on that table or an error will be
returned.

• If no TableName is specified, the rule is located and dropped. Since rule names are
unique per owner, not per table, there is no ambiguity in references to RuleName.

• The DROP RULE statement invalidates stored sections that have dependencies defined
upon the table the rule is defined on. This will permit the rule to be removed when the
sections are revalidated.

• The procedure a rule invokes will not be affected by the removal of that rule.

• If no rule owner is specified and no table is specified, the default owner is the current
DBEUserID.

• If no rule owner is specified and a table is specified, the default rule owner is the table
owner.

• If a table is specified and no owner is specified for it, the default table owner is the
current DBEUserID.

• The table and rule owners must be the same.

Authorization

You can issue this statement if you have OWNER authority for the rule or DBA authority.

Example

DROP RULE PurchDB.InsertReport
DROP RULE PurchDB.DeleteReport
DROP RULE PurchDB.UpdateReport
Chapter 10 405

SQL Statements A - D
DROP TABLE
DROP TABLE
The DROP TABLE statement deletes the specified table, including any hash structure or
constraints associated with it, all indexes, views, and rules defined on the table, and all
authorizations granted on the table.

Scope

ISQL or Application Programs

SQL Syntax

DROP TABLE [Owner.] Tablename

Parameters

[Owner.] TableName identifies the table to be dropped.

Description

• The DROP TABLE statement may invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

• You cannot drop a table which has a primary or unique constraint referenced by a
foreign key in another table. (You can, however, if the only foreign keys are within the
same table.)

• Any authorities used to authorize a foreign key on the table are released when the table
is dropped.

Authorization

You can issue this statement if you have OWNER authority for the table or if you have
DBA authority.

Example

This table is private by default.

 CREATE TABLE VendorPerf
 (OrderNumber INTEGER NOT NULL,
 ActualDelivDay SMALLINT,
 ActualDelivMonth SMALLINT,
 ActualDelivYear SMALLINT,
 ActualDelivQty SMALLINT
 Remarks VARCHAR(60))
 IN Miscellaneous
406 Chapter 10

SQL Statements A - D
DROP TABLE
CREATE UNIQUE INDEX VendorPerfIndex
 ON VendorPerf
 (OrderNumber)

 CREATE VIEW VendorPerfView
 (OrderNumber,
 ActualDelivQty,
 Remarks)
 AS SELECT OrderNumber,
 ActualDelivQty,
 Remarks
 FROM VendorPerf

Only the table creator and members of authorization group Warehse can update table
VendorPerf.

 GRANT UPDATE ON VendorPerf TO Warehse

The table, the index, and the view are all deleted; and the grant is revoked.

 DROP TABLE VendorPerf
Chapter 10 407

SQL Statements A - D
DROP TEMPSPACE
DROP TEMPSPACE
The DROP TEMPSPACE statement removes the definition of a temporary storage space
(TempSpace) from the system catalog.

Scope

ISQL or Application Programs

SQL Syntax

DROP TEMPSPACETempSpaceName

Parameters

TempSpaceName is the name of the TempSpace to be dropped.

Description

• If a TempSpace is dropped while temporary files currently exist under the path name it
specifies, those files remain until the sort using them completes. However, no further
temporary files are created in that TempSpace.

• If a TempSpace is being used by another user when the DROP TEMPSPACEstatement is
issued, then the DROP statement is blocked until the TempSpace usage is finished.

Authorization

You must have DBA authority to use this statement.

Example

TempSpace temporary files are created in the /sort/PurchDB directory when SQL
statements require sorting.

 CREATE TEMPSPACE ThisTempSpace WITH MAXFILEPAGES = 360,
 LOCATION = '/sort/PurchDB'
 DROP TEMPSPACE ThisTempSpace

TempSpace temporary files are no longer available in the /sort/PurchDB, directory but can
be allocated under /tmp as needed.
408 Chapter 10

SQL Statements A - D
DROP VIEW
DROP VIEW
The DROP VIEW statement deletes the definition of the specified view from the system
catalog, all authorization granted on the view, and any view that references the dropped
view.

Scope

ISQL or Application Programs

SQL Syntax

DROP VIEW [Owner.] ViewName

Parameters

[Owner.] ViewName identifies the view to be dropped.

Description

• This statement does not affect the base tables on which the views were defined.

• The DROP VIEWstatement can invalidate stored sections. Refer to the ALLBASE/SQL
Database Administration Guide for additional information on stored section validation.

• You cannot use this statement on system views.

• If the view was defined with a WITH CHECK OPTION constraint, the view check
constraint is also deleted.

Authorization

You can use the DROP VIEWstatement if you have OWNER authority for the view or if you
have DBA authority.

Example

The view is dropped. Any grants referencing the view are automatically revoked.

DROP VIEW ReorderParts
Chapter 10 409

SQL Statements A - D
DROP VIEW
410 Chapter 10

SQL Statements E - R
ENABLE AUDIT LOGGING
11 SQL Statements E - R

Chapter 10, 11 and 12 describe all the SQL statements in alphabetical order, giving
syntax, parameters, descriptions, authorization requirements, and examples for each
statement. Examples often consist of groups of statements so you can see how each
statement is related to other statements functionally.

ENABLE AUDIT LOGGING
The ENABLE AUDIT LOGGING statement restarts audit logging for the DBEnvironment
after a DISABLE AUDIT LOGGIN G has been performed.

Scope

ISQL or Application Programs

SQL Syntax

ENABLE AUDIT LOGGING

Description

• This statement reenables audit logging in the current session only.

• This statement and DISABLE AUDIT LOGGING are not used to turn on and off the
AUDIT LOG option specified for processing of all sessions in the DBEnvironment.
These statements affect your current session only. (The statements that affect all
processing in the DBEnvironment are the START DBE NEW and START DBE NEWLOG
statements.)

• This statement is not affected by transaction management statements and remains in
effect until a DISABLE AUDIT LOGGING statement is issued.

Authorization

This statement requires DBA authority.

Example

Perform an initial load of a table without audit logging.

 DISABLE AUDIT LOGGING;

 LOAD FROM INTERNAL PartsData TO PurchDB.Parts;
Chapter 11 411

SQL Statements E - R
ENABLE AUDIT LOGGING
 COMMIT WORK;

Reenable audit logging and continue.

 ENABLE AUDIT LOGGING;
412 Chapter 11

SQL Statements E - R
ENABLE RULES
ENABLE RULES
The ENABLE RULES statement turns rule checking on for the current DBEnvironment
session. DBAs use it to tune the DBEnvironment and test the operation of rules.

Scope

ISQL or Application Programs

SQL Syntax

ENABLE RULES

Description

• ENABLE RULESreturns the DBEnvironment session to its default behavior of firing all
applicable rules.

• The statement only affects the current SID (session id). Other users are not affected.

• The ENABLE RULES statement is not cumulative; issuing additional ENABLE RULES
statements will have no effect, and a warning will be issued to this effect.

• Rules are not fired retroactively when the ENABLE RULESstatement is issued after the
DISABLE RULESstatement has been issued. That is, if a DISABLE RULESstatement is
issued, rules that would otherwise be applicable will not fire. Then, when a subsequent
ENABLE RULES is issued, applicable rules will fire again, but only for subsequent data
manipulation statements, not for rows processed while rule firing was disabled.

• COMMIT WORK and ROLLBACK WORK statements have no effect on whether rules are
enabled or disabled.

Authorization

You must have DBA authority.

Example

The DBA turns off rule invocation.

 DISABLE RULES

The DBA performs operations without rule firing.

.

.

.

The DBA turns on rule invocation.

 ENABLE RULES

Normal firing of rules resumes.
Chapter 11 413

SQL Statements E - R
END DECLARE SECTION
END DECLARE SECTION
The END DECLARE SECTION preprocessor directive indicates the end of the host variable
declaration section in an application program.

Scope

Application Programs Only

SQL Syntax

END DECLAARE SECTION

Description

• This directive cannot be used interactively.

• Use this directive in conjunction with the BEGIN DECLARE SECTION directive.

Authorization

You do not need authorization to use the END DECLARE SECTION statement.

Example

 BEGIN DECLARE SECTION

Define host variables here, including indicator variables, if any.

 END DECLARE SECTION
414 Chapter 11

SQL Statements E - R
EXECUTE
EXECUTE
The EXECUTE statement causes ALLBASE/SQL to execute a statement that has been
dynamically preprocessed by means of the PREPARE statement.

Scope

ISQL or Application Programs

SQL Syntax
EXECUTE { StatementName

 [Owner.] ModuleName[(SectionNumber)]}
[USING {[SQL] DESCRIPTOR{[INPUT]{ SQLDA

AreaName1}
 [AND OUTPUT{ SQLDA

AreaName2}]
OUTPUT{ SQLDA

AreaName}}
 [INPUT] HostVariableSpecification1
 [AND OUTPUTHostVariableSpecification2]

OUTPUTHostVariableSpecification
 :Buffer[,: StartIndex [,: NumberOfRows]] }]

Parameters

StatementName identifies a dynamically preprocessed statement to be executed in an
application program. The StatementName corresponds to one specified in
a previous PREPARE statement. This form of the EXECUTE statement
cannot be used interactively.

[Owner.] ModuleName [(SectionNumber)] identifies a dynamically preprocessed
statement to be executed interactively. The preprocessed statement cannot
be a SELECT statement. This form of the EXECUTE statement cannot be
used in an application program. If the section number is omitted, section
number one is assumed. You can omit the verb EXECUTE interactively.

USING allows dynamic parameter substitution in a prepared statement in an
application program.

[SQL]DESCRIPTOR indicates that a data structure of sqlda_type is used to pass dynamic
parameter information between the application and ALLBASE/SQL.

SQLDA specifies that a data structure of sqlda_type named sqlda is used to pass
dynamic parameter information between the application and
ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of type sqlda_type that
is used to pass dynamic parameter information between the application
and ALLBASE/SQL.

HostVariableSpecification specifies host variable(s) that hold dynamic parameter
values at run time. The syntax of HostVariableSpecification is
Chapter 11 415

SQL Statements E - R
EXECUTE
presented separately below.

INPUT is the default for any EXECUTEstatement and can be specified, as required,
for any type of prepared statement containing input dynamic parameters.

OUTPUT is only allowed when the prepared statement is an EXECUTE PROCEDURE
statement. It can be used when the statement contains output dynamic
parameters.

INPUT AND OUTPUT is only allowed when the prepared statement is an EXECUTE
PROCEDURE statement. It can be used when the statement contains both
input and output dynamic parameters.

Buffer is a host variable array structure containing rows that are the input for a
BULK INSERTstatement. This structure contains fields for each column to
be inserted and indicator variables for columns that can contain null
values. Whenever a column can contain nulls, an indicator variable must
be included in the array definition immediately after the definition of that
column. This indicator variable is an integer that can have the following
values:

> = 0 the value is not NULL

< 0 the value is NULL

NOTE To be consistent with standard SQL and to support portability of code, it is
strongly recommended that you use a −1 to indicate a null value. However,
ALLBASE/SQL interprets all negative indicator variable values to mean a
null value.

StartIndex is a host variable whose value specifies the array subscript denoting where
the first row to be inserted is stored; default is the first element of the
array.

NumberOfRows is a host variable whose value specifies the number of rows to insert;
default is to insert from the starting index to the end of the array.

SQL Syntax — HostVariableSpecification

: HostVariableName [[INDICATOR]: IndicatorVariable] [,...]

Parameters — HostVariableSpecification

HostVariableName specifies a host variable name that at run time contains the data
value that is assigned to a dynamic parameter defined in a prepared
statement.

Host variables must be specified in the same order as the dynamic
parameters in the prepared statement they represent. There must be a
one to one correspondence between host variable names and the dynamic
parameters in the prepared statement. A maximum of 1024 host variable
names can be specified.
416 Chapter 11

SQL Statements E - R
EXECUTE
IndicatorVariable names an indicator variable, whose value determines whether the
associated host variable contains a NULL value:

> = 0 the value is not NULL

< 0 the value is NULL

Description

• There must be a one to one mapping of the input and/or output parameters in a
prepared statement and its associated EXECUTE statement.

• INPUT is the default for any EXECUTE statement and can be specified, as required, for
any type of prepared statement.

• The OUTPUT clause is only allowed when the prepared statement is an EXECUTE
PROCEDURE statement containing output dynamic parameters.

• An INPUT AND OUTPUT clause is only allowed when the prepared statement is an
EXECUTE PROCEDURE statement containing both input and output dynamic
parameters.

• If StatementName is an EXECUTE PROCEDURE statement without any input and
output dynamic parameters, you can execute the procedure by issuing EXECUTE
StatementName .

• If StatementName is an EXECUTE PROCEDURE statement with either input or output
dynamic parameters, you can use the EXECUTE USINGstatement with INPUT (default)
or OUTPUT option to execute the dynamically preprocessed statement.

• If StatementName is an EXECUTE PROCEDURE statement with both input and output
dynamic parameters, you can use the EXECUTE USINGstatement with the INPUT AND
OUTPUT option to execute the dynamically preprocessed statement.

• Use the USING clause for either an SQLDA DESCRIPTOR or a
HostVariableSpecification for input and/or output dynamic parameter
substitution in a prepared statement.

• The :Buffer [,:StartIndex [, :NumberOfRows option is only used in association with a
BULK INSERT statement.

• If StatementName is an EXECUTE PROCEDURE statement, and there are multiple row
result sets from the procedure, you must use the procedure cursor method to retrieve
result sets. A warning is returned if a procedure cursor is not used in this case; the
return status and output parameters are returned as usual.

Authorization

In an application program, the EXECUTE statement does not require any special
authorization. The user running the program must have whatever authorization is
required by the dynamically preprocessed statement being executed.

To use the EXECUTE statement in the interactive environment, you must have RUN or
OWNER authority for the dynamically preprocessed statement or have DBA authority. In
addition, the owner of the dynamically preprocessed statement must have whatever
Chapter 11 417

SQL Statements E - R
EXECUTE
authorization the dynamically preprocessed statement itself requires.

Examples

1. Interactive execution

 isql=> PREPARE Statistics(1)
 > FROM 'UPDATE STATISTICS FOR TABLE PurchDB.Orders'

 isql=> PREPARE Statistics(2)
 > FROM 'UPDATE STATISTICS FOR TABLE PurchDB.OrderItems'

Two sections for module Statistics are stored in the system catalog.

 isql=> EXECUTE Statistics(1)

The statistics for table PurchDB.Orders are updated.

 isql=> EXECUTE Statistics(2)

The statistics for table PurchDB.OrderItems are updated.

 isql=> DROP MODULE Statistics

Both sections of the module are deleted.

2. Programmatic execution

If you know that the statement to be dynamically preprocessed is not a SELECT
statement and does not contain dynamic parameters, you can prepare it and execute it
in one step, as follows:

 EXECUTE IMMEDIATE :Dynam1

You can prepare and execute the statement in separate operations. For example, if you
don't know the format of a statement, you could do the following:

 PREPARE Dynamic1 FROM :Dynam1

The statement stored in :Dynam1 is dynamically preprocessed.

 DESCRIBE Dynamic1 INTO SqldaOut

If Dynamic1 is not a SELECTstatement, the Sqld field of the Sqlda data structure is 0. If
you know there are no dynamic parameters in the prepared statement, use the EXECUTE
statement to execute the dynamically preprocessed statement.

If it is possible that dynamic parameters are in the prepared statement, you must
describe the statement for input:

 DESCRIBE INPUT Dynamic1 USING SQL DESCRIPTOR SqldaIn
418 Chapter 11

SQL Statements E - R
EXECUTE
If the prepared statement could be an EXECUTE PROCEDURE statement (sqld = zero on
DESCRIBE OUTPUT) with dynamic output parameters, you must describe it for
output:

 DESCRIBE OUTPUT Dynamic1 USING SQL DESCRIPTOR SqldaOut

If only dynamic input parameters are present, the appropriate data buffer or host
variables must be loaded with the values of any dynamic parameters. Then if the
statement is not a query, it can be executed, as in this example using a data buffer:

 EXECUTE Dynamic1 USING SQL DESCRIPTOR SqldaIn

However, if the prepared statement is an EXECUTE PROCEDUREstatement with multiple
row result sets (sqlmproc = non-zero) and dynamic input and output parameters
execute it as follows:

 EXECUTE Dynamic1 USING SQL INPUT DESCRIPTOR SqldaIn
 and OUTPUT DESCRIPTOR SqldaOut
Chapter 11 419

SQL Statements E - R
EXECUTE IMMEDIATE
EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement dynamically prepares and executes an SQL
statement.

Scope

ISQL or Application Programs

SQL Syntax
EXECUTE IMMEDIATE { ‘String’

:HostVariable }

Parameters

String is the ALLBASE/SQL statement to be executed.

HostVariable identifies a character-string host variable containing the ALLBASE/SQL
statement to be executed.

Description

• When used interactively, a host variable cannot be specified.

• The SQL statement cannot contain host variables nor dynamic parameters.

• You cannot use the EXECUTE IMMEDIATE statement for any of the following
statements:

 BEGIN DECLARE SECTION EXECUTE SELECT
 CLOSE EXECUTE IMMEDIATE SQLEXPLAIN
 DECLARE CURSOR FETCH UPDATE WHERE CURRENT
 DELETE WHERE CURRENT INCLUDE WHENEVER
 DESCRIBE OPEN
 END DECLARE SECTION PREPARE

Authorization

You can use EXECUTE IMMEDIATE if your authorization permits you to issue the statement
to be executed.

Example

If you know that the statement to be dynamically preprocessed is neither a SELECT
statement nor an EXECUTE PROCEDURE statement with results, and has neither input nor
output dynamic parameters, you can prepare it and execute it in one step.

 EXECUTE IMMEDIATE :Dynam1

In other instances, it is more appropriate to prepare and execute the statement in separate
operations.
420 Chapter 11

SQL Statements E - R
EXECUTE PROCEDURE
EXECUTE PROCEDURE
The EXECUTE PROCEDURE statement invokes a procedure.

Scope

ISQL or Application Programs

Syntax
EXECUTE PROCEDURE [: ReturnStatusVariable =][Owner.] ProcedureName
[([ActualParameter][, [ActualParameter]][...])]

Parameters

ReturnStatusVariable is an integer host variable, or, for a prepared EXECUTE
PROCEDURE statement, a dynamic parameter, that receives the return
status from the procedure. ReturnStatusVariable can only be used
when invoking a procedure from an application program, and it is always
an output variable.

[Owner.]ProcedureName specifies the owner and the name of the procedure to execute. If
an owner name is not specified, the owner is assumed to be the current
DBEUserID.

ActualParameter specifies a parameter value that is passed into and/or out of the
procedure. The syntax of ActualParameter is presented separately
below.

SQL Syntax—ActualParameter

[ParameterName =] ParameterValue [OUTPUT[ONLY]]

Parameters—ParameterDeclaration

ParameterName is the parameter name.

ParameterValue a value that is passed into and/or out of the procedure.

For an input only parameter, the value can be any expression that does not
include any aggregate function, add_months function, LONG column
function, TID function, local variable, procedure parameter, or built-in
variable. Column values are allowed only when the EXECUTE PROCEDURE
statement is defined in a rule.

For an OUTPUT or OUTPUT ONLY parameter, the value must be a single
host variable, or in a prepared EXECUTE PROCEDURE statement, a single
dynamic parameter.

You can omit a parameter in calling the procedure by using a comma by
itself, which is equivalent to specifying a value of NULL or the default (if
Chapter 11 421

SQL Statements E - R
EXECUTE PROCEDURE
one was defined when the procedure was created). However, if a
ParameterName is specified, use of a comma by itself is disallowed.

OUTPUT specifies that the caller wishes to retrieve the output value of the
parameter. OUTPUT must also have been specified for the corresponding
parameter in the CREATE PROCEDURE statement.

If OUTPUT is not specified, no output value is returned to the caller.

ONLY specifies that the caller wishes to retrieve the output value of the
parameter and will not provide an input value. You must also have
specified ONLY for the corresponding parameter in the CREATE
PROCEDURE statement. ONLY should be used, when applicable, to avoid
unnecessary initialization of procedure parameters.

Description

• You cannot execute a procedure from within another procedure.

• If OUTPUT ONLY is not specified, a parameter that is not given a value in the
EXECUTE PROCEDURE statement is assigned its default value if one was specified, or
otherwise NULL if the parameter was not declared NOT NULL.

If OUTPUT ONLY is not specified, no value is provided for a parameter, a default is not
specified, and NOT NULL is specified, an error is returned and the procedure is not
executed.

• If a procedure terminates abnormally (an error occurs in evaluating the condition in an
IF or WHILE statement, or in evaluating the expression in a parameter or variable
assignment), any cursors opened by the procedure (including KEEP cursors) are closed.
Otherwise, except in a procedure invoked by a rule, any cursor opened by the procedure,
and left open when the procedure terminates, remains open and may therefore be
accessed when the procedure is executed again.

• If OUTPUT has been specified for a parameter in both the CREATE PROCEDURE and
EXECUTE PROCEDUREstatements, any changes made to the parameter value within the
procedure are returned to the calling application. The actual parameter for an output
parameter can be a host variable or a dynamic parameter.

• If you execute a procedure that returns multiple row result sets (contains one or more
SELECT statements with no INTO clause) without using a procedure cursor, a warning
is returned to the application, no result set data is returned, and any return status and
output parameters are returned as usual.

• You can execute procedures in ISQL, through application programs, or via rules.
Further information on executing a procedure from an application is found in the
ALLBASE/SQL Advanced Application Programming Guide.. For the execution of
procedures through rules, refer to the CREATE RULE statement.

• In ISQL, you cannot specify OUTPUT for a parameter. Although return status cannot
be specified in the EXECUTE PROCEDUREstatement, ISQL does report the return status.
Also, within ISQL, actual parameter values cannot include host variables.

• If you attempt to execute a procedure that contains invalid sections, ALLBASE/SQL
silently revalidates the sections. You can also use the VALIDATE statement to revalidate
422 Chapter 11

SQL Statements E - R
EXECUTE PROCEDURE
invalid sections in procedures.

• You can PREPARE and EXECUTE an EXECUTE PROCEDURE statement containing
dynamic parameters.

You can use EXECUTE PROCEDURE inside an EXECUTE IMMEDIATE statement, provided
the EXECUTE PROCEDURE statement includes neither dynamic parameters nor host
variables.

• If you do not specify OUTPUT for a parameter declared as OUTPUT in the CREATE
PROCEDURE statement, no value is returned.

• You cannot specify OUTPUT for a parameter not declared as OUTPUT in the CREATE
PROCEDURE statement.

• OUTPUT ONLY must be specified for any parameter declared as OUTPUT ONLY in
the CREATE PROCEDUREstatement if an actual parameter is provided. Use of OUTPUT
ONLY improves performance, since no time is spent initializing the parameter to the
input value, default value, or null.

• Within a procedure, a single row SELECT statement (one having an INTO clause) that
returns multiple rows will assign the first row to output parameters or local variables,
and a warning is issued. In an application, this case would generate an error.

Authorization

You must have OWNER or EXECUTE authority for the procedure or DBA authority to use
this statement.

Examples

1. From an application program:

 EXECUTE PROCEDURE :Status = Process12(:PartName, :Quantity,
 :SalesPrice OUTPUT ONLY)

2. Within ISQL:

 isql=> execute procedure Process12('Widget',150);
Chapter 11 423

SQL Statements E - R
FETCH
FETCH
The FETCH statement advances the position of an opened cursor to the next row of the
active set and copies selected columns into the specified host variables or data buffer. The
row to which the cursor points is called the current row.

Scope

Application Programs Only

SQL Syntax
[BULK] FETCH CursorName { INTO HostVariableSpecification

USING { [SQL] DESCRIPTOR { SQLDA
AreaName}

 HostVariableSpecification } }

Parameters

BULK is specified in an application program to retrieve multiple rows with a
single execution of the FETCH statement. After a BULK FETCH statement,
the current row is the last row fetched.

BULK can be specified with the INTO clause (for a statically executed
cursor), but not with the USING clause (for a dynamically executed
cursor).

BULK is disallowed in a procedure.

CursorName identifies a cursor. The cursor's active set, determined when the cursor
was opened, and the cursor's current position in the active set determine
the data to be returned by each successive FETCH statement.

INTO The INTO clause defines where to place rows fetched for a statically
preprocessed SELECT or EXECUTE PROCEDURE statement.

USING The USING clause defines where to place rows fetched for a dynamically
preprocessed SELECT or EXECUTE PROCEDURE statement, or for a
statically preprocessed EXECUTE PROCEDUREstatement with an unknown
format.

HostVariableSpecification identifies one or more host variables for holding and
describing the row(s) in the active set.

When used with the INTO clause, the syntax of
HostVariableSpecification depends on whether the BULK option is
specified. If BULK is specified, HostVariableSpecification identifies an
array that holds the rows fetched. If BULKis not specified, the host variable
declaration identifies a list of individual host variables. The syntax of BULK
and non-BULK variable declarations is shown in separate sections below.

The USING clause with a HostVariableSpecification allows non-BULK
424 Chapter 11

SQL Statements E - R
FETCH
variable declarations only.

DESCRIPTOR The DESCRIPTOR identifier defines where to place rows selected in
accord with a dynamically preprocessed SELECT or EXECUTE PROCEDURE
statement that has been described by a DESCRIBE statement. For a select
cursor, specify the same location (SQLDA, area name, or host variable) as
you specified in the DESCRIBE statement. For a procedure cursor, specify
the same location you specified in the ADVANCE statement or DESCRIBE
RESULT statement (for a procedure created WITH RESULT).

SQLDA specifies that a data structure of sqlda_type named sqlda is to be used to
pass information about the prepared statement between the application
and ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of sqlda_type that is to
be used to pass information about the prepared statement between the
application and ALLBASE/SQL.

SQL Syntax — BULK HostVariableSpecification

: Buffer [,: StartIndex [,: NumberOfRows]]

Parameters — BULK HostVariableSpecification

Buffer is a host array structure that is to receive the output of the FETCH
statement. This structure contains fields for each column in the active set
and indicator variables for columns that contain null values. Whenever a
column can contain nulls, an indicator variable must be included in the
structure definition immediately after the definition of that column. The
indicator variable can receive the following integer values after a FETCH:

0 meaning the column's value is not null

−1 meaning the column's value is null

>0 meaning the column's value is truncated (for CHAR,
VARCHAR, BINARY, and VARBINARY columns)

StartIndex is a host variable whose value specifies the array subscript denoting where
the first row fetched should be stored; default is the first element of the
array.

NumberOfRows is a host variable whose value specifies the maximum number of rows to
fetch; default is to fill from the starting index to the end of the array.

The total number of rows fetched is returned in the SQLERRD field of the
SQLCA. You should check this area in case the number of rows returned is
less than the maximum number of rows so that you don't process an
incomplete result.

SQL Syntax — non-BULK HostVariableSpecification

{: HostVariable [[INDICATOR] : Indicator] } [,...]
Chapter 11 425

SQL Statements E - R
FETCH
Parameters — non-BULK HostVariableSpecification

HostVariable identifies the host variable corresponding to one column in the row
fetched.

Indicator names the indicator variable, an output host variable whose value depends
on whether the host variable contains a null value. The following integer
values are valid:

0 meaning the column's value is not null

−1 meaning the column's value is null

>0 meaning the column's value is truncated (for CHAR,
VARCHAR, BINARY, and VARBINARY columns)

Description

• This statement cannot be used interactively.

• When using this statement to access LONG columns, the name of the file is returned in
the appropriate field in the host variable declaration parameter, SQLDA, or area name
parameter specified. If the output mode is specified with $, then each LONG column in
each row accessed is stored in a file with a unique name.

• The use of a descriptor area implies a multiple row result set. You cannot use the BULK
keyword if you employ the DESCRIPTOR identifier.

• For a procedure cursor that returns results of a single format, if the procedure was
created with the WITH RESULT clause, since all result sets have the same format, it is
not necessary to issue an ADVANCEstatement to advance from one result set to the next.
No end of result set condition is generated on a FETCH statement until all result sets
have been fetched. When the end of a result set has been reached, the next FETCH
statement issued causes procedure execution to continue either until the next result set
is encountered and the first row of the next result set is returned or until procedure
execution terminates.

• The USING clause is not allowed within a procedure.

• The BULK option is not allowed within a procedure.

Authorization

You do not need authorization to use the FETCH statement.
426 Chapter 11

SQL Statements E - R
FETCH
Examples

1. Static update

A cursor for use in updating values in column QtyOnHand is declared and opened.

 DECLARE NewQtyCursor CURSOR FOR
 SELECT PartNumber,QtyOnHand FROM PurchDB.Inventory
 FOR UPDATE OF QtyOnHand

 OPEN NewQtyCursor

Statements setting up a FETCH-UPDATE loop appear next.

 FETCH NewQtyCursor INTO :Num :Numnul, :Qty :Qtynul

Statements for displaying a row to and accepting a new QtyOnHand value from a user
go here. The new value is stored in :NewQty.

 UPDATE PurchDB.Inventory
 SET QtyOnHand = :NewQty
 WHERE CURRENT OF NewQtyCursor

 CLOSE NewQtyCursor

2. Static bulk fetch

 DECLARE ManyRows CURSOR FOR
 SELECT * FROM PurchDB.Inventory

In some instances, using the BULK option is more efficient than advancing the cursor a
row at a time through many rows, especially when you want to operate on the rows with
non-ALLBASE/SQL statements.

 OPEN ManyRows

 BULK FETCH ManyRows INTO :Rows, :Start, :NumRow

The query result is returned to an array called Rows.

3. Dynamic select cursor using an sqlda_type data structure

Assume that host variable Dynam1 contains a SELECTstatement. The statement stored
in :Dynam1 is dynamically preprocessed.

 PREPARE Dynamic1 FROM :Dynam1

The DESCRIBE statement loads the specified sqlda_type data structure with the
characteristics of the FETCH statement. See the ALLBASE/SQL for complete
information regarding this data structure.

 DESCRIBE Dynamic1 INTO SQLDA

Define a cursor to be used to move through the query result row by row.

 DECLARE Dynamic1Cursor CURSOR FOR Dynamic1

Open the cursor to define rows of the active set.

 OPEN Dynamic1Cursor
Chapter 11 427

SQL Statements E - R
FETCH
Fetch the selected data into the data buffer. Additional rows are fetched with each
execution of the FETCH statement until all rows have been fetched. See the
ALLBASE/SQL for more detailed examples.

 FETCH Dynamic1Cursor USING DESCRIPTOR SQLDA

Close the cursor to free the active set.

 CLOSE Dynamic1Cursor

4. Dynamic select cursor using host variables

Assume that host variable Dynam1 contains a SELECTstatement. The statement stored
in :Dynam1 is dynamically preprocessed.

 PREPARE Dynamic1 FROM :Dynam1

Define a cursor to be used to move through the query result row by row.

 DECLARE Dynamic1Cursor CURSOR FOR Dynamic1

Open the cursor to define rows of the active set.

 OPEN Dynamic1Cursor

Fetch the selected data into the specified host variables. With each execution of the
FETCH statement one additional row is fetched until all rows have been fetched.

 FETCH Dynamic1Cursor USING :HostVariable1, :HostVariable2

Close the cursor to free the active set.

 CLOSE Dynamic1Cursor

5. Refer to the ALLBASE/SQL Advanced Application Programming Guide for a
pseudocode example of procedure cursor usage.
428 Chapter 11

SQL Statements E - R
GENPLAN
GENPLAN
The GENPLAN statement places the access plan generated by the optimizer for a SELECT,
UPDATE, or DELETEstatement into the pseudotable SYSTEM.PLAN. You can then view the
access plan by issuing the following statement from within the same transaction:

 isql=> SELECT * FROM SYSTEM.PLAN;

Scope

ISQL or Application Programs

SQL Syntax
GENPLAN [WITH (HostVariableDefinition)] FOR
{ SQLStatement

MODULE SECTION [Owner.] ModuleName(Section Number)
PROCEDURE SECTION [Owner.] ProcedureName(Section Number)}

Parameters

WITH is used when simulating embedded statements taken from application
programs. The WITH clause defines variables of a specified data type. The
variables are used in the WHERE clause where an input host variable
would appear if the SQLStatement were embedded in an application.

HostVariableDefinition designates a variable used to simulate a host variable that
would appear in a statement in an application program. This clause is only
allowed for an SQLStatement .

SQLStatement can be any valid SQL SELECT, UPDATE, or DELETE statement including
complex statements containing UNION, OUTER JOIN, or nested
subqueries.

[Owner].ModuleName (Section Number) identifies the module section whose access plan
is to be generated. The owner name is the DBEUserID of the person who
preprocessed the program or the owner name specified when the program
was preprocessed. The Module Name is the name stored in the
CATALOG.SECTION view.

[Owner.]ProcedureName (Section Number) identifies the procedure section whose
access plan is to be generated. The owner name is the DBEUserID of the
person who created the procedure or the owner name specified when the
procedure was created. The ProcedureName is the name stored in the
CATALOG.PROCEDURE view or CATALOG.SECTION view.

Description

• The GENPLAN statement can only be used in ISQL. It cannot be used in an application,
in a static SQL statement, or in dynamic preprocessing.
Chapter 11 429

SQL Statements E - R
GENPLAN
NOTE GENPLANchecks only for syntax errors. It does not check for mismatched data
types or other errors that may occur. In order to guarantee complete error
checking, do not include a statement in GENPLAN unless it has previously run
without errors.

• You should take the following steps when embedding a statement from an application
in the GENPLAN statement:

• In the GENPLAN WITH clause, define variable names and compatible SQL data
types for each input host variable appearing in the application statement. Do not
include indicator variables in the WITH clause for columns that allow nulls.
Indicator variables are not used by GENPLAN.

• Remove the INTO clause and its associated output host variables. Only input host
variables are considered when generating the access plan.

• The following language specific tables show the SQL data type that must be placed in
the WITH clause of the GENPLANstatement for each type of host variable, if an accurate
access plan is to be generated. In some cases, the data type specified in the WITH clause
of the GENPLAN statement is not the same data type which is compatible with the SQL
data type of the column containing the data. The data type specified below must be
used, regardless of the SQL column data type. This ensures that the plan displayed by
the GENPLAN statement is the same as the plan chosen by the optimizer when the
statement is preprocessed in an application.

Table 11-1. GENPLAN WITH Clause Data Types — COBOL

COBOL Host Variable Data Type Declaration GENPLAN WITH Clause SQL Data Type

01 DATA-NAME PIC X. CHAR

01 DATA-NAME PIC X(n). CHAR(n)

01 GROUP-NAME. VARCHAR(n)

 49 LENGTH-NAME PIC S9(9) COMP.

 49 VALUE-NAME PIC X(n).

01 DATA-NAME PIC S9(4) COMP. SMALLINT

01 DATA-NAME PIC S9(9) COMP. INTEGER

01 DATA-NAME PIC S9(p-s)V9(s) COMP-3. DECIMAL(p,s)
430 Chapter 11

SQL Statements E - R
GENPLAN
Table 11-2. GENPLAN WITH Clause Data Types — Pascal

Pascal Host Variable Data Type Declaration GENPLAN WITH Clause SQL Data Type

DataName : char; CHAR

DataName : array [1..n] of char; CHAR(n)

DataName : packed array [1..n] of char; CHAR(n)

DataName : string[n]; VARCHAR(n)

DataName : smallint; SMALLINT

DataName : integer; INTEGER

DataName : longreal; FLOAT

DataName : real; REAL

Table 11-3. GENPLAN WITH Clause Data Types — FORTRAN

FORTRAN Host Variable Data Type
Declaration

GENPLAN WITH Clause SQL Data Type

CHARACTER DataName CHAR

CHARACTER*n DataName CHAR(n)

INTEGER*2 DataName SMALLINT

INTEGER DataName INTEGER

REAL DataName REAL

REAL*4 DataName REAL

DOUBLE PRECISION DataName FLOAT

REAL*8 DataName FLOAT
Chapter 11 431

SQL Statements E - R
GENPLAN
NOTE It is your responsibility to ensure that for each simulated host variable
defined in the GENPLAN statement WITH clause, you use the SQL data type
shown in the tables. If you use an incorrect data type, GENPLAN will
generate a plan. However, it may not be the plan the optimizer will choose
when your application is preprocessed.

• For each individual session, SYSTEM.PLAN stores the result of only one GENPLANat a
time. If GENPLANis issued twice in succession, the second plan will replace the first. The
access plan generated by GENPLAN is removed from SYSTEM.PLAN as soon as a
COMMIT WORK or ROLLBACK WORK statement is issued.

• GENPLAN can be applied to a type II insert query.

• The active SETOPT will be used for the statement of GENPLAN on an SQLStatement
only. A currently active SETOPT is ignored if a GENPLAN statement is executed on a
section.

• You can find the section number from the source file produced by the preprocessor after
the application is processed.

• Use the following information to find the section number for a procedure statement:

• A section exists for each SQL statement in a procedure except:

• BEGIN WORK

• ROLLBACK WORK

• SAVEPOINT

• OPEN cursor

• CLOSE cursor

• Procedure sections are numbered consecutively, starting with 1, from the start of the

Table 11-4. GENPLAN WITH Clause Data Types — C

C Host Variable Data Type Declaration GENPLAN WITH Clause SQL Data Type

char dataname ; CHAR

char dataname [n+1]; VARCHAR(n)

short dataname ; SMALLINT

short int dataname ; SMALLINT

int dataname ; INTEGER

long int dataname ; INTEGER

long dataname ; INTEGER

float dataname ; REAL

double dataname ; FLOAT
432 Chapter 11

SQL Statements E - R
GENPLAN
procedure, with no regard to any branching or looping constructs in the procedure.

• Multiple sessions may issue the GENPLAN statement at the same time because each
session has its own individual copy of SYSTEM.PLAN.

• See the section "Using GENPLAN to Display the Access Plan" in the "SQL Queries"
chapter for information on how to interpret the plan.

• You cannot use GENPLAN with the SYSTEM or CATALOG views.

Authorization

To execute GENPLAN, you must have DBA authority or the appropriate combination of
SELECT, UPDATE, or DELETE authorities for the tables and views accessed by the included
SQL statement. In the case of views, you must have the appropriate authorities for all
underlying views and base tables, as well.

Examples

1. Interactive SQL statement for the following query:

 >isql=> SELECT PartName, VendorNumber, UnitPrice
 > FROM Purchdb.Parts p, PurchDB.SupplyPrice sp
 > WHERE p.PartNumber = sp.PartNumber
 > AND p.PartNumber = '1123-P-01';

Generate the Plan:

 isql=> GENPLAN FOR
 > SELECT partname, vendornumber, UnitPrice
 > FROM PurchDB.Parts p, PurchDB.SupplyPrice sp
 > WHERE p.PartNumber = sp.PartNumber
 > AND p.PartNumber = '1123-P-01';

Display the Plan:

 isql=> SELECT * FROM System.Plan;

 SELECT * FROM System.Plan;
 -----------+-----------+-----------+--------------------+---------------
 QUERYBLOCK |STEP |LEVEL |OPERATION |TABLENAME
 -----------+-----------+-----------+--------------------+---------------
 1| 1| 2|index scan |PARTS
 1| 2| 2|serial scan |SUPPLYPRICE
 1| 3| 1|nestedloop join |
 --
 Number of rows selected is 3
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int], <n>, or e[nd] >r
 +--------------------+----------------
 |OWNER |INDEXNAME
 +--------------------+----------------
 |PURCHDB |PARTNUMINDEX
 |PURCHDB |
 Number of rows selected is 3
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int], <n>, or e[nd] >e
Chapter 11 433

SQL Statements E - R
GENPLAN
2. SQL statement simulating use of host variables in an application for the following
query taken from an application:

 EXEC SQL SELECT PartName, VendorNumber, UnitPrice
 INTO :PartName, :VendorNumber, :UnitPrice
 FROM PurchDB.Parts p, PurchDB.SupplyPrice sp
 WHERE p.PartNumber = sp.PartNumber
 AND p.PartNumber = :PartNumber

Remove INTO clause when placing the statement into GENPLAN.

Generate the plan in ISQL:

Define input host variable names and compatible SQL data types in WITH clause.

 isql=> GENPLAN WITH (PartNumber char(16)) FOR
 > SELECT PartName, VendorNumber, UnitPrice
 > FROM PurchDB.Parts p, PurchDB.SupplyPrice sp
 > WHERE p.PartNumber = sp.PartNumber
 > AND p.PartNumber = :PartNumber;

Display the plan:

 isql=> SELECT * FROM System.Plan;

 SELECT * FROM System.Plan;
 -----------+-----------+-----------+--------------------+---------------
 QUERYBLOCK |STEP |LEVEL |OPERATION |TABLENAME
 -----------+-----------+-----------+--------------------+---------------
 1| 1| 2|index scan |PARTS
 1| 2| 2|serial scan |SUPPLYPRICE
 1| 3| 1|nestedloop join |
 --
 Number of rows selected is 3
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int], *lt;n>, or e[nd] >r
 +--------------------+----------------
 |OWNER |INDEXNAME
 +--------------------+----------------
 |PURCHDB |PARTNUMINDEX
 |PURCHDB |
 Number of rows selected is 3
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int], <n>, or e[nd] >e

3. Example of GENPLAN for a MODULE SECTION.

 GENPLAN FOR MODULE SECTION MyModule(10);
434 Chapter 11

SQL Statements E - R
GOTO
GOTO
The GOTO statement permits a jump to a labeled statement within a procedure.

Scope

Procedures only

SQL Syntax
{ GOTO

GO TO}{ Label
Integer }

Parameters

Label specifies an identifier label for branching within the procedure.

Integer specifies an integer label for branching within the procedure.

Description

The label or integer referred to in a GOTOstatement is followed by a colon and a statement.

Authorization

Anyone can use the GOTO statement.

Example

 CREATE PROCEDURE Process10 AS
 BEGIN
 INSERT INTO SmallOrders VALUES ('Widget', 10);
 IF ::sqlcode <> 0 THEN
 GOTO Errors;
 ENDIF;
 RETURN 0;

 Errors: PRINT 'There were errors.';
 RETURN 1;
 END;
Chapter 11 435

SQL Statements E - R
GRANT
GRANT
The GRANT statement gives specified authority to one or more users or authorization
groups. The following forms of the GRANT statement are described individually:

• Grant table or view authority.

• Grant RUN or EXECUTE authority.

• Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE authority.

• Grant SECTIONSPACE or TABLESPACE authority for a DBEFileSet.

For detailed information about security schemes, refer to the "DBEnvironment
Configuration and Security" chapter of the ALLBASE/SQL Database Administration
Guide.

Scope

ISQL or Application Programs

SQL Syntax — Grant Table or View Authority
GRANT { ALL [PRIVILEGES]

{ SELECT
INSERT
DELETE
ALTER
INDEX
UPDATE [({ ColumnName}[,...])]
REFERENCES [({ ColumnName}[,...])]}|,...|}

ON {[Owner.] TableName
[Owner.] ViewName} TO { DBEUserID

GroupName
ClassName
PUBLIC } [,...][WITH GRANT OPTION]

[BY { DBEUserID
ClassName }]

Parameters — Grant Table or View Authority

ALL [PRIVILEGES] is the same as specifying all privileges you can grant on that table or
view. For OWNER or DBA the privileges are SELECT, INSERT, DELETE,
ALTER, INDEX, UPDATE, and REFERENCES. The word PRIVILEGES
is not required; you can include it if you wish to improve readability.
ALTER, INDEX, and REFERENCES are not applied when using GRANT
ALL on views.

SELECT grants authority to retrieve data.

INSERT grants authority to insert rows.

DELETE grants authority to delete rows.
436 Chapter 11

SQL Statements E - R
GRANT
ALTER grants authority to add new columns. ALTER authority is not allowed for a
view.

INDEX grants authority to create and drop indexes. INDEX authority is not
allowed for a view.

UPDATE grants authority to change data in existing rows. A list of column names
can be specified to grant UPDATE authority only for specific columns.
Omitting the list of column names grants authority to update all columns.

REFERENCES grants authority to reference columns in the table from the foreign keys in
other tables. A list of column names can be specified to grant
REFERENCES authority only for specific columns. Omitting the list of
column names grants authority to reference all columns. REFERENCES
authority is not allowed for a view.

[Owner.] TableName designates a table for which authority is to be granted.

[Owner.] ViewName designates a view for which authority is to be granted.

TO The TO clause designates the users, authorization groups, and classes to
be given the specified authority. You must specify a login name when
specifying a DBEUserID. Authority granted to PUBLIC can be exercised
by all users having CONNECT or DBA authority. Granting authority to a
class is useful when program modules are owned by a class.

WITH GRANT OPTION allows the grantee of a privilege to grant that same privilege to
another user. If WITH GRANT OPTION is specified, then all privileges
being granted in the statement are granted with the grant option to all
grantees. The grantee cannot be a group. The authority to grant cannot
come solely from group membership.

BY specifies a DBEUserID or class as grantor of a privilege. This clause is
used to provide a parent for an orphaned privilege. The named grantor
cannot be a group or PUBLIC.

Authorization — Grant Table or View Authority

If you have DBA or OWNER authority directly (not due to group membership), or were
previously granted table privileges with the WITH GRANT OPTION clause, you can issue
the GRANT statement with the WITH GRANT OPTION clause for that table or view.

The BY clause can only be used by a DBA.

A user may be granted a privilege from one grantor only. OWNER, DBA, or grantable
authority is required to issue the GRANT statement.

SQL Syntax — Grant RUN or EXECUTE Authority
GRANT { RUN ON [Owner.] ModuleName

EXECUTE ON PROCEDURE[Owner.] ProcedureName } TO
{{ DBEUserID

GroupName
ClassName } [,...]
PUBLIC }
Chapter 11 437

SQL Statements E - R
GRANT
Parameters — Grant RUN or EXECUTE Authority

RUN grants authority to execute a specified module created interactively or by
using a preprocessor.

[Owner.] ModuleName specifies the name of the module for which authority is to be
granted.

EXECUTE grants authority to execute a specified procedure.

[Owner.] ProcedureName specifies the name of the procedure for which authority is to be
granted.

TO The TO clause tells which users and authorization groups are to be
granted the specified authority. You must specify a login name when
specifying a DBEUserID. Authority granted to PUBLIC can be exercised
by any user with CONNECT authority.

Authorization — Grant RUN or EXECUTE Authority

If you have DBA authority or OWNER authority, you can issue GRANT statements for any
module or procedure.

To grant CONNECT, DBA, or RESOURCE authority, you must have DBA authority.

SQL Syntax — Grant CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

GRANT { CONNECT
DBA
INSTALL [AS OwnerID]
MONITOR
RESOURCE } TO { DBEUserID

GroupName
ClassName } [,...]

Parameters — Grant CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

CONNECT grants authority to use the CONNECT statement.

DBA grants authority to issue any valid ALLBASE/SQL statement. A user with
DBA authority is exempt from all authorization restrictions.

RESOURCE grants authority to create tables and authorization groups.

MONITOR grants authority to run SQLMON.

INSTALL grants authority to INSTALL modules where the owner name equals the
OwnerID . If the "AS OwnerID " clause is omitted, then grants authority to
INSTALL modules having any owner name.

Modules for an application are created and installed when that application
is preprocessed using one of the SQL preprocessors. Modules can also be
installed by using the ISQL INSTALL command. See the ALLBASE/ISQL
438 Chapter 11

SQL Statements E - R
GRANT
Reference Manual for more details.

TO The TO clause specifies the users, authorization groups, and classes to be
given the specified authority. You must specify a login name when
specifying a DBEUserID. Granting DBA authority to a class is useful
when program modules are owned by a class.

Description — Grant CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

• If MONITOR authority is granted to a user, authorization group, or class that already
has DBA authority, a warning is returned and explicit MONITOR authority is not
granted since a DBA already has MONITOR authority.

• If DBA authority is granted to a user, authorization group, or class that already has
MONITOR authority, MONITOR authority is upgraded to DBA authority.

Authorization — Grant CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

If you have OWNER authority for a table, view, or module, you can issue GRANTstatements
for that table or view. If you have DBA authority, you can issue GRANT statements for any
table, view, or module. To grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE
authority, you must have DBA authority.

SQL Syntax — Grant DBEFileSet Authority
GRANT { SECTIONSPACE

TABLESPACE } [,...] ON DBEFILESET DBEFileSetName TO
{ DBEUserID

GroupName
ClassName
PUBLIC } [,...]

Parameters — Grant DBEFileSet Authority

SECTIONSPACEgrants authority to store sections in the specified DBEFileSet.

A grant of SECTIONSPACE causes a check to see whether the
STOREDSECT table has yet been created for the DBEFileSet. If there is
no related STOREDSECT table, it is created.

When a user specifies a DBEFileSet for a section in a CREATE TABLE(check
constraints), ALTER TABLE (check constraints), CREATE PROCEDURE,
CREATE RULE, or PREPARE statement, in preprocessing, or in the ISQL
INSTALL command, the owner of the section is checked for
SECTIONSPACE authority on the DBEFileSet. If the user does not have
SECTIONSPACE authority, the default SECTIONSPACE DBEFileSet is
used instead. (See the SET DEFAULT DBEFILESETstatement.) This applies
even if the user has DBA authority.

TABLESPACE grants authority to store table and long column data in the specified
Chapter 11 439

SQL Statements E - R
GRANT
DBEFileSet.

When a user specifies the IN DBEFileSet clause in a CREATE TABLE
statement for either the table or for a LONG column, the owner of the
table is checked for TABLESPACE authority on the DBEFileSet. If the
user does not have TABLESPACE authority, the default TABLESPACE
DBEFileSet is used instead (See the SET DEFAULT DBEFILESET
statement.) This applies even if the user has DBA authority.

DBEFileSetName designates the DBEFileSet for which authority is to be granted.

Description

• The execution of this statement causes modification to the HPRDBSS.SPACEAUTH
system catalog table. Refer to the ALLBASE/SQL Database Administration Guice
"System Catalog" chapter.

Authorization — Grant DBEFilesSet Authority

To grant SECTIONSPACE or TABLESPACE, you must have DBA authority. If you have
DBA authority, you can issue the GRANT statement for any DBEFileSet.

Examples

1. Authorization groups

 CREATE GROUP Warehse

 GRANT CONNECT TO Warehse

 GRANT SELECT,
 UPDATE (BinNumber,QtyOnHand,LastCountDate)
 ON PurchDB.Inventory
 TO Warehse

These two users will be able to start DBE sessions for PartsDBE, retrieve data from
table PurchDB.Inventory, and update three columns in the table.

 ADD Clem, George TO GROUP Warehse

Clem no longer has any of the authorities associated with group Warehse.

 REMOVE Clem FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no
longer has any of the authorities once associated with the group.

 DROP GROUP Warehse
440 Chapter 11

SQL Statements E - R
GRANT
2. Using the WITH GRANT OPTION clause

Clem and George have the SELECT privilege on the Inventory table as well as the
ability to grant the SELECT privilege on this table to other users or a class with the
WITH GRANT OPTION clause or to a group or PUBLIC (without the WITH GRANT
OPTION).

 GRANT SELECT
 ON PurchDB.Inventory
 TO Clem, George WITH GRANT OPTION

3. Module grants

 GRANT RUN ON Statistics TO HelperDBA
 GRANT RUN ON MyProg TO PUBLIC

Rows associated with module Statistics are deleted from the system catalog.

 DROP MODULE Statistics

Authorization information for MyProg is retained, but the program is deleted from the
system catalog. You can re-preprocess MyProg and do not have to redefine its
authorization.

 DROP MODULE MyProg PRESERVE

4. Procedure grants

 GRANT EXECUTE ON PROCEDURE Process10 TO Managers
 GRANT EXECUTE ON PROCEDURE Process12 TO AllUsers

5. DBEFileSet grants

Grant the ability to store sections in DBEFileSet1 to PUBLIC.

 GRANT SECTIONSPACE ON DBEFILESET DBEFileSet1 TO PUBLIC;

Grant the ability to store table and long column data in DBEFileSet2 to PUBLIC.

 GRANT TABLESPACE ON DBEFILESET DBEFileSet2 TO PUBLIC;

6. Grant authority to run SQLMON

 GRANT MONITOR TO HelperDBA;

7. Grant a DBEUserID the authority to create modules owned by a specified OwnerID .

 GRANT INSTALL AS John TO Clem;
Chapter 11 441

SQL Statements E - R
IF
IF
The IF statement is used to allow conditional execution of one or more statements within a
procedure.

Scope

Procedures only

SQL Syntax
IF Condition THEN [Statement ;[...]]
[ELSEIF Condition THEN [Statement ; [...]]]
[ELSE [Statement ; [...]]] ENDIF;

Parameters

Condition specifies anything that is allowed in a search condition except subqueries,
column references, host variables, dynamic parameters, aggregate
functions, string functions, date/time functions involving column
references, long column functions, or TID functions. Local variables,
built-in variables, and parameters may be included. See Chapter 9 ,
“Search Conditions,” for more information.

Statement is any statement allowed in a procedure, including a compound statement.
The statement may also be empty.

Description

• IF statements can be nested. In a nested IF statement, each ELSE is associated with
the closest preceding IF .

• Local variables, and parameters can be used anywhere a host variable would be
allowed.

• Each Statement may be a single simple statement, a compound statement, or empty.

Authorization

Anyone can use the IF statement.
442 Chapter 11

SQL Statements E - R
IF
Example

Create a procedure to enter orders into different tables according to the size of the order:

 CREATE PROCEDURE OrderEntry (PartName CHAR(20) NOT NULL,
 Quantity INTEGER NOT NULL) AS
 BEGIN
 IF :Quantity < 100 THEN
 INSERT INTO SmallOrders
 VALUES (:PartName, :Quantity);
 ELSE
 INSERT INTO LargeOrders
 VALUES (:PartName, :Quantity);
 ENDIF;
 END

Execute the procedure with different parameters. The first execution adds a row to the
LargeOrders table.

 EXECUTE PROCEDURE Reorder ('Widget', 1500)

The second execution adds a row to the SmallOrders table.

 EXECUTE PROCEDURE Reorder ('Widget', 15)
Chapter 11 443

SQL Statements E - R
INCLUDE
INCLUDE
The INCLUDE preprocessor directive is used in an application program to declare the
SQLCA or the SQLDA.

Scope

Application Programs Only

SQL Syntax
INCLUDE { SQLCA [[IS] EXTERNAL]

SQLDA }

Parameters

SQLCA and SQLDA identify data structures with special predefined meaning as follows:

• SQLCA is an area for ALLBASE/SQL output messages concerning the
status of each SQL statement.

• SQLDA is an area for use in conjunction with dynamic preprocessing of
SELECT statements.

Refer to the ALLBASE/SQL Application Programming Guide for the
language you are using for more information on these data structures.

IS EXTERNAL for the COBOL preprocessor only; declares the SQLCA structure as
EXTERNAL. Then the SQLCA will not have to be passed explicitly to
subprograms.

Description

• This directive cannot be used interactively or in procedures.

• You must always include the SQLCA in your ALLBASE/SQL application programs by
using the INCLUDE statement or explicitly declaring the SQLCA yourself. At run time,
ALLBASE/SQL puts information into the SQLCA that describes how SQL statements
in the program executed.

Authorization

You do not need authorization to use the INCLUDE statement.

Example

 INCLUDE SQLCA IS EXTERNAL

 INCLUDE SQLDA
444 Chapter 11

SQL Statements E - R
INSERT
INSERT
The INSERT command adds rows to a table. The following two forms of the INSERT
command are described individually:

• The form used to add rows having values you define. You can add a single row or (in an
application program) you can insert multiple rows using the bulk facility. There is
special syntax for prepared INSERT and BULK INSERT statements that use dynamic
parameter substitution.

• The form used to add rows defined by a SELECT command. This form copies rows from
one or more tables or views into a table and is called a Type 2 INSERT.

Rules defined with a StatementType of INSERT will affect both forms of INSERT command.

Scope

ISQL or Application Programs

SQL Syntax - Insert Rows with Defined Values
[BULK] INSERT INTO { [Owner.] TableName

[Owner.] ViewName}
[({ ColumnName}[,...])]

VALUES ({ SingleRowValues
BulkValues
? })

Parameters - Insert Rows with Defined Values

BULK is specified in an application program to insert multiple rows with a single
execution of the INSERT command.

[Owner.] TableName identifies the table to which data is to be added.

[Owner.] ViewName identifies a view on a single table; the data is added to the table
upon which the view is based. Refer to the CREATE VIEW command for
restrictions governing insertion via a view.

ColumnName specifies a column for which values are supplied.

If you omit any of the table's columns from the column name list, the
INSERT command places the default value of the respective column
definitions in the omitted columns. For columns with no default value, the
null value is placed in the omitted columns. If the table definition specifies
NOT NULL for any of the omitted columns, the INSERT command fails.

You can omit the column name list if you provide values for all columns of
the table in the same order the columns were specified in the CREATE
TABLE (or CREATE VIEW) command.

VALUES The VALUES clause specifies the values corresponding to the columns in
the column name list, or the columns specified in the CREATE TABLE or
Chapter 11 445

SQL Statements E - R
INSERT
CREATE VIEW commands, if no column name list exists. Character and
date/time literals must be in single quotes.

SingleRowValues defines column values when you insert a single row. The syntax for
SingleRowValues is presented separately below and includes single row
syntax for statements that do not use dynamic parameter substitution.

BulkValues defines values when you use the BULK option. The syntax for
BulkValues is presented separately below and includes bulk value syntax
for statements that do not use dynamic parameter substitution.

? is a dynamic parameter value that defines column values within a
prepared insert statement that uses dynamic parameter substitution. The
syntax for DynamicParameterValues is presented separately below and
includes both single row and bulk processing for such statements.

SQL Syntax — SingleRowValues

The following syntax applies to single row inserts that do not use dynamic parameter
substitution.

{ NULL
USER
: HostVariable [[INDICATOR]: IndicatorVariable]
?
: LocalVariable
:ProcedureParameter
:: Built-inVariable
ConversionFunction
CurrentFunction
[+

-]{ Integer
Float
Decimal }

‘ CharacterString ’
OxHexadeciamalString
‘ LongColumnIOString ’ }[,...]

Parameters — SingleRowValues

NULL indicates a null value.

USER evaluates to the current DBEUserID. In ISQL, it evaluates to the login
name of the ISQL user. From an application program, it evaluates to the
login name of the individual running the program.

USER behaves like a CHAR(20) constant, with trailing blanks if the login
name has fewer than 20 characters.

HostVariable contains a value in an application program being input to the expression.

IndicatorVariable names an indicator variable, whose value determines whether the
associated host variable contains a NULL value:

> = 0 the value is not NULL

< 0 the value is NULL (The value in the host variable will be
446 Chapter 11

SQL Statements E - R
INSERT
ignored.)

NOTE To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a −1 to indicate a null value. However,
ALLBASE/SQL interprets all negative indicator variable values to mean a
null value.

? is a place holder for a dynamic parameter in a prepared SQL statement in
an application program. The value of the dynamic parameter is supplied at
run time.

LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

Built-inVariable is one of the following built-in variables used for error handling:

• ::sqlcode

• ::sqlerrd2

• ::sqlwarn0

• ::sqlwarn1

• ::sqlwarn2

• ::sqlwarn6

• ::activexact

The first six of these have the same meaning that they have as fields in the
SQLCA in application programs. Note that in procedures, sqlerrd2 returns
the number of rows processed, for all host languages. However, in
application programs, sqlerrd3 is used in COBOL, Fortran, and Pascal,
while sqlerr2 is used in C. ::activexact indicates whether a transaction is
in progress or not. For additional information, refer to the application
programming guides and to Chapter 4 , “Constraints, Procedures, and
Rules.”

ConversionFunction returns a value that is a conversion of a date/time data type into
an INTEGER or CHAR value, or from a CHAR value.

CurrentFunction indicates the value of the current DATE, TIME, or DATETIME
function.

Integer specifies a value of type INTEGER or SMALLINT.

Float specifies a value of type FLOAT or REAL.

Decimal specifies a value of type DECIMAL.

CharacterString specifies a CHAR, VARCHAR, DATE, TIME, DATETIME, or
INTERVAL value.

HexadecimalString specifies a BINARY or VARBINARY value. If the string is shorter
than the target column, it is padded with binary zeroes; if it is longer than
the target column, the string is truncated.
Chapter 11 447

SQL Statements E - R
INSERT
LongColumnIOString specifies the input and output locations for the LONG data. The
specification for this string is given below.

SQL Syntax — LongColumnIOString
<{[PathName/] FileName

%SharedMemoryAddress }
[{ >

>>
>! }[PathName/]{ FileName

CharSting $
CharString $ CharString }

>%{ SharedMemoryAddress
$ }]

Parameters — LongColumnIOString

< [PathName/] FileName is the location of the input file.

<% SharedMemoryAddress is the shared memory address where the input is located.

> specifies that output is placed in the following file. If the file already exists,
it is not overwritten nor appended to, and an error is generated.

>> specifies that output is appended to the following file name. If the file does
not exist, it is created.

>! specifies that output is placed in the following file name. If the file already
exists, it is overwritten.

>% SharedMemoryAddress is the shared memory address where the output is placed.

>%$ is the shared memory address, determined by ALLBASE/SQL, where the
output is placed.

$ is the wildcard character that represents a random, five-byte
alphanumeric character string generated by ALLBASE/SQL. This is a file
name.

Description — LongColumnIOString

• The input device must have a permission allowing the login user to access it. For
example, if the file belongs to the login user, permission must be at least 400. If the file
belongs to another user, in a different group, permission must be at least 004.

• When an output device has been specified and it exists prior to a SELECT or FETCH
command, ALLBASE/SQL does not change the file's owner or permission.

• The output device, if it does not exist prior to a SELECT or FETCH command, is created
with the following characteristics.
448 Chapter 11

SQL Statements E - R
INSERT
• If the output device exists prior to a SELECT or FETCH command, in order for
ALLBASE/SQL to access it for append or overwrite, the above characteristics are
recommended.

• When no portion of the output device name is specified, the default file name, tmp$.LF,
is used. The wildcard character ($) indicates a random, five-byte, alphanumeric
character string. This file is created in the local directory.

• When you specify a portion of the output file name in conjunction with the wildcard
character ($), a five-byte, alphanumeric character string replaces the wildcard. The
wildcard character can appear in any position of the output device name except the
first. The maximum file name being 14 bytes, you can specify 9 bytes of the device
name.

• The wildcard character, whether user specified or part of the default output device
name, is a unique five-byte, alphanumeric character string.

• When a file is used as the LONG column input or output device and you do not give it a
specific path name in the LONG column I/O string, the default is the path where ISQL
or your program is running.

• The output device cannot be overwritten with a SELECTor FETCHcommand unless you
use the INSERT or UPDATE command with the overwrite option.

• LONG columns cannot be used as follows:

— In a WHERE clause.

— In a type II INSERT command.

— Remotely through ALLBASE/NET.

— As hash or B-tree index key columns.

— In a GROUP BY, ORDER BY, DISTINCT, or UNION clause.

— In an expression.

— In a subquery.

— In aggregate functions (AVG, SUM, MIN, MAX).

— As columns to which integrity constraints are assigned.

— With the DEFAULT option of the CREATE or ALTER TABLE commands.

Table 11-5. Default Output Device Characteristics

Device Type Permission UserID (uid) GroupID (gid)

OUTPUT create 700 Current user login id Current user login group

OUTPUT append 200 Current user login id Current user login group

OUTPUT overwrite 200 Current user login id Current user login group
Chapter 11 449

SQL Statements E - R
INSERT
SQL Syntax — BulkValues

The following syntax applies only to statements that do not use dynamic parameter
substitution.

: Buffer [,: StartIndex [,: NumberOfRows]]

Parameters — BulkValues

Buffer is a host array or structure containing rows that are the input for the
INSERT command. This array contains elements for each column to be
inserted and indicator variables for columns that can contain null values.
Whenever a column can contain nulls, an indicator variable must be
included in the array definition immediately after the definition of that
column. This indicator variable is an integer that can have the following
values:

> = 0 the value is not NULL

< 0 the value is NULL

NOTE To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a −1 to indicate a null value. However,
ALLBASE/SQL interprets all negative indicator variable values to mean a
null value.

StartIndex is a host variable whose value specifies the array subscript denoting where
the first row to be inserted is stored in the array; default is the first
element of the array.

NumberOfRows is a host variable whose value specifies the number of rows to insert;
default is to insert from the starting index to the end of the array.

Description — Insert Rows with SingleRowValues and BulkValues

• When you enter SQL commands interactively, you cannot use host variables or the
BULK option.

• You cannot use the BULK option in a procedure.

• If you omit any of the table's columns from the column name list, the INSERT command
places the default value of the respective column definitions in the omitted columns. For
columns with no default value, the null value is placed in the omitted columns. If the
table definition specifies NOT NULL for any of the omitted columns, the INSERT
command fails.

• If ALLBASE/SQL detects an error during a BULK INSERToperation, the error handling
behavior is determined by the setting of the SET DML ATOMICITY and SET
CONSTRAINTS statements. Refer to the discussion of these statements in this chapter
for more information.

• For CHAR and VARCHAR data, if a CharacterString literal is shorter than the
target column, it is padded with blanks; if it is longer than the target column, the string
450 Chapter 11

SQL Statements E - R
INSERT
is truncated. Refer to Chapter 7 , “Data Types,” for information on overflow and
truncation of other data types.

• No error or warning condition is generated by ALLBASE/SQL when a character or
binary string is truncated during an INSERT operation.

• Using the INSERT command with views requires that the views be based on queries
that are updatable. See "Updatability of Queries" in Chapter 3 , “SQL Queries.”

• Values in referenced (primary key) columns must be inserted before values in
referencing (foreign key) columns. However, if you do a bulk insertion, inserting the
primary key rows after the foreign key rows does not cause an error message, because
the constraints are satisfied by the time you COMMIT WORK.

• A table on which a unique constraint is defined cannot contain duplicate rows.

• BINARY and VARBINARY data can be inserted in character or hexadecimal format.
Character format requires single quotes and hexadecimal requires a 0x before the
value.

• Under the default settings for the SET DML ATOMICITY and SET CONSTRAINTS
statements, integrity constraints on tables and views are enforced on a statement level
basis and if a constraint should be violated during processing of the insert, no rows are
inserted. However, the SET DML ATOMICITY and SET CONSTRAINTS statements both
override the default behavior. For more information, it is important that you refer to the
section "Error Conditions in ALLBASE/SQL" in Chapter 1 , “Introduction,” and the SET
DML ATOMICITY or the SET CONSTRAINTS statements in this chapter.

• Rows being inserted must not cause the search condition of the table check constraint to
be false and must cause the search condition of the view check constraint to be true.

• Rows being inserted in the table through a view having a WITH CHECK OPTION must
satisfy the check constraint of the view and any underlying views in addition to
satisfying any constraints of the table. Refer to the "Check Constraints" section
inChapter 4 , “Constraints, Procedures, and Rules,” for more information on check
constraints.

• Rules defined with a StatementType of INSERT will affect all kinds of INSERT
statements performed on the rules' target tables. When the INSERT is performed,
ALLBASE/SQL considers all the rules defined for that table with the INSERT
StatementType . If the rule has no condition, it will fire for all rows affected by the
statement and invoke its associated procedure with the specified parameters on each
row. If the rule has a condition, it will evaluate the condition on each row. The rule will
fire on rows for which the condition evaluates to TRUE and invoke the associated
procedure with the specified parameters for each row. Invoking the procedure could
cause other rules, and thus other procedures, to be invoked if statements within the
procedure trigger other rules.

• If a DISABLE RULES statement is in effect, the INSERT statement will not fire any
otherwise applicable rules. When a subsequent ENABLE RULES is issued, applicable
rules will fire again, but only for subsequent INSERT statements, not for those rows
processed when rule firing was disabled.

• In a rule defined with a StatementType of INSERT, any column reference in the
Condition or any ParameterValue will refer to the value of the column as it is
Chapter 11 451

SQL Statements E - R
INSERT
assigned in the INSERT statement, or by the default value of the column if it is not
included in the INSERT statement.

• When a rule is fired by this statement, the rule's procedure is invoked after the changes
have been made to the database for that row and all previous rows. The rule's
procedure, and any chained rules, will thus see the state of the database with the
current partial execution of the statement.

• If an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the
statement and any procedures invoked by any rules will have no effect. Nothing will
have been altered in the DBEnvironment as a result of this statement or the rules it
fired. Error messages are returned in the normal way.

• The BULK option is not allowed within a procedure.

SQL Syntax — DynamicParameterValues

The following syntax applies to single row and bulk inserts that use

dynamic parameter substitution.

(? [,...])

Parameters — DynamicParameterValues

(? [,...]) represents one or more host variables in a prepared INSERT statement.
Each ? corresponds in sequential order to a column in the column name
list of the prepared statement (even when BULK is used).

When you use a data structure of sqlda_type to pass dynamic parameter
information between the application and ALLBASE/SQL, the number of
"?"s specified must match the sqld field of the descriptor area and the
number of values in a single element of the data buffer.

When you use host variables to pass dynamic parameter data values
between the application and ALLBASE/SQL, the number of "?"s specified
must match the number and order of the host variables in the related
EXECUTEstatement. This does not apply when you use the BULK option as
you cannot mix host variables and dynamic parameters.

Description — Insert Rows with DynamicParameterValues

• Statements using question marks (?) indicating dynamic parameters can be intermixed
with items in SingleRowValues and they can return either a value or a format. When
using dynamic parameters for values, the dynamic parameter becomes the data type of
the column. When using dynamic parameters for conversion functions, they become the
data type to which they are assigned (CHAR 72). Only TO_DATE, TO_TIME,
TO_DATETIME, and TO_INTERVAL are allowed here; TO_CHAR and TO_INTEGER
are not allowed.

• When using the BULK option, statements using question marks (?), indicating dynamic
parameters, can contain only question marks (and no host variables) to indicate column
452 Chapter 11

SQL Statements E - R
INSERT
input.

• The BULK option used with host variables is available for C, COBOL, and FORTRAN
applications.

• The BULK option used with an sqlda_type data structure is available for C and Pascal
applications.

Authorization — Insert Rows with SingleRowValues and Bulk
Values

If you specify the name of a table, you must have INSERT or OWNER authority for that
table or you must have DBA authority.

If you specify the name of a view, you must have INSERT or OWNER authority for that
view or you must have DBA authority. Also, the owner of the view must have INSERT or
OWNER authority with respect to the view's base tables, or the owner must have DBA
authority.

SQL Syntax — INSERT Rows Defined by a SELECT Command (Type
2 Insert)

INSERT INTO { [Owner.] TableName
[Owner.] ViewName}[(ColumnName [,...])] QueryExpression

Parameters — INSERT Rows Defined by a SELECT Command (Type
2 Insert)

[Owner.] TableName identifies the table to which data is to be added.

[Owner.] ViewName identifies a view on a single table; the data is added to the table
upon which the view is based. Refer to the CREATE VIEW command for
restrictions governing inserts via a view.

ColumnName specifies a column for which data is supplied from the select list in the
SELECT command. Each column named must have a corresponding select
list item. You can omit the column name list if you provide a select list
item for all columns in the target table in the same order the columns were
specified in the CREATE TABLE (or CREATE VIEW) command.

QueryExpression defines the rows to be inserted based on one or more tables and/or
views in the DBEnvironment. The name of the target table cannot appear
within the FROM clause or in a FROM clause of any subquery. The query
expression cannot contain an INTO clause or a union operation.

The data types of each column in the select list must be compatible with
the data types of corresponding columns in the target table. The first select
list item defines the first column in the target table, the second select list
item defines the second column in the target table, and so forth. The
number of select list items must equal the number of columns in the target
table.

Any column in the target table can contain null values only if it was not
Chapter 11 453

SQL Statements E - R
INSERT
defined with the NOT NULL attribute. Therefore ensure either that select
list items are not null for any NOT NULL target column, or that the NOT
NULL target columns have default values defined for them.

Description — INSERT Rows Defined by a SELECT Command (Type
2 Insert)

• You cannot use the ORDER BY clause in a Type 2 Insert.

• You cannot insert into a LONG column with this kind of INSERT operation.

• You cannot specify a LONG column in the QueryExpression in this kind of INSERT
operation, except in a long column or string function.

• If you omit any of the table's columns from the column name list, the INSERT command
places the default value of the respective column definitions in the omitted columns. For
columns with no default value, the null value is placed in the omitted columns. If the
table definition specifies NOT NULL for any of the omitted columns, the INSERT
command fails.

• If ALLBASE/SQL detects an error during this kind of INSERT operation, error handling
behavior is determined by the setting of the SET DML ATOMICITY and SET
CONSTRAINTS statements. Refer to the discussion of these statements in this chapter.

• Using the INSERT command with views requires that the views be based on updatable
queries. See "Updatability of Queries" in Chapter 3 , “SQL Queries.”

• A table on which a unique constraint is defined cannot contain duplicate rows.

• Under the default settings for the SET DML ATOMICITY and SET CONSTRAINTS
statements, integrity constraints on tables and views are enforced on a statement level
basis and if a constraint should be violated during processing of the insert, no rows are
inserted. However, the SET DML ATOMICITY and SET CONSTRAINTS statements both
override the default behavior. For more information, it is important that you refer to the
section "Error Conditions in ALLBASE/SQL" in Chapter 1 , “Introduction,” and the SET
DML ATOMICITY or the SET CONSTRAINTS statements in this chapter.

• Rows being inserted must not cause the search condition of the table check constraint to
be false and must cause the search condition of the view check constraint to be true.

• Rows being inserted in the table through a view having a WITH CHECK OPTION must
satisfy the check constraint of the view and any underlying views in addition to
satisfying any constraints of the table. Refer to the "Check Constraints" section of
Chapter 4 , “Constraints, Procedures, and Rules,” for more information on check
constraints.

• Values in referenced (primary key) columns must be inserted before values in
referencing (foreign key) columns. However, if you do a bulk insertion, inserting the
primary key rows after the foreign key rows does not cause an error message, as the
constraints are satisfied by the time you COMMIT WORK.

• BINARY and VARBINARY data can be inserted in character or hexadecimal format.
Character format requires single quotes and hexadecimal requires a 0x before the
value.
454 Chapter 11

SQL Statements E - R
INSERT
• Rules defined with a StatementType of INSERT will affect all kinds of INSERT
statements performed on the rules' target tables. When the INSERT is performed,
ALLBASE/SQL considers all the rules defined for that table with the INSERT
StatementType . If the rule has no condition, it will fire for all rows affected by the
statement and invoke its associated procedure with the specified parameters on each
row. If the rule has a condition, it will evaluate the condition on each row. The rule will
fire on rows for which the condition evaluates to TRUE and invoke the associated
procedure with the specified parameters for each row. Invoking the procedure could
cause other rules, and thus other procedures, to be invoked if statements within the
procedure trigger other rules.

• If a DISABLE RULES statement is in effect, the INSERT statement will not fire any
otherwise applicable rules. When a subsequent ENABLE RULES is issued, applicable
rules will fire again, but only for subsequent INSERT statements, not for those rows
processed when rule firing was disabled.

• In a rule defined with a StatementType of INSERT, any column reference in the
Condition or any ParameterValue will refer to the value of the column as it is
assigned in the INSERT statement, or by the default value of the column if it is not
included in the INSERT statement.

• The set of rows to be inserted by a type 2 INSERT (that is, an INSERT defined by a
SELECTstatement) is determined before any rule fires, and this set remains fixed until
the completion of the rule. In other words, if the rule adds to, deletes from, or modifies
this set, such changes are ignored.

• When a rule is fired by this statement, the rule's procedure is invoked after the changes
have been made to the database for that row and all previous rows. The rule's
procedure, and any chained rules, will thus see the state of the database with the
current partial execution of the statement.

• If an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the
statement and any procedures invoked by any rules will have no effect. Nothing will
have been altered in the DBEnvironment as a result of this statement or the rules it
fired. Error messages are returned in the normal way.

Authorization — INSERT Rows Defined by a SELECT Command
(Type 2 Insert)

To insert rows into a table, you must have INSERT or OWNER authority for that table or
you must have DBA authority.

To insert rows using a view, you must have INSERT or OWNER authority for that view or
you must have DBA authority. Also, the owner of the view must have INSERT or OWNER
authority with respect to the view's base tables, or the owner must have DBA authority.

If you specify the name of a table in the FROM clause of the SELECT command, you must
have SELECT or OWNER authority for the table or you must have DBA authority. If you
specify the name of a view in the FROM clause of the SELECT command, you must have
SELECT or OWNER authority for the view or you must have DBA authority. Also, the
owner of the view must have SELECT or OWNER authority with respect to the view's
definition, or the owner must have DBA authority.
Chapter 11 455

SQL Statements E - R
INSERT
Examples

1. Single-row insert

 INSERT INTO PurchDB.Vendors
 VALUES (9016,
 'Secure Systems, Inc.',
 'John Secret',
 '454-255-2087',
 '1111 Encryption Way',
 'Hush',
 'MD',
 '00007',
 'discount rates are carefully guarded secrets')

A new row is added to the PurchDB.Vendors table.

2. Bulk insert

 BULK INSERT INTO PurchDB.Parts
 (PartNumber, PartName)
 VALUES (:NewRow, :Indx, :NumRow)

Programmatically, you can insert multiple rows with one execution of the INSERT
command if you specify the BULK option. In this example, the rows to be inserted are in
the array called NewRow.

3. Insert using SELECT operation

 CREATE PUBLIC TABLE PurchDB.CalifVendors
 (VendorName CHAR(30) NOT NULL,
 PartNumber CHAR(16) NOT NULL,
 UnitPrice DECIMAL(10,2),
 DeliveryDays SMALLINT,
 VendorRemarks VARCHAR(60))

IN PurchFS

This table has the same column attributes as corresponding columns in
PurchDB.SupplyPrice and PurchDB.Vendors.

 INSERT INTO PurchDB.CalifVendors
SELECT VendorName, PartNumber, UnitPrice, DeliveryDays, VendorRemarks

 FROM PurchDB.Supplyprice, PurchDB.Vendors
 WHERE PurchDB.SupplyPrice.VendorNumber =
PurchDB.Vendors.VendorNumber
 AND VendorState = 'CA'

Rows for California vendors are inserted based on a query result obtained by joining
PurchDB.SupplyPrice and PurchDB.Vendors. A column list is omitted because all
columns in the target table have a corresponding select list item.

4. Single row insert using dynamic parameters with host variables

 PREPARE CMD FROM 'INSERT INTO PurchDB.Parts (PartNumber, PartName)
 VALUES(?,?);'
456 Chapter 11

SQL Statements E - R
INSERT
A new row is added to the PurchDB.Parts table based on the prepared INSERT
statement called CMD. Row values are provided at run time, and an EXECUTEstatement
using two host variables is required to complete the INSERT.

 EXECUTE CMD USING :PartNumber, :PartName;

5. Bulk insert using dynamic parameters with host variables

 PREPARE CMD FROM 'BULK INSERT INTO PurchDB.Parts (PartNumber,
PartName)
 VALUES(?,?);'

Multiple rows can be added to the PurchDB.Parts table. Row values are provided at run
time, and an EXECUTE statement using the address of a host variable array containing
dynamic parameter data and host variables containing the starting index and number
of rows to be inserted complete the INSERT.

 EXECUTE CMD USING :DataBuffer, :StartIndex, :NumberOfRows;

6. Bulk insert or single row insert using dynamic parameters with sqlda_type and related
data structures

 PREPARE CMD FROM 'BULK INSERT INTO PurchDB.Parts (PartNumber, PartName)
 VALUES(?,?);'

One or more rows can be added to the PurchDB.Parts table. Row values are provided at
run time, and an EXECUTEstatement using a descriptor area is required to complete the
INSERT.

Before issuing the execute statement, you must set certain fields in the descriptor area.
(The ALLBASE/SQL application programming guides contain detailed information
regarding this technique.) Then you describe the input to ALLBASE/SQL.

 DESCRIBE INPUT CMD INTO Sqlda;
 EXECUTE CMD USING DESCRIPTOR Sqlda;
Chapter 11 457

SQL Statements E - R
Labeled Statement
Labeled Statement
A Label identifies an SQL statement that can be referred to within the procedure.

Scope

Procedures only

SQL Syntax

Label : Statement

Parameters

Label is an integer or a name which conforms to the SQL syntax rules for a basic
name.

Statement is the statement within a procedure to be labeled.

Description

• A label may appear only at the start of a ProcedureStatement that is not part of a
compound statement. It cannot appear with a local variable declaration or a
WHENEVER directive.

• Labels within a procedure should be unique.

• A label can only be referred to from a GOTO statement and WHENEVER...GOTO
directive.

Authorization

Anyone can use this statement.

Example
 CREATE PROCEDURE Process19 (param1 integer, param2 float) AS
 BEGIN
 DECLARE value1 integer;
 WHENEVER sqlerror GOTO errorexit;
 DECLARE cursor1 CURSOR FOR
 SELECT column1
 FROM table1
 WHERE column1 > :param1;
 OPEN cursor1;
 WHILE ::sqlcode < > 100 do
 FETCH cursor1 into :value1;
 IF ::sqlcode = 100 THEN
 GOTO loopexit;
 ENDIF;
458 Chapter 11

SQL Statements E - R
Labeled Statement
 INSERT INTO table2
 VALUES (:value1, :param2);
 UPDATE table3 SET column1 = CURRENT_DATE WHERE column2 = :value1;
 IF ::sqlerrd2 < 1 THEN
 INSERT INTO table3
 VALUES (CURRENT_DATE, :value1);
 ENDIF;
 ENDWHILE;
 loopexit:
 CLOSE cursor1;
 RETURN 0;
 errorexit:
 PRINT 'Procedure terminated due to error:';
 PRINT ::
 sqlcode;
 END;
 EXECUTE PROCEDURE Process19;
Chapter 11 459

SQL Statements E - R
LOCK TABLE
LOCK TABLE
The LOCK TABLE statement provides a means of explicitly acquiring a lock on a table, to
override the automatic locking provided by ALLBASE/SQL in accord with the CREATE
TABLE locking modes.

Scope

ISQL or Application Programs

SQL Syntax
LOCK TABLE [Owner.] TableName IN { SHARE [UPDATE]

EXCLUSIVE } MODE

Parameters

[Owner.]TableName specifies the table to be locked.

SHARE allows other transactions to read but not change the table during the time
you hold the lock.

Your transaction is delayed until any active transactions that have
changed the table have ended. Then you can retrieve from the specified
table with no further delays or overhead due to locking. Automatic locking
of pages or rows takes place as usual any time your transaction changes
the table.

SHARE UPDATEindicates that you may wish to update the rows selected. Other
transactions may not update the data page you are currently reading. If
you decide to update the row, an exclusive lock is obtained, so that other
transactions cannot read or update the page; This lock is held until the
transaction ends with a COMMIT WORK or ROLLBACK WORK statement.

EXCLUSIVE prevents other transactions from reading or changing the table during the
time you hold the lock.

Your transaction is delayed until any transactions that were previously
granted locks on the table have ended. Then your transaction experiences
no further overhead or delays due to locking on the specified table.

Description

• Of the three lock types described here, the highest level is exclusive (X), the next share
update (SIX), and the lowest share (S). When you request a lock on an object which is
already locked with a higher severity lock, the request is ignored.

• This statement can be used to avoid the overhead of acquiring many small locks when
scanning a table. For example, if you know that you are accessing all the rows of a table,
you can lock the entire table at once instead of letting ALLBASE/SQL automatically
lock each individual page or row as it is needed.
460 Chapter 11

SQL Statements E - R
LOCK TABLE
• LOCK TABLE can be useful in avoiding deadlocks by locking tables in a predetermined
order.

• To ensure data consistency, all locks are held until the end of the transaction, at which
point they are released. For this reason no UNLOCK statement is available or necessary.

Authorization

You can issue this statement if you have SELECT or OWNER authority for the table or if
you have DBA authority.

Examples

1. Share Mode Lock

 BEGIN WORK

Other transactions can issue only SELECT statements against the table until this
transaction is terminated.

 LOCK TABLE PurchDB.OrderItems in SHARE MODE

The lock is released when the transaction is either committed or rolled back.

 COMMIT WORK

2. Share Update Mode Lock

 BEGIN WORK

Other transactions can issue only SELECT statements against the table:

 LOCK TABLE PurchDB.OrderItems in SHARE UPDATE MODE

Other transactions can read the same page as the current transaction.

 SELECT ... FROM PurchDB.OrderItems

The shared lock is now upgraded to an exclusive lock for the page on which the update
is taking place. Other transactions must wait for this transaction to be committed or
rolled back.

 UPDATE PurchDB.OrderItems SET ...

All locks are released when the transaction is either committed or rolled back.

 COMMIT WORK
Chapter 11 461

SQL Statements E - R
LOG COMMENT
LOG COMMENT
The LOG COMMENT statement permits the entry of comments into the ALLBASE/SQL
DBELog file. These comments can be extracted using the Audit Tool.

Scope

ISQL or Application Programs

SQL Syntax
LOG COMMENT { ‘String’

:HostVariable
:ProcedureParameter
:ProcedureLocalVariable
? }

Parameters

String specifies the comment as a constant character string (up to 3996 bytes)

HostVariable specifies the comment to be logged as a host variable. No indicator may be
specified. The data type of the host variable must be CHAR or VARCHAR.
If the value is null, an error is returned and no comment is logged.

ProcedureParameter or ProcedureLocalVariable specifies the comment to be
logged as a procedure parameter or local variable. If the value is null, an
error is returned and no comment is logged. The data type must be CHAR
or VARCHAR.

? specifies the comment to be logged as a dynamic parameter. The data type
is assumed to be VARCHAR(3996). If the value is null, an error is returned
and no comment is logged.

Description

• The maximum length of a comment is 3996 bytes.

• A comment can use the DBEnvironment language or the native language.

• An error is returned if LOG COMMENT is used and audit logging is not enabled with the
COMMENT audit element or the COMMENT PARTITION is NONE.

Authorization

Any user can issue this statement from within a database session.
462 Chapter 11

SQL Statements E - R
LOG COMMENT
Example

Generate a comment audit log record.

 LOG COMMENT 'Select From Table PurchDB.Parts';
 SELECT PartNo FROM PurchDB.Parts WHERE PartNo='1234';
Chapter 11 463

SQL Statements E - R
OPEN
OPEN
The OPENstatement is used in an application program or a procedure to open a cursor, that
is, make the cursor and its associated active set available to manipulate a query result.

Scope

Application Programs and Procedures Only

SQL Syntax
OPEN CursorName [KEEP CURSOR [WITH LOCKS

WITH NOLOCKS]]
[USING { [SQL] DESCRIPTOR { SQLDA

AreaName}
HostVariableName [[INDICATOR]: IndicatorVariable][,...]}]

Parameters

CursorName specifies the cursor to be opened. The cursor name must first be defined
with a DECLARE CURSOR statement.

KEEP CURSORmaintains the cursor position across transactions until a CLOSEstatement
is issued on the cursor.

This clause is not available for procedure cursors (those declared for an
EXECUTE PROCEDURE statement).

WITH LOCKS keeps only those locks associated with the position of the kept cursor after
a COMMIT WORK statement, and releases all other locks. This is the
default.

WITH NOLOCKSreleases all locks associated with the kept cursor after a COMMIT WORK
statement.

USING allows dynamic parameter substitution in a prepared statement.

This clause can only be specified within an application when opening a
cursor on a dynamically prepared SELECT or EXECUTE PROCEDURE
statement.

SQL DESCRIPTORspecifies a location that at run time contains the data value assigned to
an input dynamic parameter specified in a prepared SELECT or EXECUTE
PROCEDURE statement.

Specify the same location (SQLDA or AreaName) as you specified in the
DESCRIBE INPUT statement.

SQLDA specifies that a data structure of sqlda_type named sqlda is used to pass
dynamic parameter data between the application and ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of type sqlda_type that
is used to pass dynamic parameter data between the application and
ALLBASE/SQL.
464 Chapter 11

SQL Statements E - R
OPEN
HostVariableName specifies a host variable name that at run time contains the data
value that is assigned to an input dynamic parameter specified in the
parameter list of a prepared SELECT or EXECUTE PROCEDURE statement.

Host variables must be specified in the same order as the dynamic
parameters in the prepared statement they represent. There must be a
one to one correspondence between host variable names and the dynamic
parameters. A maximum of 1023 host variables names can be specified.

IndicatorVariable names an indicator variable, whose value determines whether the
associated host variable contains a NULL value:

> = 0 the value is not NULL

< 0 the value is NULL

Description

• For a select cursor, ALLBASE/SQL examines any input host variables and input
dynamic parameters used in the cursor definition, determines the cursor's active set,
positions the cursor before the first row of the active set, and leaves the cursor in the
open state. No rows are actually available to your application program until a FETCH
statement is executed.

• For a procedure cursor, ALLBASE/SQL examines any input host variables and input
dynamic parameters used in the cursor definition. No rows are actually available to
your application program, nor does procedure execution begin, until ADVANCE and/or
FETCH statements are executed.

• For a select cursor, the KEEP CURSOR option lets you maintain the cursor position in
an active set beyond transaction boundaries. When you use this option, the COMMIT
WORK and ROLLBACK WORK statements do not automatically close the cursor. Instead,
you must explicitly close the cursor and then issue a COMMIT WORK.

• Cursors not using the KEEP CURSOR option are automatically closed when a
transaction terminates or a ROLLBACK WORK TO SAVEPOINT is executed.
Chapter 11 465

SQL Statements E - R
PREPARE
PREPARE
The PREPARE statement dynamically preprocesses an SQL statement for later execution.

Scope

ISQL or Application Programs

SQL Syntax
PREPARE [REPEAT]{ StatementName

[Owner.] ModuleName [(SectionNumber)]}
[IN DBEFileSetName] FROM { ‘String’

:HostVariable }

Parameters

REPEAT specifies the use of semi-permanent sections for queries. Unlike temporary
sections, semi-permanent sections are retained in memory until the
DBEnvironment session ends, not when the current transaction ends.

To improve performance, you can set the Authorize Once per Session flag
to ON with the SQLUtil ALTDBE command when using semi-permanent
sections. However, you must take care to ensure that a prepared statement
is not executed after authorization has been revoked from the object that
contains that statement.

StatementName This option of the PREPAREstatement is used in an application program;
it cannot be used interactively. Refer to the ALLBASE/SQL application
programming guide for the language you are using to determine whether
this statement is supported in that language.

StatementName specifies a name for the statement being preprocessed.
You reference StatementName in an EXECUTE statement later in the
current transaction to execute the dynamically preprocessed statement.
StatementName must conform to the ALLBASE/SQL rules for a basic
name given in the "Names" chapter. Two PREPARE statements in an
application program cannot specify the same StatementName .

When necessary, you use the DESCRIBE statement to determine whether
the prepared statement is a SELECT statement. If so, other information
provided by the DESCRIBE statement helps you determine how much
storage to dynamically allocate for the query result; then you reference the
StatementName in a DECLARE CURSOR statement and use the cursor to
execute the dynamically preprocessed SELECT statement.

If it is possible that dynamic parameters are present in the prepared
statement, you must use the DESCRIBEstatement with the INPUT clause.
If dynamic parameters are present, the appropriate data buffer or host
variables must be loaded with the values of any dynamic parameters
before the statement can be executed.
466 Chapter 11

SQL Statements E - R
PREPARE
See related ALLBASE/SQL statements in this manual and the
appropriate ALLBASE/SQL application programming guide for details of
these programming methods.

[Owner.] ModuleName [(SectionNumber)] This option of the PREPARE statement is
used interactively; it cannot be used in an application program.

This option specifies an identifier to be assigned to the statement being
preprocessed. Later, the identifier can be specified in an EXECUTE
statement to execute the dynamically preprocessed statement.

The section number is an integer to be used in identifying the dynamically
preprocessed statement. You can group several related sections under the
same module name by giving each one a different section number. You can
specify any section number from 1 to 32767. If you do not specify a section
number, section number 1 is assumed.

You must not already have a dynamically preprocessed statement with the
same module name and section number. You must not already have a
preprocessed application program with the specified module name.

You can specify an owner name if you have DBA authority. Non-DBA users
can specify the name of any group of which they are a member. Otherwise,
ALLBASE/SQL assigns your login name as the owner name of the module.

You cannot interactively prepare a SELECT statement.

DBEFileSetName identifies the DBEFileSet used to store the dynamically prepared
statement. If not specified, the default SECTIONSPACE DBEFileSet is
used. (Refer to syntax for the SET DEFAULT DBEFILESET statement.)

String is the statement to be preprocessed. The preprocessor cannot process more
than 32,762 characters. If the string contains embedded strings, delimit
the embedded strings with double single quotation marks as follows:

 PREPARE MyStatement FROM 'DELETE FROM PurchDB.Parts
 WHERE PartNumber = ''1123-P-01'''

HostVariable specifies a host variable having as its value a character string which is
the statement to be preprocessed. The preprocessor cannot process more
than 32,762 characters. However, the length of a string contained in a host
variable is limited by the defined length of the host variable.
Chapter 11 467

SQL Statements E - R
PREPARE
Description

• You cannot use the PREPARE statement to preprocess the following statements:

 ADVANCE BEGIN DECLARE SECTION BEGIN WORK
 CLOSE COMMIT WORK CONNECT
 DECLARE CURSOR DELETE WHERE CURRENT DESCRIBE
 DISCONNECT END DECLARE SECTION EXECUTE
 EXTRACT FETCH INCLUDE
 OPEN PREPARE RELEASE
 ROLLBACK WORK SET CONNECTION SET SESSION
 SET TRANSACTION SETOPT START DBE
 STOP DBE SQLEXPLAIN UPDATE WHERE CURRENT
 TERMINATE USER WHENEVER

• You cannot interactively prepare a SELECT statement.

• A statement to be dynamically preprocessed in an application program must be
terminated with a semicolon.

• You cannot prepare a statement which contains host variables. Dynamic parameters
should be used instead. (Use PREPARE without the REPEAT option.)

• In an application program, a dynamically preprocessed statement (PREPARE without
the REPEAT option) is automatically deleted from the system at the end of the
transaction in which it was prepared. It cannot be executed in any other transaction.

• When a PREPARE statement is issued interactively, the dynamically preprocessed
statement is stored in the system catalog until deleted by a DROP MODULE statement.
The statement is not stored, however, if you specify an owner name of TEMP.

• If the IN DBEFileSetName clause is specified, but the module owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DEFAULT DBEFILESET statement.)

Authorization

You do not need authorization to use the PREPARE statement. However, the authority
required to execute the dynamically preprocessed statement depends on whether the
statement is executed programmatically or interactively. Refer to the EXECUTE statement
authorization for details.

To specify a DBEFileSetName for a prepared section, the module owner must have
SECTIONSPACE authority on the referenced DBEFileSet.

Examples

1. Interactive use

 PREPARE Statistics(1)
 FROM 'UPDATE STATISTICS FOR TABLE PurchDB.Orders'

 PREPARE Statistics(2)
 FROM'UPDATE STATISTICS FOR TABLE PurchDB.OrderItems'
468 Chapter 11

SQL Statements E - R
PREPARE
Two sections for module Statistics are stored in the system catalog.

 EXECUTE Statistics(1)

The statistics for table PurchDB.Orders are updated.

 EXECUTE Statistics(2)

The statistics for table PurchDB.OrderItems are updated.

 DROP MODULE Statistics

Both sections of the module are deleted.

2. Programmatic use

If you know in advance that the statement to be dynamically preprocessed is not a
SELECT statement and does not contain dynamic parameters, you can prepare it and
execute it in one step, as follows:

 EXECUTE IMMEDIATE :Dynam1

It may be more appropriate to prepare and execute the statement in separate
operations. For example, if you don't know the format of a statement:

 PREPARE Dynamic1 FROM :Dynam1

The statement stored in :Dynam1 is dynamically preprocessed.

 DESCRIBE Dynamic1 INTO Sqlda

If Dynamic1 is not a SELECT statement, the Sqld field of the Sqlda data structure is 0.
In this case, if you know there are no dynamic parameters in the prepared statement,
use the EXECUTE statement to execute the dynamically preprocessed statement.

If it is possible that dynamic parameters are present in the prepared statement, you
must describe the statement for input:

 DESCRIBE INPUT Dynamic1 USING SQL DESCRIPTOR SqldaIn

If dynamic parameters are present, the appropriate data buffer or host variables must
be loaded with the values of any dynamic parameters. Then if the statement is not a
query, it can be executed, as in this example using a data buffer:

 EXECUTE Dynamic1 USING SQL DESCRIPTOR SqldaIn

If Dynamic1 is a SELECT statement and the language you are using supports
dynamically defined SELECT statements, use a cursor to manipulate the rows in the
query result:

 DECLARE Dynamic1Cursor CURSOR FOR Dynamic1

Place the appropriate values into the SQL descriptor areas. Use the USING
DESCRIPTOR clause of the OPEN statement to identify where dynamic parameter
information is located. Use the USING DESCRIPTOR clause of the FETCHstatement to
identify where to place the rows selected.

 OPEN Dynamic1Cursor USING SQL DESCRIPTOR SqldaIn
Chapter 11 469

SQL Statements E - R
PREPARE
Load related dynamic parameter data into the input data buffer.

 FETCH Dynamic1Cursor USING DESCRIPTOR SqldaOut
 .
 .
 .

When all rows have been processed, close the cursor:

 CLOSE Dynamic1Cursor
470 Chapter 11

SQL Statements E - R
PRINT
PRINT
The PRINT statement is used inside a procedure to store the content of user-defined
strings, local variables, parameters, or built-in variables in the message buffer for display
by ISQL or an application program.

Scope

Procedures only

SQL Syntax
PRINT {‘Constant’

:LocalVariable
:Parameter
::Built-inVariable };

Parameters

Constant is a string literal.

LocalVariable is a local variable declared within the procedure. Types and sizes are the
same as for column definitions, except you cannot specify a LONG data
type.

Parameter is a parameter declared within the procedure.

Built-inVariable is one of the following built-in variables used for error handling:

• ::sqlcode

• ::sqlerrd2

• ::sqlwarn0

• ::sqlwarn1

• ::sqlwarn2

• ::sqlwarn6

• ::activexact

The first six of these have the same meaning that they have as fields in the
SQLCA in application programs. Note that in procedures, sqlerrd2 returns
the number of rows processed for all host languages. However, in
application programs, sqlerrd3 is used in COBOL, Fortran, and Pascal,
while sqlerr2 is used in C. ::activexact indicates whether a transaction is
in progress or not. For additional information, refer to the application
programming guides and to the chapter "Constraints, Procedures, and
Rules."
Chapter 11 471

SQL Statements E - R
PRINT
Description

• The results of any PRINT statements issued during the execution of a procedure are
placed in the ALLBASE/SQL message buffer, and may be displayed like other
messages. In an application program, they can be retrieved with SQLEXPLAIN upon
exiting the procedure.

• The message number 5000 is used for all PRINT statements.

Authorization

Anyone can issue the PRINT statement.

Examples
 CREATE PROCEDURE Process15 (PartNumber CHAR (16) NOT NULL) AS
 BEGIN
 DECLARE PartName CHAR(30);

 SELECT PartName INTO :PartName
 FROM PurchDB.Parts
 WHERE PartNumber = :PartNumber;
 IF ::sqlcode <> 0 THEN
 PRINT 'Row not retrieved. Error code:';
 PRINT ::sqlcode;
 ELSE
 PRINT :PartName;
 ENDIF;
 END;

When an application program calls a procedure, you can include PRINT statements in the
procedure for later retrieval by the application:

 IF ::sqlcode = 100 THEN
 PRINT 'Row was not found';
 ELSE
 PRINT 'Error in SELECT statement';
 ELSEIF ::sqlcode=0 THEN
 PRINT :PartName;
 ENDIF;

On returning from the procedure, use SQLEXPLAIN in a loop to extract all the messages
generated by PRINT during the operation of the procedure.

In C:

 while (sqlcode != 0 || sqlwarn[0]=='W') {
 EXEC SQL SQLEXPLAIN :SQLMessage;
 printf("%s\n",SQLMessage);
 }
472 Chapter 11

SQL Statements E - R
PRINT
In COBOL:

 IF SQLCODE IS NOT ZERO OR SQLWARN0 = "W"
 PERFORM M100-DISPLAY-MESSAGE
 UNTIL SQLCODE IS ZERO AND SQLWARN0 = "W".
 .
 .
 .
 M100-DISPLAY-MESSAGE.
 EXEC SQL SQLEXPLAIN :SQLMESSAGE END-EXEC.
 DISPLAY SQLMESSAGE.
 M100-EXIT.
 EXIT.
Chapter 11 473

SQL Statements E - R
RAISE ERROR
RAISE ERROR
The RAISE ERRORstatement causes an error to occur and causes the given error number to
be put into the ALLBASE/SQL message buffer, together with the given error text. This
statement is most useful within procedures invoked by rules, to cause the rule to fail and
the statement firing the rule to have no effect. The effect of RAISE ERRORis to return with
an error status; this statement can never "execute successfully."

Scope

ISQL or Application Programs

SQL Syntax

RAISE ERROR [ErrorNumber] [MESSAGEErrorText]

Parameters

ErrorNumber specifies the number of the error being raised. This can be any integer
value. ErrorNumber has the following syntax:

{ Integer
:HostVariable
?
:LocalVariable
:ProcedureParameter }

The data type of the parameter, host variable, or local variable must be
INTEGER or SMALLINT. The data type expected for the dynamic
parameter is INTEGER.

If no ErrorNumber is given, 2350 is the default error number. The error
range 7000 - 7999 is reserved for the RAISE ERROR statement. No
ALLBASE/SQL errors are in this range.

Parameters and local variables may only be used within procedures. Host
variables may only be used within embedded SQL. Dynamic parameters
may only be used within dynamic SQL.

ErrorText specifies text to be returned with the error. ErrorText has the following
syntax:

{ ‘CharacterString’
:HostVariable
?
:LocalVariable
:ProcedureParameter }

The data type of the parameter, host, or local variable must be CHAR or
VARCHAR. The data type expected for the dynamic parameter is
CHAR(250). The value will be truncated to 250 bytes.

If no ErrorText is given, the default is an empty string.
474 Chapter 11

SQL Statements E - R
RAISE ERROR
Parameters and local variables are only used within procedures. Host
variables are only used within embedded SQL. Dynamic parameters are
only used within dynamic SQL.

Description

• RAISE ERROR is for user-defined errors. The errors returned are application specific.

• If ErrorNumber or ErrorText is NULL, an error is returned and the message is not
generated.

• ErrorNumber , if specified, must be greater than 0.

• Execution of RAISE ERRORcauses the number of the raised error to be placed in sqlcode
and the RAISE ERROR text to be placed in the message buffer.

Since an error condition is the expected result of the statement, no corrective action
need be taken except as directed by the application developer. Applications can use
SQLEXPLAINto fetch the text of the message and interpret it appropriately. Applications
can also examine and/or display sqlcode.

• You can use the DESCRIBE INPUTstatement on this statement after you PREPAREit to
show the number and characteristics of dynamic parameters, if any are used.

Authorization

Any user can issue this statement.

Examples

1. Example coded in a procedure to be invoked by a rule

 SELECT COUNT(*) INTO :rows FROM PurchDB.Orders
 WHERE VendorNumber = :VendorNumber;
 IF :rows <> 0 THEN
 RAISE ERROR 1 MESSAGE 'Vendor number exists in the "Orders" table.';
 ENDIF;

2. Interactive example

 isql=> raise error 1 message 'This is error 1';
 This is error 1
 isql=>

3. Example using dynamic parameters

 EXEC SQL PREPARE MyCmd from 'RAISE ERROR ? MESSAGE ?';

Accept values for error number and message text into host variables :ErrorNumber and
:ErrorText, then execute the prepared command:

 EXEC SQL EXECUTE MyCmd USING :ErrorNumber, :ErrorText;
Chapter 11 475

SQL Statements E - R
REFETCH
REFETCH
The REFETCH statement allows Read Committed (RC) and Read Uncommitted (RU)
transactions to acquire intended-for-update locks on data objects and to revalidate data
before an update operation is issued. A refetch should always be done in RC and RU
transactions before updating data to avoid update anomalies.

Scope

Application Programs Only

SQL Syntax
REFETCHCursorName INTO {: HostVariable [[INDICATOR] : Indicator]}[,...]

Parameters

CursorName identifies a cursor. The cursor's active set is determined when the cursor is
opened. The cursor's current position in the active set is determined by the
last FETCH statement. The REFETCH statement retrieves the current row.

The cursor specified in the REFETCHstatement must be declared for update
and must be updatable.

INTO The INTO clause defines where to place the row fetched.

HostVariable identifies the host variable corresponding to one column in the fetched
row.

Indicator names the indicator variable, an output host variable whose value (see
following) depends on whether the host variable contains a null value:

0 the value is not NULL

−1 the value is NULL

> 0 the value is truncated (for CHAR, VARCHAR, BINARY,
and VARBINARY values only).

Description

• The purpose of the REFETCH statement is to revalidate data prior to carrying out an
update when using the Read Committed (RC) or Read Uncommitted (RU) isolation level
in a transaction. If you do not use the REFETCH statement prior to updating a row in a
RC or RU transaction, you may not be able to determine whether the row has already
been modified by some other transaction.

• The comparison of the refetched data with the data selected with the RC or RU
statement must be on a row by row basis rather than the whole buffer because slack or
filler bytes between columns are not initialized and can incorrectly influence the
comparison.
476 Chapter 11

SQL Statements E - R
REFETCH
• Because UPDATE WHERE CURRENT does not accept a DESCRIPTOR clause for input
values, the REFETCH statement does not support the USING DESCRIPTOR clause
found in the FETCH statement.

• No BULK option is available.

• This statement cannot be used interactively or in procedures.

• If there is no current row during a REFETCH, you receive the following message in the
SQLCODE:

 Row not found.

Authorization

You do not need authorization to use REFETCH.

Example
 label 1000;
 var
 EXEC SQL INCLUDE SQLCA;
 EXEC SQL BEGIN DECLARE SECTION;
 sqlmessage : packed array [1..132] of char;
 host1, host2, updatevalue : integer;
 EXEC SQL END DECLARE SECTION;

 begin
 .
 .
 .
 EXEC SQL BEGIN WORK RU;
 EXEC SQL DECLARE C1 CURSOR FOR UPDATE OF Col1 FROM T1 WHERE Predicate;
 EXEC SQL OPEN C1;

 repeat
 EXEC SQL FETCH C1 INTO :Host1;
 if SQLCA.sqlcode <> 0 then
 begin
 EXEC SQL SQLEXPLAIN :sqlmessage;
 write sqlmessage;
 goto 1000;
 end;
 write Host1;
Chapter 11 477

SQL Statements E - R
REFETCH
Read Input. If an update is needed:

 begin
 read updatevalue;
 EXEC SQL REFETCH C1 INTO :Host2;
 if SQLCA.sqlcode <> 0 then
 begin
 EXEC SQL SQLEXPLAIN :sqlmessage;
 write sqlmessage;
 goto 1000;
 end;
 if Host1 = Host2 then
 EXEC SQL UPDATE T1 SET Col1 = updatevalue
 WHERE CURRENT OF C1;
 else
 write "data changed to ", Host2;
 end;
 1000:
 until SQLCA.sqlcode = 100

No More Rows Found
478 Chapter 11

SQL Statements E - R
RELEASE
RELEASE
The RELEASE statement terminates your DBE session.

Scope

ISQL or Application Programs

SQL Syntax

RELEASE

Description

• A ROLLBACK is performed on any transactions in progress.

• Any locks still held are released. Any cursors still open are closed, including kept
cursors.

• If the AUTOSTART option is in effect and your session is the only one in process, a
RELEASE statement forces a checkpoint.

• Following a RELEASE or DISCONNECT CURRENT command, there is no current
connection until a SET CONNECTION command is used to set the current connection to
another existing connection, or a new connection is established by using the CONNECT,
START DBE, START DBE NEW, or START DBE NEW LOG commands.

Authorization

You do not need authorization to use the RELEASE statement.

Example

 CONNECT TO '../sampledb/PartsDBE'

ALLBASE/SQL establishes a DBE session for you. Once you have a DBE session, you can
submit SQL statements. After submitting the statements, terminate your DBE session:

 RELEASE
Chapter 11 479

SQL Statements E - R
REMOVE DBEFILE
REMOVE DBEFILE
The REMOVE DBEFILE statement removes the name of the DBEFileSet that the DBEFile
was associated with from SYSTEM.DBEFile.

Scope

ISQL or Application Programs

SQL Syntax

REMOVE DBEFILE DBEFileName FROM DBEFILESET DBEFileSetName

Parameters

DBEFileName is the name of the DBEFile to be removed. The DBEFile must be empty
(contain no tables, long data, or indexes).

DBEFileSetName is the name of the DBEFileSet with which the DBEFile is currently
associated.

Description

• You must have exclusive access to all tables associated with the DBEFileSet.

• After you remove a DBEFile from a DBFileSet, you can drop the DBEFile or add it to
another DBEFileSet.

• Before a DBEFile can be removed from the SYSTEM DBEFileSet, other users'
transactions must complete. Other users must wait until the transaction that is
removing the DBEFile from SYSTEM has completed.

• REMOVE DBEFILE also decreases the number of files associated with the DBEFileSet
shown in the DBEFSNDBEFILES column of SYSTEM.DBEFileSet by one.

Authorization

You must have DBA authority to use this statement.

Example
 CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
 NAME = 'ThisFile', TYPE = TABLE

 CREATE DBEFILESET Miscellaneous

 ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, one is
created as follows:

 CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
480 Chapter 11

SQL Statements E - R
REMOVE DBEFILE
 NAME = 'ThatFile', TYPE = INDEX

 ADD DBEFILE ThatDBEFile to DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

 REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

 ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM

 ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

Now you can use this DBEFile to store an index later if you need one. All rows are later
deleted from the table, so you can reclaim file space.

 REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

 DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

 DROP DBEFILESET Miscellaneous
Chapter 11 481

SQL Statements E - R
REMOVE FROM GROUP
REMOVE FROM GROUP
The REMOVE FROM GROUP statement removes one or more users or authorization groups
from membership in a specified authorization group.

Scope

ISQL or Application Programs

SQL Syntax
REMOVE { DBEuserID

GroupName
ClassName }[,...] FROM GROUP [Owner.] TargetGroupName

Parameters

DBEUserID identifies a user to be removed from the specified authorization group. If
you specify several names, any invalid names are ignored but valid names
are removed.

GroupName identifies a group to be removed from the specified authorization group. If
you specify several names, any invalid names are ignored but valid names
are removed.

ClassName identifies a class to be removed from the specified authorization group. If
you specify several names, any invalid names are ignored but valid names
are removed.

TargetGroupName is the name of the authorization group from which the specified users
and groups are to be removed.

Description

You cannot remove a member from a group if that member (or members of that member)
used a DBA or REFERENCES privilege to which that member had access through that
group to validate the creation of a currently existing foreign key in a table he or she owns.

Authorization

You can use this statement if you have OWNER authority for the authorization group or if
you have DBA authority.
482 Chapter 11

SQL Statements E - R
REMOVE FROM GROUP
Example
 CREATE GROUP Warehse

 GRANT CONNECT TO Warehse

 GRANT SELECT,
 UPDATE (BinNumber,QtyOnHand,LastCountDate)
 ON PurchDB.Inventory
 TO Warehse

 ADD Clem, George TO GROUP Warehse

These two users now are able to start DBE sessions on PartsDBE and PurchDB.Inventory,
and to update three columns in the table.

 REMOVE Clem FROM GROUP Warehse

Clem no longer has any of the authorities associated with group Warehse.

 DROP GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.
Chapter 11 483

SQL Statements E - R
RENAME COLUMN
RENAME COLUMN
The RENAME COLUMN statement defines a new name for an existing column in the
DBEnvironment.

Scope

Application Programs

SQL Syntax

RENAME COLUMN [Owner.] TableName . ColumnName TO NewColumnName

Parameters

[Owner.]TableName.ColumnName designates the table column to be renamed.

NewColumnName is the new column name.

Description

• All indexes, columns, default columns, constraints, referential authorization, rules, and
user authorities tables dependent on a renamed column will be renamed.

• All views dependent on a renamed column will be dropped.

• If a column has check constraints, then that column cannot be renamed.

Authorization

You must have DBA authority to use this statement.

Example

 RENAME COLUMN Parts.PartNumber to NewPartNum;
484 Chapter 11

SQL Statements E - R
RENAME TABLE
RENAME TABLE
The RENAME TABLE statement defines a new name for an existing table in the
DBEnvironment.

Scope

Application Programs

SQL Syntax

RENAME TABLE [Owner.] TableName TO NewTableName

Parameters

[Owner.]TableName designates the table to be renamed.

NewTableName is the new table name.

Description

• All indexes, columns, default columns, constraints, referential authorization, rules, and
user authorities tables dependent on a renamed table will be renamed.

• When using RENAMEcommand, data and grants made for tables are carried forward for
the new name. No unload, load data, or recreating index is necessary.

• All views dependent on a renamed table will be dropped.

• If a table has check constraints, then that table cannot be renamed.

Authorization

You must have DBA authority to use this statement.

Example

 RENAME TABLE PurchDB.Parts to NewParts;
Chapter 11 485

SQL Statements E - R
RESET
RESET
The RESET statement resets ALLBASE/SQL accounting and statistical data.

Scope

ISQL or Application Program

SQL Syntax
RESET { SYSTEM. ACCOUNT [FOR USER { *

DBEUserID }]
SYSTEM. COUNTER }

Parameters

SYSTEM.ACCOUNTis specified to reset accounting data for one user's DBE session or for
all active sessions.

* specifies all active sessions. This is the default if the FOR USER clause is
omitted.

DBEUserID identifies the user of a specific DBE session.

SYSTEM.COUNTERis specified to reset ALLBASE/SQL statistical counters.

Description

• Refer to the ALLBASE/SQL Database Administration Guide for more information
about the SYSTEM.ACCOUNT and SYSTEM.COUNTER views.

Authorization

You must have DBA authority to use this statement.

Example

The I/O resource usage for NewUser's current database session is set to zero.

 RESET SYSTEM.ACCOUNT FOR USER NewUser
486 Chapter 11

SQL Statements E - R
RETURN
RETURN
The RETURN statement permits you to exit from a procedure with an optional return code.

Scope

Procedures only

SQL Syntax

RETURN [ReturnStatus];

Parameters

ReturnStatus is an integer value that is returned to the caller. The syntax is:

{INTEGER
: LocalVariable
: ProcedureParameter
:: Built-inVariable }

Description

• The RETURNstatement causes the execution of the procedure to halt and causes control
to return to the invoking user, application program, or rule. When it returns to a rule,
the value of ReturnStatus is ignored.

• The RETURN statement is optional within a procedure.

• If the procedure terminates without executing a RETURNstatement, the ReturnStatus
will be 0.

• You can only access ReturnStatus from an application program. Call the procedure
from the program using an integer host variable for ReturnStatusVariable if you
wish to test the ReturnStatus .

Example
 CREATE PROCEDURE Process10 (PartName CHAR(20) NOT NULL,
 Quantity INTEGER NOT NULL) AS
 BEGIN
 INSERT INTO SmallOrders VALUES (:PartName, :Quantity);
 IF ::sqlcode <> 0 THEN
 GOTO Errors;
 ENDIF;
 RETURN 0;
 Errors: PRINT 'There were errors.';
 RETURN 1;
 END

Call the procedure using a ReturnStatusVariable named Status:

 EXECUTE PROCEDURE :Status = Process10 ('Widget', 10)
Chapter 11 487

SQL Statements E - R
RETURN
On returning from the procedure, test SQLCODE and Status both to determine whether
an error occurred inside the procedure.

 if(sqlca.sqlcode==0)
 if(Status!=0) do {
 EXEC SQL SQLEXPLAIN :SQLMessage;
 printf("%s\n",SQLMessage);
 } while (sqlwarn[0]=='W');
488 Chapter 11

SQL Statements E - R
REVOKE
REVOKE
The REVOKE statement takes away authority that was previously granted by means of the
GRANT statement.The following forms of the REVOKE statement are described individually:

• Revoke table or view authority.

• Revoke RUN or EXECUTE authority.

• Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE authority.

• Revoke SECTIONSPACE or TABLESPACE authority for a DBEFileSet.

For detailed information about security schemes, refer to the "DBEnvironment
Configuration and Security" chapter of the ALLBASE/SQL Database Administration
Guide.

Scope

ISQL or Application Programs

SQL Syntax — Revoke Table or View Authority
REVOKE { ALL [PRIVILEGES]

[SELECT
INSERT
DELETE
ALTER
INDEX
UPDATE [({ ColumnName}[,...])]
REFERENCES [({ ColumnName}[,...])]]|,...|}

ON {[Owner.] TableName
[Owner. } ViewName } FROM { DBEUserID

GroupName
ClassName
PUBLIC }[,...][CASCADE]

Parameters — Revoke Table or View Authority

ALL [PRIVILEGES] is the same as specifying the SELECT, INSERT, DELETE, ALTER,
INDEX, UPDATE, and REFERENCES options all at one time. The word
PRIVILEGES is not required; you can include it if you wish to improve
readability. ALTER, INDEX, and REFERENCES are not applied when
using REVOKE ALL on views.

SELECT revokes authority to retrieve data.

INSERT revokes authority to insert rows.

DELETE revokes authority to delete rows.

ALTER revokes authority to add new columns.

INDEX revokes authority to create and drop indexes.
Chapter 11 489

SQL Statements E - R
REVOKE
UPDATE revokes authority to change data in existing rows. A list of column names
can be specified to revoke UPDATE authority for only those columns if the
columns were named in a GRANTstatement UPDATE clause. Omitting the
list of column names revokes authority to update all columns.

REFERENCES revokes authority to reference columns in the table from foreign keys in
another table. A list of column names can be specified to revoke
REFERENCES authority for only those columns if the columns were
named in a GRANT statement REFERENCES clause. Omitting the list of
column names revokes REFERENCES authority on all columns.

[Owner.] TableName designates the table for which authority is to be revoked.

[Owner.] ViewName designates the view for which authority is to be revoked.

FROM The FROM clause designates the users, authorization groups, and classes
whose authority is to be revoked. PUBLIC is specified to revoke authority
previously granted to PUBLIC. You cannot revoke table or view
authorities from the current owner of a table or view.

CASCADE If the revoked privilege was grantable (granted with the WITH GRANT
OPTION clause), then any grants of the privilege by the revokee will also
be revoked. However, if a grantee is DBA or owner of an object, cascading
stops at that point for the grantee, and any grants and subsequent chains
issued by him or her are still in effect. CASCADE can be specified by any
user who can revoke authorities on the table or view.

If CASCADE is not specified and you are not DBA, you cannot revoke a
grantable privilege if it had been granted to another user (as this would
create an orphaned privilege). For more information on privileges, refer to
"Using the GRANT OPTION Clause" in the "Database Creation and
Security" chapter of the ALLBASE/SQL Database Administration Guide..

Description — Revoke Table or View Authority

• If a view relies on a SELECT authority on a table and the REVOKE with CASCADE
option is issued against that table, then the view is destroyed and a warning is
returned. If the CASCADE option is not specified, the view remains, but you will receive
authority errors when you try to use it.

• If a referential constraint relies on a REFERENCES privilege on a table, and the
REVOKE REFERENCES with the CASCADE option is issued against that table or
column in it, then that particular REFERENCES privilege is destroyed. This can
include any REFERENCES in the chain of privileges that are revoked in the
CASCADE. A warning is returned when a constraint is destroyed.

Authorization — Revoke Table or View Authority

If you are DBA, the owner, or the grantor of table privileges and still have that
grantability, you can issue the REVOKE statement and optionally the CASCADE option.
490 Chapter 11

SQL Statements E - R
REVOKE
SQL Syntax — Revoke RUN or EXECUTE or Authority
REVOKE [RUN ON [Owner.] ModuleName

EXECUTE ON PROCEDURE [Owner.] ProcedureName] FROM
{{ DBEUserID

GroupName
ClassName }[,...]
PUBLIC }

Parameters--Revoke RUN or EXECUTE Authority

RUN revokes authority to access the DBEnvironment using the specified
module.

[Owner.] ModuleName specifies the module for which RUN authority is to be revoked.

EXECUTE revokes authority to execute the specified procedure.

[Owner.] ProcedureName specifies the procedure for which EXECUTE authority is to be
revoked.

FROM The FROM clause lists the users, authorization groups, and classes that
were previously granted the authority that is now to be revoked. PUBLIC
can be specified to revoke authority that was previously granted to
PUBLIC.

SQL Syntax — Revoke CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

REVOKE { CONNECT
DBA
INSTALL [AS OwnerID]
MONITOR
RESOURCE } FROM { DBEUserID

GroupName
ClassName }[,...]

Parameters — Revoke CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

CONNECT revokes authority to use the CONNECT statement.

DBA revokes the authority which exempts a user from all authorization
restrictions. You can never revoke DBA authority from the DBECreator.

INSTALL revokes authority to INSTALL modules where the owner name equals
OwnerID . If the "AS OwnerID " clause is omitted, then revokes authority to
INSTALL modules having any owner name.

Modules for an application are created and installed when that application
is preprocessed using one of the SQL preprocessors. Modules can also be
installed by using the ISQL INSTALL command. See the ALLBASE/ISQL
Reference Manual for more details.

MONITOR revokes authority to run SQLMON.
Chapter 11 491

SQL Statements E - R
REVOKE
RESOURCE revokes authority to create tables and authorization groups.

FROM The FROM clause specifies the users, authorization groups, and classes
whose authority is to be revoked.

Description — Revoke CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

• The REVOKE statement may invalidate stored sections. Refer to the VALIDATE
statement and to the ALLBASE/SQL Database Administration Guide for additional
information on the validation of stored sections.

• Issue a REVOKE INSTALL FROMDBEUserID statement that omits the "AS OwnerID "
clause to remove all INSTALL authorities for a particular user.

Authorization — Revoke CONNECT, DBA, INSTALL, MONITOR, or
RESOURCE Authority

If you have OWNER or DBA authority for a module, you can issue REVOKE statements for
that module.

SQL Syntax — Revoke DBEFileSet Authority
REVOKE { SECTIONSPACE

TABLESPACE } |,...| ON DBEFILESET DBEFileSetName FROM
{ { DBEUserID

GroupName
ClassName }[,...]
PUBLIC }

Parameters — Revoke DBEFileSet Authority

SECTIONSPACErevokes authority to store sections in the specified DBEFileSet.

TABLESPACE revokes authority to store table and long column data in the specified
DBEFileSet.

DBEFileSetName designates the DBEFileSet for which authority is to be revoked.

Description — Revoke DBEFileSet Authority

• In order for the statement to complete successfully, the authority being revoked must
have been previously granted to the specific user. In addition, the DBEFileSet cannot be
the current default for that user.

• When SECTIONSPACE authority is revoked, current stored section information for the
DBEFileSet remains (and thus any section revalidation continues to use that
DBEFileSet). No new sections for the user(s) whose authority was revoked can be
placed there.

• When TABLESPACE authority is revoked, table and long column data currently in the
DBEFileSet remain there. No new tables or long columns for the user(s) whose
authority was revoked can be place there.
492 Chapter 11

SQL Statements E - R
REVOKE
• If a REVOKE SECTIONSPACE statement completes successfully, the STOREDSECT
table for the specified DBEFileSet is automatically dropped if it is empty and if no other
user has SECTIONSPACE authority on the DBEFileSet.

• The execution of this statement causes modification to the HPRDBSS.SPACEAUTH
system catalog table. Refer to the ALLBASE/SQL Database Administration Guide
"System Catalog" chapter.

Authorization — Revoke DBEFileSet Authority

To revoke SECTIONSPACE or TABLESPACE, you must have DBA authority. If you have
DBA authority, you can issue the REVOKE statement for any DBEFileSet.

Examples

1. Explicitly revoking authority

A public table is accessible to any user or program that can start a DBE session. It is
also accessible by concurrent transactions.

 CREATE PUBLIC TABLE PurchDB.Parts
 (PartNumber CHAR(16) NOT NULL,
 PartName CHAR(30),
 SalesPrice DECIMAL(10,2))
 IN WarehFS

 REVOKE ALL PRIVILEGES ON PurchDB.Parts FROM PUBLIC

 GRANT SELECT,UPDATE ON PurchDB.Parts TO Accounting

Now only the DBA and members of authorization group Accounting can access the
table. Later, the accounting department manager is given control over this table.

 TRANSFER OWNERSHIP OF PurchDB.Parts TO MgrAccount

2. Implicitly revoking authority

The table is private by default.

 CREATE TABLE VendorPerf
 (OrderNumber INTEGER NOT NULL,
 ActualDelivDay SMALLINT,
 ActualDelivMonth SMALLINT,
 ActualDelivYear SMALLINT,
 ActualDelivQty SMALLINT
 Remarks VARCHAR(60))
 IN Miscellaneous

 CREATE UNIQUE INDEX VendorPerfIndex
 ON VendorPerf (OrderNumber)

Only the table creator and members of authorization group Warehse can update table
VendorPerf.

 GRANT UPDATE ON VendorPerf TO Warehse

The table and the index are both deleted, and the grant is revoked.
Chapter 11 493

SQL Statements E - R
REVOKE
 DROP TABLE VendorPerf

3. Using CASCADE

The DBA grants Clem privileges with the ability to grant them to others. Now Clem has
all privileges on the Inventory table as well as the authority to grant any of the
privileges to individual users or a class.

 GRANT ALL
 ON PurchDB.Inventory
 TO Clem WITH GRANT OPTION

Clem grants Amanda all privileges on the Inventory table as well as the authority to
grant any of the privileges to individual users or a class.

 GRANT ALL
 ON PurchDB.Inventory
 TO AMANDA WITH GRANT OPTION

The DBA revokes privileges from both Clem and Amanda.

 REVOKE ALL
 ON PurchDB.Inventory
 FROM Clem CASCADE

4. REVOKE on DBEFileSet

Revoke from PUBLIC the ability to store sections in DBEFileSet1.

 REVOKE SECTIONSPACE ON DBEFILESET DBEFileSet1 FROM PUBLIC

Revoke from PUBLIC the ability to store tables and long column data in DBEFileSet2.

 REVOKE TABLESPACE ON DBEFILESET DBEFileSet2 FROM PUBLIC

5. Revoke INSTALL or MONITOR authority. Revoke from George the ability to run
SQLMON.

 REVOKE MONITOR FROM George;

Revoke from Clem the ability to create modules having any owner name.

 REVOKE INSTALL FROM Clem;

Revoke from Clem the ability to create modules owned by JOHN@BROCK.

 REVOKE INSTALL AS John FROM Clem;
494 Chapter 11

SQL Statements E - R
ROLLBACK WORK
ROLLBACK WORK
The ROLLBACK WORK statement undoes changes you have made to the DBEnvironment
during the current transaction, releases locks held by the transaction, and closes cursors
opened during the transaction. Other transactions active in this session are not affected.

Scope

ISQL or Application Programs

SQL Syntax
ROLLBACK WORK [TO { SavePointNumber

: HostVariable
: LocalVariable
: ProcedureParameter }

RELEASE]

Parameters

TO The TO clause is used to roll back to a savepoint without ending the
current transaction.

If the TO clause is omitted, ROLLBACK WORK ends the current transaction
and undoes any changes that have been made in the transaction.

SavePointNumber is the number assigned by ISQL to a savepoint when you issue the
SAVEPOINT statement interactively.

HostVariable is defined as an integer variable to which you assign a value when you
issue the SAVEPOINT statement programmatically, or in a procedure.

LocalVariable contains a value in a procedure.

ProcedureParameter contains a value that is passed into or out of a procedure.

RELEASE terminates your DBE session.

Description

• When you omit the TO clause, all changes you have made to the DBEnvironment since
the most recent BEGIN WORKstatement are undone. In an application program, all open
cursors are automatically closed except those opened with the KEEP CURSOR option.
Any savepoints defined in the transaction are lost and become invalid. The transaction
is ended. Any cursor opened with the KEEP CURSOR option is repositioned to its scan
position as of the most recent BEGIN WORK statement, and a new transaction is
implicitly started with the same isolation level.

• The TO clause may not be used if any cursors that were opened with the KEEP
CURSOR option are still open. Issuing a ROLLBACK WORKto a savepoint in this context
results in an error message, and no rollback is done.

• When you specify the TO clause, all changes you have made to the DBEnvironment
Chapter 11 495

SQL Statements E - R
ROLLBACK WORK
since the designated savepoint are undone. If any cursors opened with the KEEP
CURSOR option were active in this transaction, the statement fails and the rollback is
not done. In an application program or procedure, all open cursors are automatically
closed.

Any savepoints defined more recently than the designated savepoint are lost and
become invalid. The designated savepoint is still valid and can be specified in a future
ROLLBACK WORK statement. The transaction is not ended. Any locks obtained since the
savepoint was set are released.

• If the current transaction is the one in which you opened a cursor with the KEEP
CURSOR option, then the ROLLBACK WORKstatement closes the cursor and undoes any
changes made through it.

• Under some circumstances ALLBASE/SQL automatically rolls back a transaction. For
example, when service is restored after a system failure, all uncommitted transactions
are automatically backed out.

• If RELEASE is used, all cursors are closed and the current connection is terminated.

• The RELEASE option is not allowed within a procedure.

Authorization

You do not need authorization to use the ROLLBACK WORK statement.

Example

Transaction begins.

 BEGIN WORK
statement-1

 SAVEPOINT :MyVariable
statement-2
statement-3

Work of statements 2 and 3 is undone.

 ROLLBACK WORK
 TO :MyVariable

Work of statement 1 is committed; transaction ends.

 COMMIT WORK
496 Chapter 11

SQL Statements S - Z
SAVEPOINT
12 SQL Statements S - Z

Chapters 10, 11 and 12 describe all the SQL statements in alphabetical order, giving
syntax, parameters, descriptions, authorization requirements, and examples for each
statement. Examples often consist of groups of statements so you can see how each
statement is related to other statements functionally.

SAVEPOINT
The SAVEPOINT statement defines a savepoint within a transaction. DBEnvironment
changes made after a savepoint can be undone at any time prior to the end of the
transaction. A transaction can have multiple savepoints.

Scope

ISQL or Application Programs

SQL Syntax
SAVEPOINT [: HostVariable

: LocalVariable
: ProcedureParameter]

Parameters

HostVariable identifies an output host variable used to communicate the savepoint
number. The host variable's value can be from 1 to (231)−1. In an
application program, you must use a host variable with the SAVEPOINT
statement. In a procedure, you must use either a local variable or a
procedure parameter with the SAVEPOINT statement.

When you enter a SAVEPOINTstatement interactively, you cannot specify a
host variable. ISQL assigns and displays the savepoint number as follows:

 isql=> savepoint;
 Savepoint number is n.
 Use this number to do ROLLBACK WORK to n.

LocalVariable contains a value in a procedure. Identifies an output host variable used
to communicate the savepoint number. The host variable's value can be
from 1 to (231)−1.

ProcedureParameter contains a value that is passed into or out of a procedure.
Identifies an output host variable used to communicate the savepoint
number. The host variable's value can be from 1 to (231)−1.
Chapter 12 497

SQL Statements S - Z
SAVEPOINT
Description

• Specify the savepoint number in the TO clause of a ROLLBACK WORK statement to roll
back to a savepoint.

• If a procedure invoked by a rule executes a COMMIT WORK statement, an error occurs.

Authorization

You do not need authorization to use the SAVEPOINT statement.

Example

Transaction begins.

 BEGIN WORK
statement-1

 SAVEPOINT :MyVariable
statement-2
statement-3

Work of statements 2 and 3 is undone.

 ROLLBACK WORK
 TO :MyVariable

Work of statement-1 is committed; transaction ends.

 COMMIT WORK
498 Chapter 12

SQL Statements S - Z
SELECT
SELECT
The SELECTstatement retrieves data from one or more tables or views. The retrieved data
is presented in the form of a table, called the result table or query result. The explanation
of SQL Select syntax is broken down into several levels for easier understanding. An
overview of the syntax at each of these levels is presented here starting with the Select
Statement Level and continuing through the syntax for the FromSpec.

Detailed discussion of each of these syntax levels is presented in the same order, on the
following pages.

Scope

ISQL or Application Programs

SQL Syntax — Select Statement Level
[BULK] QueryExpression [ORDER BY { ColumnID [ASC

DESC]}[,...]]

SQL Syntax — Subquery Level

(QueryExpression)

SQL Syntax — Query Expression Level
{ QueryBlock

(QueryExpression)}[UNION [ALL]{ QueryBlock
(QueryExpreession)}][...]

SQL Syntax — Query Block Level
SELECT [ALL

DISTINCT] SelectList [INTO HostVariableSpecification]
FROMFromSpec [,...]

[WHERESearchCondition1]
[GROUP BYGroupColumnList]
[HAVING SearchCondition2]

SelectList
{ *

[Owner.] Table. *
Correlation.Name *
Expression
[[Owner.] Table.] ColumnName
CorrelationName.ColumnName }[,...]

HostVariableSpecification — With BULK Option

: Buffer [,: StartIndex [,: NumberOfRows]]
Chapter 12 499

SQL Statements S - Z
SELECT
HostVariableSpecification — Without BULK Option

{: HostVariable [[INDICATOR] : Indicator]) [,...]

FromSpec
{ TableSpec

(FromSpec)
FromSpec NATURAL [INNER

LEFT [OUTER]
RIGHT [OUTER]] JOIN { TableSpec

(FromSpec)}
FromSpec [INNER

LEFT [OUTER]
RIGHT [OUTER]] JOIN { TableSpec

(FromSpec)}{ ON SearchCondition3
USING (ColumnList)}}

TableSpec

[Owner.] TableName [CorrelationName]

A SELECT statement can be examined at the following four levels:

Select Statement A select statement is a syntactically complete SQL statement
containing one or more SELECT statements but having a single query
result that can optionally be sorted with an ORDER BY clause. At its
simplest, a select statement is a query expression consisting of a single
query block.

Subquery A subquery (also known as a nested query) is a query expression enclosed
in parentheses and embedded in a search condition. A subquery returns a
value which is used in evaluating the search condition.

Query Expression A query expression is a complex expression consisting of one or more
query blocks and UNION/UNION ALL operators.

Query Block A query block is the primary query syntax for specifying which tables to
query and which columns to return.

The syntax and usage of each of these levels is described below. For
additional information, refer to the chapter "SQL Queries."

SQL Syntax — Select Statement Level
[BULK] QueryExpression [ORDER BY { ColumnID [ASC

DESC]}[,...]]

Parameters — Select Statement Level

BULK is specified in an application program to retrieve multiple rows with a
single execution of the SELECT statement.

Do not use this option in select statements associated with a cursor.
Instead, use the BULK option of the FETCH statement.
500 Chapter 12

SQL Statements S - Z
SELECT
QueryExpression is a complex expression specifying what is to be selected. The query
expression is made up of one or more query blocks, as described in the
chapter "SQL Queries."

ORDER BY sorts the result table rows in order by specified columns. Specify the sort
key columns in order from major sort key to minor sort key. You can specify
as many as 1023 columns. The column specified in the ORDER BY
parameter must be one of the columns appearing in the SELECT list. Data
is returned in descending order when the ORDER BY columnID DESC
clause is specified.

For each column you can specify whether the sort order is to be ascending
or descending. If neither ASC nor DESC is specified, ascending order is
used.

ColumnID must correspond to a column in the select list. You can identify a column to
be sorted by giving its name or by giving its ordinal number, with the first
column in the select list being column number 1. You must use a column
number when referring to columns in the query result that are derived
from column expressions. You must also use a column number to refer to
columns if the expression contains more than one query block.

The syntax for a column ID in the ORDER BY clause follows:

{ ColumnNumber
[[Owner.] TableName.

CorrelationName.] ColumnName}

Description — Select Statement Level

• The SELECT statement is considered updatable if the query expression it contains is
updatable and if no ORDER BY clause is present.

• The BULK option cannot be used interactively or in a procedure.

• ALLBASE/SQL uses file space in the defined TempSpaces, and in the system files when
processing queries containing ORDER BY clauses or UNION operators. (No such space
is used during UNION ALL.)

• When using this statement to select LONG columns, the name of the file is returned in
the appropriate field in the HostVariableSpecification specified within the
QueryExpression . With the BULK option, if the output mode is specified with $, then
each LONG column in each row accessed has a file with a unique name containing the
LONG data retrieved. Additionally, the data file is generated in the directory specified
when the LONG column was defined.

SQL Syntax — Subquery Level

(QueryExpression)
Chapter 12 501

SQL Statements S - Z
SELECT
Parameters — Subquery Level

QueryExpression is the basic syntax of a query or SELECT statement. The query
expression in a subquery may not contain any UNION or UNION ALL
operations.

Description — Subquery Level

• Subqueries are used to retrieve data that is then used in evaluating a search condition.
For example, get supplier numbers for the suppliers who supply the maximum quantity
of part 'P1'.

 SELECT SP.SNO
 FROM SP
 WHERE SP.PNO = 'P1'
 AND SP.QTY = (SELECT MAX(SP.QTY)
 FROM SP
 WHERE SP.PNO = 'P1')

Without using nested queries, the same answer would require the two following queries
— one to find the maximum, the other to list the supplier number:

 SELECT MAX(SP.QTY)
 FROM SP
 WHERE SP.PNO = 'P1'

and

 SELECT SP.SNO
 FROM SP
 WHERE SP.PNO = 'P1'
 AND SP.QTY = MaxQty

where MaxQty is the result of the first query.

• A subquery may be used only in the following types of predicates:

• EXISTS predicate.

• Quantified predicate.

• IN predicate.

• Comparison predicate.

• A subquery may be used in the WHERE or HAVING clause of SELECT statements and
in the WHERE clause of UPDATE, INSERT , and DELETE statements.

• A subquery may also be nested in the WHERE or HAVING clause of another subquery.
No ALLBASE/SQL statement can have more than 16 query blocks within it.

• A subquery may reference a column value in a higher level of the query (or outer
query). Such a reference is called an outer reference. A subquery making an outer
reference is called a correlated subquery. Because a correlated subquery depends on a
value of the outer query, the subquery must be reevaluated for each new value of the
outer query, as in the following example to get supplier numbers for those who supply
the most parts for each part number.
502 Chapter 12

SQL Statements S - Z
SELECT
 SELECT SP1.SNO
 FROM SP SP1
 WHERE SP1.QTY = (SELECT MAX(SP2.QTY)
 FROM SP SP2
 WHERE SP1.PNO = SP2.PNO)

Note that the reference to SP1.PNO in the WHERE clause of the subquery is an outer
reference. In this case, because both the outer query and the subquery refer to table SP,
correlation names SP1 and SP2 are assigned to make the distinction between the outer
and normal references. Within the subquery, any unqualified column names (that is,
those which are specified without a table name) are assumed to refer only to tables
specified in the FROM clause of that subquery.

• If a query has a HAVING clause with subqueries in it, any outer reference made from
those subqueries to the query with the HAVING clause must refer to a column specified
in a GROUP BY clause.

SQL Syntax — Query Expression Level
{QueryBlock

(QueryExpression)} [UNION [ALL] {QueryBlock
(QueryExpression}][...]

Parameters — Query Expression Level

QueryBlock is the primary query stating which tables to query, which columns to
return, and which search conditions to use for filtering data. The query
block is further described in one of the next sections.

UNION unites two query expressions into a combined query expression.

The union of two sets is the set of all elements that belong to either or both
of the original sets. Because a table is a set of rows, the union of two tables
is possible. The resulting table consists of all rows appearing in either or
both of the original tables.

ALL indicates that duplicates are not removed from the result table when
UNION is specified. If UNION is specified without ALL, duplicates are
removed.

(QueryExpression) may be embedded within another query expression if enclosed in
parentheses. Parentheses are optional when a query expression is not
embedded.

Description — Query Expression Level

• For the following, assume that T1 is the result of the query block or query expression on
the left of the UNION operator, and T2 is the result of the query block or query
expression on the right of the UNION operator. (The same conditions must be met if
there are additional UNION operators which include results from T3, ...Tn.):

— T1 and T2 must have the same number of columns. (They may be derived from tables
with varying numbers of columns.)
Chapter 12 503

SQL Statements S - Z
SELECT
— The union is derived by first inserting each row of T1 and each row of T2 into a result
table and then eliminating any redundant rows unless ALL is specified.

— The result of the union inherits the column names specified for T1.

— The maximum number of query blocks within a query expression is 16.

— Data types of corresponding columns in T1 and T2 must be comparable. When
columns are of the same type but of different sizes, the result has the length of the
longer of the source columns.

• The ORDER BY clause can specify the ordinal number or the column name of a column
in the leftmost query expression in a UNION.

• You cannot use LONG columns in a UNION statement except in long string functions.

Table 12-1. shows the conversion rules for comparable data types:

Table 12-1. Conversion Rules for Data in Query Expressions

Data Type Source Columns Result Column Comment

Character One CHAR, one
VARCHAR

VARCHAR Result has the length of the
longer of the two source
columns.

One NATIVE CHAR,
one NATIVE
VARCHAR

NATIVE
VARCHAR

Result has the length of the
longer of the two source
columns.

One NATIVE CHAR,
one CHAR

NATIVE CHAR Result has the length of the
longer of the two source
columns.

One NATIVE
VARCHAR, one
CHAR or VARCHAR

NATIVE
VARCHAR

Result has the length of the
longer of the two source
columns.

One NATIVE CHAR,
one VARCHAR

NATIVE
VARCHAR

Result has the length of the
longer of the two source
columns.

One NATIVE
VARCHAR, one
VARCHAR

NATIVE
VARCHAR

Result has the length of the
longer of the two source
columns.
504 Chapter 12

SQL Statements S - Z
SELECT
SQL Syntax — Query Block Level
SELECT [ALL

DISTINCT] SelectList [INTO HostVariableSpecification]
FROMFromSpec [,...]

[WHERESearchCondition1]
[GROUP BYGroupColumnList]
[HAVING SearchCondition2]

Parameters — Query Block Level

ALL prevents elimination of duplicate rows from the result. If neither ALL nor
DISTINCT is specified, the ALL option is assumed.

Numeric One FLOAT or REAL FLOAT

Both DECIMAL DECIMAL If p1 and s1 are the precision
and scale of C1, and p2 and
s2 are the precision and
scale of C2, the precision and
scale of the result column is
as follows: MIN(27,
MAX(s1,s2) +
MAX(p1-s1, p2-s2)) and
the following is the scale of
the result column:
MAX(s1,s2)

One DECIMAL, one
SMALLINT or
INTEGER

DECIMAL Precision and scale are
derived as above. The
precision and scale for an
integer is (10,0); for a
smallint, (5,0).

One INTEGER, one
SMALLINT

INTEGER

Date/Time Both DATE, TIME,
DATETIME, or
INTERVAL

DATE, TIME,
DATETIME, or
INTERVAL,
respectively

One CHAR or
VARCHAR and one
DATE, TIME,
DATETIME, or
INTERVAL

DATE, TIME,
DATETIME, or
INTERVAL,
respectively

Binary One BINARY, one
VARBINARY

VARBINARY Result has length of the
longer of the two source
columns.

Table 12-1. Conversion Rules for Data in Query Expressions

Data Type Source Columns Result Column Comment
Chapter 12 505

SQL Statements S - Z
SELECT
DISTINCT ensures that each row in the query result is unique. All null values are
considered equal. You cannot specify this option if the select list contains
an aggregate function with DISTINCT in the argument. This option
cannot be used for a select list longer than 255 items. Avoid DISTINCT in
subqueries since the query result is not changed, and it hinders rather
than helping performance.

SelectList tells how the columns of the result table are to be derived. The syntax of
SelectList is presented separately below.

INTO The INTO clause defines host variables for holding rows returned in
application programs. Do not use this clause for SELECT statements
associated with a cursor or dynamically preprocessed SELECTstatements,
query blocks within subqueries, nested query expressions, or any but the
first query block in a SELECT statement.

HostVariableSpecification identifies one or more host variables for holding rows
returned in application programs. Do not use this clause for SELECT
statements associated with a cursor or dynamically preprocessed SELECT
statements, query blocks within subqueries, nested query expressions, or
any but the first query block in a SELECT statement. The syntax of BULK
and non-BULK types of HostVariableSpecification are presented
separately below.

FROM The FROM clause identifies the tables and views referenced anywhere in
the SELECT statement. The maximum number of tables per query is 31.

FromSpec identifies the tables and views in a query block and explicitly defines inner
and outer joins. The syntax of FromSpec is presented separately below.

WHERE The WHERE clause determines the set of rows to be retrieved. Rows for
which SearchCondition1 is false or unknown are excluded from
processing. If the WHERE clause is omitted, no rows are excluded.
Aggregate functions cannot be used in the WHERE clause.

Rows that do not satisfy SearchCondition1 are eliminated before groups
are formed and aggregate functions are evaluated.

When you are joining tables or views, the WHERE clause also specifies the
condition(s) under which rows should be joined. You cannot join on a
column in a view derived using a GROUP BY clause. If you omit a join
condition, ALLBASE/SQL joins each row in each table in the FROM clause
with each row in all other tables in the FROM clause.

SearchCondition1 may contain subqueries. Each subquery is effectively
executed for each row of the outer query and the results used in the
application of SearchCondition1 to the given row. If any executed
subquery contains an outer reference to a column of a table or view in the
FROM clause, then the reference is to the value of that column in the
given row.

Refer to the "Search Conditions" chapter for additional information on
search conditions.

GROUP BY The GROUP BY clause identifies the columns to be used for grouping
506 Chapter 12

SQL Statements S - Z
SELECT
when aggregate functions are specified in the select list and you want to
apply the function to groups of rows. You can specify as many as 1023
columns, unless the select list contains an aggregate function with the
DISTINCT option, in which case you can specify as many as 254 columns.

The syntax for the group column list in the GROUP BY clause follows:

{ [Owner.] TableName.
CorrelationName.] ColumnName}[,...]

When you use the GROUP BY clause, the select list can contain only
aggregate functions and columns referenced in the GROUP BY clause. If
the select list contains an *, a TableName.* , or an Owner.TableName.*
construct, then the GROUP BY clause must contain all columns that the *
includes. Specify the grouping column names in order from major to minor.

Null values are considered equivalent in grouping columns. If all other
columns are equal, all nulls in a column are placed in a single group.

If the GROUP BY clause is omitted, the entire query result table is treated
as one group.

HAVING The HAVING clause specifies a test to be applied to each group. Any group
for which the result of the test is false or unknown is excluded from the
query result. This test, referred to as SearchCondition2 , can be a
predicate containing either an aggregate function or a column named in
the GROUP BY clause.

Each subquery in SearchCondition2 is effectively checked for each group
created by the GROUP BY clause, and the result is used in the application
of SearchCondition2 to the given group. If any executed subquery
contains an outer reference to a column, then the reference is to the values
of that column in the given group. Only grouping columns can be used as
outer references in a subquery in SearchCondition2 .

SQL Syntax — SelectList
{ *

[Owner.] Table. *
Correlation.Name *
Expression
[[Owner.] Table.] ColumnName
CorrelationName.ColumnName }[,...]

Parameters — SelectList

* includes, as columns of the result table, all columns of all tables and views
specified in the FROM clause.

[Owner.] Table .* includes all columns of the specified table or view in the result.

CorrelationName .* includes all columns of the specified table or view in the result. The
correlation name is a synonym for the table or view as defined in the
FROM clause.

Expression produces a single column in the result table; the result column values are
Chapter 12 507

SQL Statements S - Z
SELECT
computed by evaluating the specified expression for each row of the result
table.

The expression can be of any complexity. For example, it can simply
designate a single column of one of the tables or views specified in the
FROM clause, or it can involve aggregate functions, multiple columns, and
so on. When you specify one or more aggregate functions in a select list,
the only other entity you can specify is the name(s) of the column(s) you
group by.

[[Owner.]Table .] ColumnName includes a particular column from the named owner's
indicated table.

CorrelationName. ColumnName includes a specific column from the table whose
correlation name is defined in the FROM clause.

SQL Syntax — BULK HostVariableSpecification

: Buffer [,: StartIndex [,: NumberOfRows]]

Parameters — BULK HostVariableSpecification

Buffer is a host array or structure that is to receive the output of the SELECT
statement. This array contains elements for each column in the
SelectList and indicator variables for columns that can contain null
values. Whenever a column can contain nulls, an indicator variable must
be included in the array definition immediately after the definition of that
column. The indicator variable can receive the following integer values
after a SELECT statement:

0 the column's value is not NULL

−1 the column's value is NULL

> 0 is truncated; the number indicates the data length before
truncation

StartIndex is a host variable whose value specifies the array subscript denoting where
the first row in the query result should be stored; default is the first
element of the array.

Number- OfRows is a host variable whose value specifies the maximum number of rows
to store; default is to fill from the starting index to the end of the array.

The total number of rows stored is returned in the SQLERRD[3] field of the SQLCA.
(SQLERRD[2] for the C language.)

SQL Syntax — non-BULK HostVariableSpecification

{ : HostVariable [INDICATOR]: Indicator] } [,...]

Parameters — non-BULK HostVariableSpecification

HostVariable identifies the host variable corresponding to one column in the row.
508 Chapter 12

SQL Statements S - Z
SELECT
Indicator names an indicator variable, an output host variable whose value (see
following) depends on whether the host variable contains a null value:

0 the column's value is not NULL

−1 the column's value is NULL

> 0 is truncated; the number indicates the data length before
truncation

The order of the host variables must match the order of their corresponding items in the
select list.

SQL Syntax — FromSpec
{ TableSpec

(FromSpec)
FromSpec NATURAL [INNER

LEFT [OUTER]
RIGHT [OUTER]] JOIN { TableSpec

(FromSpec)}
FromSpec [INNER

LEFT [OUTER]
RIGHT [OUTER]] JOIN { TableSpec

(FromSpec)}{ ON SearchCondition3
USING (ColumnList) } }

Parameters — FromSpec

TableSpec identifies a table or view from which rows are selected.

The syntax for a TableSpec in a FromSpec follows:

[Owner.] TableName [CorrelationName]

[Owner.]TableName identifies a table or view to be referenced. The
TableName may be preceded by an OwnerName, and may
be followed by the definition of a CorrelationName .

CorrelationName specifies a synonym for the immediately preceding
table or view. The correlation name can be used instead of
the actual table or view name anywhere within the
SELECT statement when accessing columns or TID values
of that table.

The correlation name must conform to the syntax rules for
a basic name. All correlation names within one SELECT
statement must be unique. They cannot be the same as
any table name or view name in the FROM clause that
does not also have a correlation name associated with it.

Correlation names are useful when you join a table to
itself. You name the table twice in the FROM clause, and
assign it two different correlation names.

(FromSpec) allows the placement of parentheses around a FromSpec in order to alter
the order of evaluation of the components of a complex FromSpec , such as
Chapter 12 509

SQL Statements S - Z
SELECT
one used to describe a three or more table outer join.

NATURAL indicates that for both inner and outer joins, columns which are common to
two tables being joined will be coalesced into a single column when the
query result is returned. Also, ALLBASE/SQL will automatically identify
and use the columns common to both tables to execute the join. When
using the keyword NATURAL you do not use an ON SearchCondition3
clause or a USING (ColumnList) clause to specify the join columns.

INNER join type indicates that the only rows selected in the join will be those rows
for which a match is found in the join column(s) of both tables being joined.
If the join type is not specified, INNER is the default.

LEFT defines the join as a LEFT OUTER JOIN. For a LEFT OUTER JOIN the
query result will contain not only the matched rows from both tables being
joined, but will also preserve (contain) those rows from the left hand table
in the FromSpec for which there is no match in the right hand table. The
preserved rows are extended to the right with null column values for each
column obtained from the right hand table.

For each instance of the keyword JOIN in a FromSpec , the named table or
the result table immediately preceding JOIN is the left hand table, the
named table or the result table immediately following JOIN is the right
hand table.

RIGHT defines the join as a RIGHT OUTER JOIN. For a RIGHT OUTER JOIN
the query result will contain not only the matched rows from both tables
being joined, but will also preserve (contain) those rows from the right
hand table in the FromSpec for which there is no match in the left hand
table. The preserved rows are extended to the left with null column values
for each column obtained from the left hand table.

For each instance of the keyword JOIN in a FromSpec , the named table
immediately following JOIN is the right hand table, the named table
immediately preceding JOIN is the left hand table.

OUTER is optional as a keyword. If either LEFT or RIGHT are used, the join type
is, by default, an outer join.

JOIN specifies that a join is being defined. Evaluation of the FromSpec is from
left to right. For a three or more table join, the two tables associated with
the left most instance of the JOIN keyword are joined first, and the result
of that join is considered the left hand table for the next occurring instance
of the keyword JOIN. The same algorithm applies for each additional
occurrence of JOIN. Parentheses can be used to force a change in this
order of evaluation of the FromSpec .

ONSearchCondition3 may only be used when the keyword NATURAL is not used. Two
types of predicates are specified in SearchCondition3 .

The first type of predicate contains the equality which specifies the join
columns to be used for the associated join. For each occurrence in the
FromSpec of the keyword JOIN, in the ON SearchCondition3 clause the
column names specified on each side of the equality must be fully
510 Chapter 12

SQL Statements S - Z
SELECT
qualified.

The second type of predicate limits, for the associated join only, the rows
which participate in the inner part of the join. Rows which are excluded
from the inner part of the join will be added to those preserved in the outer
part of the join. This predicate follows all general rules for search
conditions as specified in the "Search Conditions" chapter.

Predicates placed in the ON SearchCondition3 clause, associated with an
instance of JOIN, apply only to that associated inner join. However,
predicates placed in the WHERE clause of the SELECT statement apply to
the entire query result, after all joins have been evaluated. Therefore you
must consider carefully the placement of limiting predicates to decide
whether they belong in the WHERE clause, or in an ON
SearchCondition3 clause associated with a particular instance of JOIN in
the FromSpec . See "Outer Joins" in the "SQL Queries" chapter for specific
examples illustrating the changes to the query result brought about by
changes in placement of the limiting predicates.

USING(ColumnList) specifies participating columns common to both tables being joined,
and can only be used if the keyword NATURAL has not been used in the
FromSpec . The column names must be unqualified because the columns
occur in more than one table.

Description — Query Block Level

• The BULK option and INTO clause cannot be used interactively or in procedures.

• The clauses must be specified in the order given in the syntax diagram.

• A result column in the select list can be derived in any of these following ways:

• A result column can be taken directly from one of the tables or views listed in the
FROM clause.

• Values in a result column can be computed, using an arithmetic expression, from
values in a specified column of a table or view listed in the FROM clause.

• Values in several columns of a single table or view can be combined in an arithmetic
expression to produce the result column values.

• Values in columns of various different tables or views can be combined in an
arithmetic expression to produce the result column values.

• Aggregate functions (AVG, MAX, MIN, SUM, and COUNT) can be used to compute
result column values over groups of rows. Aggregate functions can be used alone or
in an expression. If you specify more than one aggregate function containing the
DISTINCT option, all these aggregate functions must operate on the same column. If
the GROUP BY clause is not specified, the function is applied over all rows that
satisfy the query. If the GROUP BY clause is specified, the function is applied once
for each group defined by the GROUP BY clause. When you use aggregate functions
with the GROUP BY clause, the select list can contain only aggregate functions and
columns referenced in the GROUP BY clause.

• A result column containing a fixed value can be created by specifying a constant or
Chapter 12 511

SQL Statements S - Z
SELECT
an expression involving only constants.

• In addition to specifying how the result columns are derived, the select list also controls
their relative position from left to right in the result table. The first result column
specified by the select list becomes the leftmost column in the result table.

• The maximum number of columns in a query result is 1024, except when the query
contains the DISTINCT option or is within a UNION query expression. In this case, the
maximum number of columns is 1023. The maximum number of LONG data type
columns which can be directly selected or fetched in a select list is 40. However, any
number can be referenced in long string functions. They must be referenced by column
name only and cannot participate in an expression in the select list, unless they are
being accessed through long string functions.

• Result columns in the select list are numbered from left to right. The leftmost column is
number 1. Result columns can be referred to by column number in the ORDER BY
clause; this is especially useful if you want to refer to a column defined by an arithmetic
expression.

• When you specify the NATURAL....JOIN:

• You can not use the ON SearchCondition3 or USING (ColumnList) clauses.

• Each pair of columns with the same column name, which are common to the two
tables being joined, will be coalesced into a single common column in the query
result. ALLBASE/SQL will automatically determine which columns to use for the
join. All columns which have the same column name in each of the tables being
joined will be used for the join.

• When common columns are referenced in the query, such as in the select list, you
must use only the unqualified name of the column.

• Each pair of columns common to two tables being joined must have the same or
compatible data types.

• For a SELECT*, each pair of columns, common to the two tables being joined, will be
coalesced into a single common column and will be the first columns displayed in the
result, in the order in which they were defined in the left hand table. They will be
followed by the columns from the left hand table that were not used for the join. The
last columns displayed will be those from the right hand table not participating in
the join. Columns not used for the join will be displayed in the order in which they
are defined in their respective tables.

• For any other SELECT, the columns displayed will be those specified in the select list,
in the order specified.

• If there are no common columns between the tables being joined, the columns
resulting from the join are the same as the columns that would result from the
Cartesian product of the joined tables. See the "SQL Queries" chapter.

• When you specify JOIN....ON SearchCondition3 :

• You cannot use the keyword NATURAL or the USING ColumnList clause.

• Column Names from common columns used in the join predicate in
SearchCondition3 must be fully qualified. If additional predicates are used in
512 Chapter 12

SQL Statements S - Z
SELECT
SearchCondition3 to limit the rows returned from the join, each column name
used must unambiguously reference a column in one of the tables being joined, or
must be an outer reference (as in the case of nested subqueries).

• For a SELECT *, the columns contained in the result of the join are the same as the
columns of the Cartesian product of the tables being joined.

• For any other SELECT, the columns displayed will be those specified in the select list,
in the order specified.

• The result of the INNER JOIN....ON SearchCondition3 contains the multiset of
rows of the Cartesian Product of the tables being joined for which all predicates in
SearchCondition3 are true.

• When you specify JOIN....USING (ColumnList):

• You must not use the keyword NATURAL or the ON SearchCondition3 clause.

• You place in the ColumnList one unqualified column name for each pair of common
columns being used for the join.

• No column name may be used if it is not common to both tables being joined.

• For SELECT *, the result of the INNER JOIN....USING (ColumnList) contains the
multiset of rows of the Cartesian product of the tables being joined for which the
corresponding join columns have equal values. The coalesced common columns are
returned first. (No duplicate columns are displayed in the case of common columns).
The non-join columns from both tables appear next. If there is no common column,
the result contains the multiset of rows of the Cartesian product of the tables being
joined.

• The result of the [NATURAL] LEFT [OUTER] JOIN is the union of two components.
The first component is the result of the equivalent [NATURAL] INNER JOIN. The
second component contains those rows in the left hand table that are not in the INNER
JOIN result. These rows are extended to the right with null values in the column
positions corresponding to the columns from the right hand table. For a natural join, the
column values in the common columns are taken from the left hand table.

• The result of the [NATURAL] RIGHT [OUTER] JOIN is the union of two components.
The first component is the result of the equivalent [NATURAL] INNER JOIN. The
second component contains those rows in the right hand table that are not in the
INNER JOIN result. These rows are extended to the left with null values in the column
positions corresponding to the columns from the left hand table. For a natural join, the
column values in the common columns are taken from the right hand table.

• The ON clause (which is associated with the OUTER JOIN in a join condition) and all
predicates in a WHERE clause are filters. At each OUTER JOIN block, the INNER
JOIN result (which matches the join condition in an ON clause) will be presented. Then
all tuples in the preserving table (which is not in the INNER JOIN result) will be
presented by matching columns in the non-preserving table with nulls.

• For three or more table joins, care must be taken when mixing NATURAL....JOIN,
JOIN ON SearchCondition3 , and JOIN USING (ColumnList) clauses.

• The JOIN ON Searchcondition3 clause produces a result table with the common
columns appearing twice, once for each table participating in the join.
Chapter 12 513

SQL Statements S - Z
SELECT
• If this result table is used as input to a NATURAL....JOIN clause or a JOIN USING
(ColumnList) clause, and the column appearing twice in the result table is named
as a join column in the JOIN USING (ColumnList) clause or is selected by
ALLBASE/SQL as the join column in the NATURAL JOIN, an error will result. This
happens because it is impossible to specify which of the two common columns in the
result table is to participate in the following join.

• When writing a three or more table join with explicit join syntax, make sure that for
any single result table participating in a join, there are no duplicate column names
which will be named as a join column. To ensure this, make each join clause a
NATURAL...JOIN or a JOIN...USING (ColumnList), except for the final join, which
may contain these types or a JOIN...ON SearchCondition3 clause. Otherwise,
ensure that each join clause is a JOIN...ON SearchCondition3 clause.

• To join tables, without using explicit JOIN syntax, list the tables in the FROM clause,
and specify a join predicate in the WHERE clause.

• If you specify SELECT * and in the WHERE clause an equal predicate specifies the
join but there are no other limiting predicates, the result of this procedure is the
same as that obtained when using the INNER JOIN described above. The common
column appears twice in the query result, once for each table from which it was
obtained.

• If you select each column explicitly, naming each column only once (and
appropriately fully qualify a single column name for each pair of column names that
is common to both tables) the result is the same as that obtained when using the
NATURAL INNER JOIN, above. The common column appears only once in the
query result, and is taken from the table specified in the fully qualified column
name.

• To join a table with itself, define correlation names for the table in the FROM clause;
use the correlation names in the select list and the WHERE clause to qualify columns
from that table.

• NULLs affect joins and Cartesian products as follows:

• Rows are only selected for an inner join when the join predicate evaluates to true.
Since the value of NULL is undetermined, the value of the predicate NULL = NULL
is unknown. Thus, if the value in the common columns being joined is NULL, the
rows involved will not be selected.

• Rows excluded from the inner part of an outer join because the common column
values are NULL, are included in the outer part of the outer join.

• The existence of NULLs does not exclude rows from being included in a Cartesian
product. See the "SQL Queries" chapter for more information.

• When you use the GROUP BY clause, one answer is returned per group, in accord with
the select list:

• The WHERE clause eliminates rows before groups are formed.

• The GROUP BY clause groups the resulting rows.

• The HAVING clause eliminates groups.
514 Chapter 12

SQL Statements S - Z
SELECT
• The select list aggregate functions are computed for each group.

• ALLBASE/SQL allocates sort file space in /tmp, by default, or in the space specified
using the CREATE TEMPSPACE statement. The space is deallocated once the statement
completes.

• The query block is considered updatable if, and only if, it satisfies the following
conditions:

— No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT
clause, and no aggregates appear in the select list.

— No INTO clause is specified.

— The FROM clause specifies exactly one table or view (contains no inner or outer
joins) and if a view is specified, it is an updatable view.

— For INSERT and UPDATE through views, the select list in the view definition must
not contain any arithmetic expressions. It must contain only column names.

— For DELETE WHERE CURRENT and UPDATE WHERE CURRENT operations,
the cursor definition must not contain subqueries.

— For noncursor UPDATE, DELETE, or INSERT, the view definition, or the WHERE
clause must not contain any subqueries referencing the target table in their FROM
clause.

Authorization

If you specify the name of a table, you must have SELECT or OWNER authority for the
table, or you must have DBA authority.

If you specify the name of a view, you must have SELECT or OWNER authority for the
view, or you must have DBA authority. Also, the owner of the view must have SELECT or
OWNER authority with respect to the view's definition, or the owner must have DBA
authority.

Examples

1. Simple queries

One value, the average number of days you wait for a part, is returned.

 SELECT AVG(DeliveryDays)
 FROM PurchDB.SupplyPrice

The part number and delivery time for all parts that take fewer than 20 days to deliver
are returned. Multiple rows may be returned for a single part.

 SELECT PartNumber, DeliveryDays
 FROM PurchDB.SupplyPrice
 WHERE DeliveryDays < 20

2. Grouping

The part number and average price of each part are returned.
Chapter 12 515

SQL Statements S - Z
SELECT
 SELECT PartNumber, AVG(UnitPrice)
 FROM PurchDB.SupplyPrice
 GROUP BY PartNumber

The query result is the same as the query result for the previous SELECT statement,
except it contains rows only for parts that can be delivered in fewer than 20 days.

 SELECT PartNumber, AVG(UnitPrice)
 FROM PurchDB.SupplyPrice
 GROUP BY PartNumber
 HAVING MAX(DeliveryDays) < 20

3. Joining

This join returns names and locations of California suppliers. Rows are returned in
ascending PartNumber order; rows containing duplicate PartNumbers are returned in
ascending VendorName order. The FROM clause defines two correlation names (v and
s), which are used in both the select list and the WHERE clause. VendorNumber is the
only common column between Vendors and SupplyPrice.

 SELECT PartNumber, VendorName, s.VendorNumber, VendorCity
 FROM PurchDB.SupplyPrice s, PurchDB.Vendors v
 WHERE s.VendorNumber = v.VendorNumber
 AND VendorState = 'CA'
 ORDER BY PartNumber, VendorName

This query is identical to the query immediately above except that it uses the explicit
JOIN syntax.

 SELECT PartNumber, VendorName, VendorNumber, VendorCity
 FROM PurchDB.SupplyPrice
 NATURAL JOIN PurchDB.Vendors
 WHERE VendorState = 'CA'
 ORDER BY PartNumber, VendorName

This query joins table PurchDB.Parts to itself in order to determine which parts have
the same sales price as part 1133-P-01.

 SELECT q.PartNumber, q.SalesPrice
 FROM PurchDB.Parts p, PurchDB.Parts q
 WHERE p.SalesPrice = q.SalesPrice
 AND p.PartNumber = '1133-P-01'

This query does a left outer join between the Vendors and SupplyPrice tables. Since
every part supplied by a vendor has an entry in the SupplyPrice table, the result first
displays every vendor who supplies a part. The result then displays every vendor who
does not supply any parts.

 SELECT PartNumber, VendorName, VendorCity
 FROM Purchdb.Vendors v
 LEFT JOIN Purchdb.SupplyPrice s
 ON s.VendorNumber = v.VendorNumber
 ORDER BY PartNumber, VendorName

4. BULK SELECT

Programmatically, when you do not need to use the capabilities associated with a
516 Chapter 12

SQL Statements S - Z
SELECT
cursor, you can use the BULK option to retrieve multiple rows.

 BULK SELECT *
 INTO :Items, :Start, :NumRow
 FROM PurchDB.Inventory

5. UNION Option

Retrieves all rows from two Parts tables into a single query result ordered by
PartNumber. PartNumber and PartValue are comparable; SalesPrice and Price are
comparable.

 SELECT PartNumber, SalesPrice
 FROM P1988.Parts
 UNION
 SELECT PartValue, Price
 FROM P1989.Parts
 ORDER BY PartNumber

6. Nested query or subquery

Obtain a list of customer orders whose totals are higher than the largest order of 1988.

 SELECT OrderNumber, SUM(PurchasePrice)
 FROM PurchDB.OrderItems
 GROUP BY OrderNumber
 HAVING SUM(PurchasePrice) > (SELECT MAX(PurchasePrice)
 FROM FY1988.Orders)

Get vendor numbers for all vendors located in the same city as vendor number 9005.

 SELECT VendorNumber
 FROM PurchDB.Vendors
 WHERE VendorCity = (SELECT VendorCity
 FROM PurchDB.Vendors
 WHERE VendorNumber = '9005')

Get supplier names for suppliers who provide at least one red part.

 SELECT SNAME
 FROM S
 WHERE SNO IN (SELECT SNO
 FROM SP
 WHERE EXISTS (SELECT PNO
 FROM P
 WHERE P.PNO = SP.PNO
 AND COLOR = 'RED'))

Get supplier number for suppliers who supply the most parts.

 SELECT SNO
 FROM SP
 GROUP BY SNO
 HAVING COUNT(DISTINCT PNO) >= ALL (SELECT COUNT(DISTINCT PNO)
 FROM SP
 GROUP BY SNO)
Chapter 12 517

SQL Statements S - Z
SELECT
Insert into table T, supplier names of each supplier who does not supply any part.

 INSERT INTO T (SNO)
 SELECT SNO
 FROM S
 WHERE NOT EXISTS (SELECT *
 FROM SP
 WHERE SP.SNO = S. SNO)

Delete all suppliers from the supplier table who do not supply any parts.

 DELETE FROM S
 WHERE NOT EXISTS (SELECT *
 FROM SP
 WHERE SP.SNO = S.SNO)
518 Chapter 12

SQL Statements S - Z
SET CONNECTION
SET CONNECTION
The SET CONNECTION statement sets the current connection within the list of connected
DBEnvironments. Any SQL statements issued apply to the current connection.

Scope

ISQL or Application Programs

SQL Syntax
SET CONNECTION { ‘ConnectionName’

:HostVariable }

Parameters

ConnectionName is a string literal identifying the name associated with this connection.
This name must be unique for each DBEnvironment connection within an
application or an ISQL session. ConnectionName cannot exceed 128
bytes.

HostVariable is a character string host variable containing the ConnectionName
associated with this connection.

Description

• A connection to any one of the list of connected DBEnvironments can be the current
connection. When the current connection is set from one DBEnvironment to another,
any previously connected DBEnvironment is said to be suspended.

• If a previously suspended DBEnvironment connection again becomes the current
connection, all DBEnvironment context information for the current connection is
restored to the same state as at the time when the DBEnvironment was suspended.

• A connection with the DBEnvironment referenced in this statement must have
previously been established using either a CONNECT, START DBE, START DBE NEW,
or START DBE NEWLOGstatement. This connection must not have been terminated by a
DISCONNECT, RELEASE, or STOP DBE statement.

• No stored section is created for the SET CONNECTION statement. SET CONNECTION
cannot be used with the PREPARE or EXECUTE IMMEDIATE statements or procedures.

• An active transaction is not required to execute a SET CONNECTION statement. An
automatic transaction will not be started when executing a SET CONNECTION
statement.

Authorization

You do not need authorization to use the SET CONNECTION statement.
Chapter 12 519

SQL Statements S - Z
SET CONNECTION
Example

Establish two connections:

 CONNECT TO :PartsDBE AS 'Parts1'
 CONNECT TO :SalesDBE AS 'Sales1'

At this point, Sales1 is the current connection.

.

.

.

Set the current connection to Parts1:

 SET CONNECTION 'Parts1'
520 Chapter 12

SQL Statements S - Z
SET CONSTRAINTS
SET CONSTRAINTS
The SET CONSTRAINTS statement sets the UNIQUE, REFERENTIAL or CHECK
constraint error checking mode.

Scope

ISQL or Application Programs

SQL Syntax
SET ConstraintType [,...] CONSTRAINTS { DEFERRED

IMMEDIATE}

Parameters

ConstraintType identifies the type of constraint that is to be affected by the statement.
Each ConstraintType can be one of the following:

UNIQUE

REFERENTIAL

CHECK

DEFERRED specifies that constraint error violations are not checked until the
constraint checking mode is reset to IMMEDIATE, or the current
transaction ends.

IMMEDIATE specifies that constraint errors are checked at the level set by the SET DML
ATOMICITY statement, when the SET CONSTRAINTS IMMEDIATE
statement successfully executes. This is the default constraint error
checking mode.

Description

• Setting constraint checking to DEFERRED does not defer checking of non-constraint
errors. They are still checked at the current level specified by the SET DML ATOMICITY
statement.

• When you use SET CONSTRAINTS DEFERRED, error checking for constraint violations
is not enabled until you either SET CONSTRAINTS IMMEDIATE or end the transaction
with a COMMIT WORK.

• You can set the constraint error checking mode to IMMEDIATE at any time in the flow
of processing.

• When you set constraint checking to IMMEDIATE, and constraint errors currently
exist, the SET CONSTRAINTS statement does not succeed. The constraint violations
cause an error message to be issued and constraint checking to remain deferred.

• You have the option of correcting the error before issuing a COMMIT WORK or allowing
Chapter 12 521

SQL Statements S - Z
SET CONSTRAINTS
the COMMIT WORK statement to be executed.

• If errors remain when you COMMIT WORK, no matter to what level DML atomicity is
set, error checking is done at the transaction level and the entire
transaction will be rolled back.

• When no constraint errors exist, SET CONSTRAINTS IMMEDIATE succeeds, and
error checking thereafter occurs at the level in effect from the SET DML ATOMICITY
statement.

• If constraint checking is set to DEFERRED and you again set it to DEFERRED, a
warning message is issued. If constraint checking is set to IMMEDIATE and you again
set it to IMMEDIATE, a warning message is issued.

• COMMIT WORK and ROLLBACK WORK statements both reset constraint checking to
IMMEDIATE.

• The SET CONSTRAINTS statement is sensitive to savepoints. If you establish a save
point, then change the constraint checking mode, and then roll back to the savepoint,
the constraint mode set after the savepoint will be undone.

• When UNIQUE is specified as a ConstraintType , unique indexes are checked for
errors also.

• HASH unique constraint checking cannot be deferred. Refer to the CREATE TABLE
statement for information on HASH unique constraints.

• View check constraint checking cannot be deferred.

• The SET CONSTRAINTS statement affects only the current session.

• The current setting does not appear in the ISQL LIST SET command.

Authorization

Anyone can issue a SET CONSTRAINTS statement.

Example

 BEGIN WORK

Constraints are deferred so that the insert and update statements will succeed even
though they have unresolved constraint errors. By the end of the transaction, the
constraint errors must be resolved or the entire transaction is rolled back.

 SET REFERENTIAL CONSTRAINTS DEFERRED

A transaction appears here that contains some insert, update, and delete statements:

 INSERT ...
 UPDATE ...
 DELETE ...
 UPDATE ...
 UPDATE ...

If there are unresolved referential constraints, an error message appears and constraint
checking remains in the deferred mode.
522 Chapter 12

SQL Statements S - Z
SET CONSTRAINTS
 SET REFERENTIAL CONSTRAINTS IMMEDIATE

You can correct the constraint errors so you can successfully COMMIT WORK.

If you do not, the COMMIT WORK will roll back the entire transaction because of the
remaining violations. Issue error correction statements, here.

Constraint error checking is set to IMMEDIATE by the COMMIT WORK statement or a
ROLLBACK WORK statement.

 COMMIT WORK
Chapter 12 523

SQL Statements S - Z
SET DEFAULT DBEFILESET
SET DEFAULT DBEFILESET
The SET DEFAULTstatement is used to set the default DBEFileSet for stored sections or for
tables and long columns associated with a DBEnvironment. Before initial issue of this
statement, the SYSTEM DBEFileSet is the default.

Scope

ISQL or Application Programs

SQL Syntax
SET DEFAULT { SECTIONSPACE

TABLESPACE } TO DBEFILESET DBEFileSetName FOR PUBLIC

Parameters

SECTIONSPACEsets the default DBEFileSet for stored sections.

TABLESPACE sets the default DBEFileSet for tables and long columns.

DBEFileSetName designates the DBEFileSet for which the default is to be set.

Description

• PUBLIC must have the appropriate authority on the specified DBEFileSet. (Refer to
syntax for the GRANT statement.)

• You can grant SECTIONSPACE or TABLESPACE authority for a DBEFileSet to a
specific user, thereby giving that user the ability to explicitly put sections, tables, or
long columns in the granted DBEFileSet when they are created. However, you cannot
set a default DBEFileSet for a specific user.

• If a section is created without the IN DBEFileSet clause, or if the owner of the section
does not have SECTIONSPACE authority for the DBEFileSet specified when the
section was created, the section is stored in the default SECTIONSPACE DBEFileSet
for PUBLIC. This applies to rules, stored procedures, check constraints, views, and
prepared or preprocessed statements and cursors, all of which have sections associated
with them.

• If a table is created without the IN DBEFileSet clause, or if the owner of the table does
not have TABLESPACE authority for the DBEFileSet specified when the table was
created, the table is placed in the default TABLESPACE DBEFileSet for PUBLIC.

• If a long column is created without the IN DBEFileSet clause, it is placed in the same
DBEFileSet as the table unless the owner of the table does not have TABLESPACE
authority for the DBEFileSet the table resides in. In this case, the long column is placed
in the default TABLESPACE DBEFileSet for PUBLIC.
524 Chapter 12

SQL Statements S - Z
SET DEFAULT DBEFILESET
Authorization

You must have DBA authority to set a DBEFileSet default.

Example

Set Default DBEFileSet

 GRANT SECTIONSPACE ON DBEFILESET SectionDBESet to PUBLIC;

 GRANT TABLESPACE ON DBEFILESET TableDBESet to PUBLIC;

 SET DEFAULT SECTIONSPACE TO DBEFILESET SectionDBESet FOR PUBLIC;

 SET DEFAULT TABLESPACE TO DBEFILESET TableDBESet FOR PUBLIC;
Chapter 12 525

SQL Statements S - Z
SET DML ATOMICITY
SET DML ATOMICITY
The SET DML ATOMICITY statement sets the general error checking level in data
manipulation statements.

Scope

ISQL or Application Programs

SQL Syntax
SET DML ATOMICITY AT { ROW

STATEMENT} LEVEL

Parameters

ROW specifies that general error checking occurs at the row level. The term
general error checking refers to any errors, for example, arithmetic
overflows or constraint violation errors.

STATEMENT specifies that general error checking occurs at the statement level. This is
the default general error checking level.

Description

• Constraint errors (UNIQUE, REFERENTIAL, or CHECK constraint violations) are
handled just like any other general error when constraint checking is in IMMEDIATE
mode. In this case, error handling follows the behavior outlined below. However, when
you SET CONSTRAINTS DEFERRED, constraint error checking behaves differently as
described in the SET CONSTRAINTS statement in this chapter. The following discussion
assumes that constraint checking is in IMMEDIATE mode.

• Setting DML ATOMICITY affects the BULK INSERT, DELETE, UPDATE, UPDATE
WHERE CURRENT, DELETE WHERE CURRENT statements, and the ISQL LOAD
command when they operate on a set of rows.

• When you use SET DML ATOMICITY AT STATEMENT LEVEL (the default), and if an
error occurs:

• Work done by the statement before an error occurs is undone , and the statement is
no longer in effect.

• At COMMIT WORK, work done by statements within the transaction that executed
without error will be written to the DBEnvironment, while statements with errors
will have no effect.

• When you use SET DML ATOMICITY AT ROW LEVEL (not the default), and if an error
occurs:

— Work done by a statement before an error occurs is not undone , but no further
action is taken by the statement.
526 Chapter 12

SQL Statements S - Z
SET DML ATOMICITY
— At COMMIT WORK, work done by statements within the transaction that executed
without error will be written to the DBEnvironment. Within statements which
generated errors at a specific row, work done on rows prior to the row generating the
error will be written to the DBEnvironment; no work will be done from the erroneous
row, forward.

• Unless you have a severe error (4008, 4009, or -14024 or greater), the transaction is not
rolled back, and previous statements within the transaction are still in effect.

• When a transaction ends, DML ATOMICITY remains at or is returned to STATEMENT
level.

• The SET DML ATOMICITY statement is sensitive to savepoints. If you establish a save
point, then change the atomicity level, and then roll back to the savepoint, the atomicity
level set after the savepoint will be undone.

• If DML ATOMICITY is set at ROW and you set it to ROW again, a warning message is
issued. If DML ATOMICITY is set at STATEMENT and you set it to STATEMENT
again, a warning message is issued.

• DML ATOMICITY does not apply to DDL statements. DDL statements are always
checked at statement level.

• DML ATOMICITY does not apply to statements that may fire rules. Such statements
are always checked at statement level.

• When the SET CONSTRAINTS statement sets constraint error checking to
IMMEDIATE, constraint error checking will be performed at the level set by the most
recent SET DML ATOMICITY statement. Refer to the SET CONSTRAINTS statement
for more information.

Authorization

Anyone can use the SET DML ATOMICITY statement.

Example

The user wants to load supposedly error-free data into PurchDB.Parts.

 BEGIN WORK

Immediately after DBEnvironment creation, when initially loading the tables while
non-archive mode logging is in effect, performance can be improved if you SET DML
ATOMICITY to ROW LEVEL. However, if an error is encountered, the insertion of rows
prior to the erroneous row will not be rolled back.

Error checking is set at row level.

 SET DML ATOMICITY AT ROW LEVEL

The rows to be inserted are in the array called PartsArray.

 BULK INSERT INTO PurchDB.Parts
 VALUES (:PartsArray, :StartIndex, :NRows)
Chapter 12 527

SQL Statements S - Z
SET DML ATOMICITY
You can set the level back to statement level before the transaction ends.

 .
 .
 .

Other statements are listed here.
 .
 .
 .
 COMMIT WORK

If you have not already set error checking back to statement level, it is automatically set
back to statement level when the transaction ends.
528 Chapter 12

SQL Statements S - Z
SET MULTITRANSACTION
SET MULTITRANSACTION
When you are using multiconnect functionality, the SET MULTITRANSACTION statement
provides the capability of switching between single-transaction mode and multitransaction
mode.

Scope

ISQL or Application Programs

SQL Syntax
SET MULTITRANSACTION { ON

OFF}

Parameters

ON enables multiple implied or explicit BEGIN WORK statements to be active
across the set of connected DBEnvironments. This is termed
multitransaction mode.

OFF permits one implied or explicit BEGIN WORK statement to be active across
the set of connected DBEnvironments. This is termed single-transaction
mode. This is the default.

Description

• A given SET MULTITRANSACTIONstatement is in effect until another such statement is
issued or until the application (or ISQL) terminates.

• Single-transaction mode is the default.

• While in single-transaction mode, the SET MULTITRANSACTION ON statement is
always valid.

• While in multitransaction mode, the SET MULTITRANSACTION OFF statement is valid
only if no more than one transaction is active. If an active transaction exists, it must be
in the currently connected DBEnvironment, otherwise the SET MULTITRANSACTION
OFF statement will be rejected and an error will be generated.

• No stored section is created for the SET MULTITRANSACTION statement. SET
MULTITRANSACTION cannot be used with the PREPARE or EXECUTE IMMEDIATE
statements or in procedures.

• An active transaction is not required to execute a SET MULTITRANSACTIONstatement.
An automatic transaction will not be started when executing a SET
MULTITRANSACTION statement.

Authorization

You do not need authorization to use the SET MULTITRANSACTION statement.
Chapter 12 529

SQL Statements S - Z
SET MULTITRANSACTION
Example

Put single-transaction mode in effect:

 SET MULTITRANSACTION OFF

Put multitransaction mode in effect:

 SET MULTITRANSACTION ON
530 Chapter 12

SQL Statements S - Z
SETOPT
SETOPT
The SETOPT statement modifies the access optimization plan used by queries.

Scope

ISQL or Application Programs

Syntax — SETOPT
SETOPT { CLEAR

GENERAL { ScanAccess
JoinAlgorithm }[,...]

BEGIN { GENERAL { ScanAccess
JoinAlgorithm }}[,...] END

Syntax — Scan Access
[NO]{ SERIALSCAN

INDEXSCAN
HASHSCAN
SORTINDEX}

Syntax — Join Algorithm
[NO] { NESTEDLOOP

NLJ
SORTMERGE
SMJ}

Parameters

CLEAR specifies that the access plan set by any previous SETOPT statement is to
be cleared.

SERIALSCAN specifies serial scan access.

INDEXSCAN indicates index scan access for those tables with indexes.

HASHSCAN designates hash scan access for tables with hash structures.

SORTINDEX indicates index scan access when an ORDER BY or GROUP BY clause is
specified in a SELECT statement. Therefore, the extra sort operation is
eliminated. The index scanned is the one defined upon the column
referenced in the ORDER BY or GROUP BY clause.

NESTEDLOOP specifies nested loop joins.

NLJ is equivalent to NESTEDLOOP.

SORTMERGE designates sort merge join.

SMJ is equivalent to SORTMERGE.
Chapter 12 531

SQL Statements S - Z
SETOPT
Description

• Use the SETOPT statement when you want to override the default access plan used in
queries.

• The SETOPT statement affects only those queries in the current transaction. When the
transaction ends, the settings specified by SETOPT are cleared.

• To view the plan specified by SETOPT, query the SYSTEM.SETOPTINFO view.

• Use the GENPLAN command in ISQL to display the current access plan.

• NLJ is equivalent to NESTEDLOOP, and SMJ is equivalent to SORTMERGE.

• To store a user defined access plan in a module or procedure, run ISQL and issue the
SETOPT statement followed by a VALIDATE statement.

• To remove the access plan specified by a SETOPTstatement from a module or procedure,
execute the VALIDATE statement with the DROP SETOPTINFO option.

• When using the EXTRACT command in ISQL, specify the NO SETOPTINFO option if
you want to prevent the access plan specified by a SETOPT statement from being
included in the installable module file.

• Use the GENPLAN command in ISQL to see the optimizer's access plan for an
ALLBASE/SQL statement.

• For more information on joins, see "Join Methods" in the ALLBASE/SQL Performance
and Monitering Guidelines.

Authorization

You do not need authorization to use the SETOPT statement.

Examples

In the following example, the SETOPT statement specifies that all tables with indexes are
accessed with an index scan. Since PurchDB.Parts has an index defined upon the
PartNumber column, an index scan is executed by the first SELECTstatement. The effect of
a SETOPT statement lasts only until the end of the transaction. Therefore, the second
SELECT statement may, or may not, use an index scan.

 BEGIN WORK
 SETOPT GENERAL INDEXSCAN
 SELECT * FROM PurchDB.Parts
 COMMIT WORK

 BEGIN WORK
 SELECT * FROM PurchDB.Parts
 COMMIT WORK

The next SETOPT statement indicates that hash scans are not to be performed.

 SETOPT GENERAL NO HASHSCAN
532 Chapter 12

SQL Statements S - Z
SETOPT
The following two SETOPT statements are equivalent.

 SETOPT GENERAL HASHSCAN, NO SORTMERGE

 SETOPT BEGIN
 GENERAL HASHSCAN;
 GENERAL NO SORTMERGE;
 END

In the following two SELECTstatements, an index scan is performed upon the PartNumber
because the PartNumber column is referenced in the ORDER BY and GROUP BY clauses.

 SETOPT GENERAL SORTINDEX

 SELECT PartNumber, UnitPrice
 FROM PurchDB.SupplyPrice
 ORDER BY PartNumber, UnitPrice

 SELECT PartNumber, AVG (UnitPrice)
 FROM PurchDB.SupplyPrice
 GROUP BY PartNumber

After the following sequence of statements is executed, all of the modules stored in the
DBEnvironment will use an index scan when accessing tables with indexes. The cex09
module is an exception, however, because it is validated with the DROP SETOPTINFO
keywords. When the cex03 module is copied into the installable module file with the
EXTRACTcommand, the index scan specified by the SETOPTstatement is not included in the
installable module file.

 SETOPT GENERAL INDEXSCAN
 VALIDATE ALL MODULES
 SETOPT CLEAR
 VALIDATE DROP SETOPTINFO MODULE cex09
 EXTRACT MODULE cex03 NO SETOPTINFO INTO Modfile
Chapter 12 533

SQL Statements S - Z
SET PRINTRULES
SET PRINTRULES
The SET PRINTRULES statement specifies whether rule names and statement types are to
be issued as messages when the rules are fired during a DBEnvironment session.

Scope

ISQL or Application Programs

SQL Syntax
SET PRINTRULES [ON

OFF]

Parameters

ON specifies that rule name and statement type should be issued as a message
when the rule is fired.

OFF specifies that rule name and statement type should not be issued as a
message when the rule is fired. This is the default for all sessions.

Description

• SET PRINTRULES OFF returns the DBEnvironment session to its default behavior of
not issuing messages with rule names and statement types as rules fire.

• SET PRINTRULES ON causes rule names and statement types (INSERT, DELETE,
UPDATE) to be issued as messages in the current DBEnvironment session until the
session completes or a SET PRINTRULES OFF statement is executed.

• SET PRINTRULES ONhas no effect if rule printing is already on in the DBEnvironment.

• SET PRINTRULES OFF has no effect if rule printing is already off in the
DBEnvironment.

• The statement only affects the current SID (session id). Other users are not affected.

• Rule names are printed by issuing an informative message DBWARN 2021, with the
following text:

 Rule Owner.RuleName fired on StatementType statement.

StatementType is one of the following:

INSERT

UPDATE

DELETE

• The effects of this statement are not undone by a ROLLBACK WORK or COMMIT WORK
statement.
534 Chapter 12

SQL Statements S - Z
SET PRINTRULES
Authorization

You must have DBA authority.

Example

The DBA enables the issuing of messages when rules fire.

 SET PRINTRULES ON

The DBA issues statements that fire rules.

 INSERT INTO PurchDB.Parts VALUES (9213, 'Widget', 12.95)

 Rule PurchDB.InsertParts fired on INSERT statement. (DBWARN 2021)

The DBA disables the issuing of messages when rules fire.

 SET PRINTRULES OFF
Chapter 12 535

SQL Statements S - Z
SET SESSION
SET SESSION
The SET SESSION statement sets one or more transaction attributes for the duration of a
session to be applied to the next and subsequent transactions. These attributes include:
isolation level, priority, user label, constraint checking mode, DML atomicity level, timeout
rollback, user timeout, termination level, and fill options.

Scope

ISQL or Application Programs

SQL Syntax
SET SESSION { ISOLATION LEVEL { RR

CS
RC
RU
REPEATABLE READ
SERIALIZABLE
CURSOR STABILITY
READ COMMITTED
READ UNCOMMITTED
:HostVariable1 }

PRIORITY { Priority
:HostVariable2 }

LABEL { ‘LabelString’
:HostVariable3 }

ConstraintType [,...] CONSTRAINTS { DEFERRED
IMMEDIATE}

DML ATOMICITY AT { STATEMENT
ROW } LEVEL

ON { TIMEOUT
DEADLOCK} ROLLBACK { QUERY

TRANSACTION}
USER TIMEOUT [TO] { DEFAULT

MAXIMUM
TimeoutValue [{ SECONDS

MINUTES}]
:HostVariable4 [{ SECONDS

 MINUTES}] }
TERMINATION AT { SESSION

TRANSACTION
QUERY
RESTRICTED } LEVEL

[{ PARALLEL
NO }] FILL }[,...]

Parameters

RR Repeatable Read. Means that the transaction uses locking strategies to
guarantee repeatable reads.

RR is the default isolation level.
536 Chapter 12

SQL Statements S - Z
SET SESSION
CS Cursor Stability. Means that your transaction uses locking strategies to
assure cursor-level stability only.

RC Read Committed. Means that your transaction uses locking strategies to
ensure that you retrieve only rows that have been committed by some
transaction.

Read Uncommitted. Means that the transaction reads data without
obtaining additional locks.

Use the RU isolation level in applications in which the reading of
uncommitted data is not of concern.

REPEATABLE READSame as RR.

SERIALIZABLE Same as RR.

CURSOR STABILITY Same as CS.

READ COMMITTEDSame as RC.

READ UNCOMMITTEDSame as RU.

HostVariable1 is a string host variable containing one of the isolation level
specifications above.

Priority is an integer from 0 to 255 specifying the priority of the transaction.
Priority 127 is the default. ALLBASE/SQL uses the priority to resolve a
deadlock. The transaction with the largest priority number is aborted to
remove the deadlock.

For example, if a priority-0 transaction and a priority-1 transaction are
deadlocked, the priority-1 transaction is aborted. If two transactions
involved in a deadlock have the same priority, the deadlock is resolved by
aborting the newer transaction (the last transaction begun, either
implicitly or with a BEGIN WORK statement).

HostVariable2 is an integer host variable containing the priority specification.

LabelString is a user defined character string of up to 8 characters. The default is a
blank string.

The label is visible in the SYSTEM.TRANSACTION pseudo-table and also
in SQLMON. Transaction labels can be useful for troubleshooting and
performance tuning. Each transaction in an application program can be
marked uniquely, allowing the DBA to easily identify the transaction being
executed by any user at any moment.

HostVariable3 is a string host variable containing the LabelString .

ConstraintType identifies the types of constraints that are affected by the DEFERRED
and IMMEDIATE options. Each ConstraintType can be one of the
following:

 UNIQUE
 REFERENTIAL
 CHECK

DEFERRED specifies that constraint errors are not checked until the constraint
Chapter 12 537

SQL Statements S - Z
SET SESSION
checking mode is reset to IMMEDIATE or the current transaction ends.

IMMEDIATE specifies that constraint errors are checked when a statement executes.
This is the default.

STATEMENT specifies that error checking occurs at the statement level. This is the
default.

ROW specifies that error checking occurs at the row level.

QUERY sets the action for timeouts or deadlocks to rollback the statement or
query.

TRANSACTION sets the action for timeouts or deadlocks to rollback the transaction.

DEFAULT specifies to use the default timeout duration for the DBE specified in the
START DBE statement.

MAXIMUM specifies to use the maximum timeout duration for the DBE specified in
the START DBE statement.

TimeoutValue specifies the timeout duration to use in seconds or minutes.

:HostVariable4 is an integer host variable specifying the timeout duration to use in
seconds or minutes.

SESSION specifies self-termination at the session level, and allows external
termination at the session level only.

TRANSACTION specifies self-termination at the transaction level, and allows external
termination at the session or transaction level.

QUERY specifies self-termination at the query level, and allows external
termination at the session, transaction, or query level.

RESTRICTED specifies no self-termination, and allows external termination at the
session level only. This is the default.

FILL is used to optimize I/O performance when loading data and creating
indexes.

PARALLEL FILL is used to optimize I/O performance for multiple, concurrent loads to the
same table. The PARALLEL FILL option must be in effect for each load.

NO FILL turns off the FILL or PARALLEL FILL option for the duration of the
session. This is the default fill option.

Description

• Detailed information about isolation levels is presented in the "Concurrency Control
through Locks and Isolation Levels" chapter.

• You can issue the SET SESSION statement at any point in an application or ISQL
session. Whether issued within or outside of a transaction, the attributes specified in a
SET SESSION statement apply to the next and subsequent transactions.

• Any attribute specified in a SET SESSIONstatement remains in effect until the session
terminates unless reset by another statement. See the "Using ALLBASE/SQL" chapter,
"Scoping of Transaction and Session Attributes" section for information about
538 Chapter 12

SQL Statements S - Z
SET SESSION
statements used to set transaction attributes.

• When using RC or RU, you should verify the existence of a row before you issue an
UPDATE statement. In application programs that employ cursors, you can use the
REFETCHstatement prior to updating. REFETCHis not available in ISQL. Therefore, you
should use caution in employing RC and RU in ISQL if you are doing updates.

• If the FILL or PARALLEL FILL option has already been set for the session with a SET
SESSION statement, and you do not want either of these options in effect for a given
transaction, specify NO FILL in the transaction's BEGIN WORK statement.

• As with the SET CONSTRAINTS statement, the SET SESSION statement allows you to
set the UNIQUE, REFERENTIAL or CHECK constraint error checking mode. If the
constraint checking mode is deferred, checking of constraints is deferred until the end
of a transaction or until the constraint mode is set back to immediate. If the constraint
mode is immediate, integrity constraints are checked following processing of each SQL
statement (if statement level atomicity is in effect) or each row (if row level atomicity is
in effect). Refer to the SET DML ATOMICITY statement in this chapter for further
information on statement and row level error checking. The following paragraph
assumes that statement level atomicity is in effect.

When constraint checking is deferred, a COMMIT WORK, or SET CONSTRAINTS IMMEDIATE
statement executes if zero constraint violations exist at that time, otherwise a
constraint error is reported. When constraint checking is immediate (the default), zero
constraint violations must exist when an SQL statement executes, otherwise a
constraint error is reported and the statement is rolled back. The SET CONSTRAINTS
statement in this chapter gives further detail about constraint checking.

• As with the SET DML ATOMICITY statement, the SET SESSION statement allows you
to set the general error checking level in data manipulation statements. General error
checking refers to any errors, for example, arithmetic overflows or constraint violation
errors.

Setting ROW LEVEL atomicity guarantees that internal savepoints are not generated.
For example, if an error occurs on the nth row of a bulk statement such as LOAD, BULK
INSERT, or Type2 INSERT, the row is not processed, statement execution terminates,
and any previously processed rows are not rolled back. In contrast, STATEMENT
LEVEL atomicity guarantees that the entire statement is rolled back if it does not
execute without error. STATEMENT LEVEL atomicity is the default. Refer to the SET
DML ATOMICITYstatement in this chapter for further information on statement and row
level error checking.

• In contrast to the SET TRANSACTION statement, transaction attributes set within a
transaction by a SET SESSION statement are not sensitive to savepoints. That is, if
you establish a savepoint, then issue the SET SESSIONstatement to change attribute(s
)for the session, and then roll back to the savepoint, the transaction attribute(s) set
after the savepoint are not undone. In this case, the attribute(s) would go into effect for
the next and subsequent transactions, just as if no rollback to savepoint had occurred.
See Chapter 2 , “Using ALLBASE/SQL,” "Scoping of Transaction and Session
Attributes" section for information about statements used to set transaction attributes.

• The SET SESSION statement is not allowed within a stored procedure.

• When ON TIMEOUT ROLLBACK or DEADLOCK ROLLBACK is set to
Chapter 12 539

SQL Statements S - Z
SET SESSION
TRANSACTION, the whole transaction is aborted as a result of a timeout or deadlock.

• When ON TIMEOUT ROLLBACK or DEADLOCK ROLLBACK is set to QUERY, only
the SQL statement which has timed out will be rolled back. This means rolling back
results of statements that modify the database and closing cursor for the cursor-related
statements. (Cursor-related statements change the cursor position, and are not
statements like UPDATE or DELETE WHERE CURRENT.)

• In general, if a transaction with KEEP cursor(s) is committed, the new transaction
started on behalf of the user inherits the most recent transaction attributes of the old
transaction. The KEEP cursor(s) are an exception; they inherit the isolation level
attribute of the old transaction at the time the cursor(s) were opened. Note, however,
that session isolation level is not used for keep cursor transactions. Session isolation
level does not take effect until KEEP cursors are closed, the transaction is committed,
and the next transaction is begun. For example:

 .
 .
 .
 BEGIN WORK RC
 .
 .
 .
 OPEN C1 KEEP CURSOR
 .
 .
 .
 SET TRANSACTION ISOLATION LEVEL CS
 .
 .
 .
 OPEN C2 KEEP CURSOR
 .
 .
 .
 SET TRANSACTION ISOLATION LEVEL RU
 .
 .
 .
 SET SESSION ISOLATION LEVEL CS
 .
 .
 .
 COMMIT WORK
 .
 .
 .
 OPEN C3 Session isolation level does not take effect.
 .
 .
 .
 CLOSE C1
 CLOSE C2
 CLOSE C3
 .
 .
 .
540 Chapter 12

SQL Statements S - Z
SET SESSION
 COMMIT WORK
 BEGIN WORK Session isolation level CS takes effect.
 .
 .
 .

In the above example, the new transaction started on behalf of the user after the first
COMMIT WORKhas isolation level RU; cursor C1 has isolation RC; cursor C2 has isolation
level CS; and cursor C3 has isolation level RU.

Authorization

You do not need authorization to use the SET SESSION statement.

Example

The following example illustrates setting session level deferred constraint checking, DML
atomicity, and the FILL option to enhance load performance within ISQL.

 COMMIT WORK;

 SET LOAD_BUFFER 65536;
 SET AUTOSAVE 3000
 SET LOAD_ECHO AT_COMMIT;
 SET AUTOCOMMIT ON;
 SET AUTOLOCK ON;
 SET SESSION UNIQUE, REFERENTIAL, CHECK CONSTRAINTS DEFERRED,
 DML ATOMICITY AT ROW LEVEL,
 FILL;
 .
 .
 .
 BEGIN WORK;
 LOAD FROM EXTERNAL Price TO PurchDB.SupplyPrice;
 LOAD FROM EXTERNAL Parts TO PurchDB.Parts;
 .
 .
 .
 COMMIT WORK;

In the above example, a COMMIT WORK is automatically performed when 3000 rows have
been loaded from external files into the database tables. A new transaction is started on
behalf of the user to continue to load remaining rows. Each new transaction uses the
default session isolation level (RR).
Chapter 12 541

SQL Statements S - Z
SET TRANSACTION
SET TRANSACTION
The SET TRANSACTION statement sets one or more transaction attributes for a
transaction. These attributes include: isolation level, priority, user label, constraint
checking mode, timeout rollback, user timeout, termination level, and DML atomicity
level.

Scope

ISQL or Application Programs

SQL Syntax
SET TRANSACTION { ISOLATION LEVEL { RR

CS
RC
RU
REPEATABLE READ
SERIALIZABLE
CURSOR STABILITY
READ COMMITTED
READ UNCOMMITTED
:HostVariable1 }

PRIORITY { Priority
:HostVariable2 }

LABEL { ‘LabelString’
:HostVariable3 }

ConstraintType [,...] CONSTRAINTS { DEFERRED
IMMEDIATE}

DML ATOMICITY AT { STATEMENT
ROW } LEVEL

ON { TIMEOUT
DEADLOCK} ROLLBACK { QUERY

TRANSACTION}
USER TIMEOUT [TO] { DEFAULT

MAXIMUM
TimeoutValue [{ SECONDS

MINUTES}]
:HostVariable4 [{ SECONDS

 MINUTES}]
TERMINATION AT { SESSION

TRANSACTION
QUERY
RESTRICTED } LEVEL }[,...]

Parameters

RR Repeatable Read. Means that the transaction uses locking strategies to
guarantee repeatable reads. RR is the default isolation level.

CS Cursor Stability. Means that your transaction uses locking strategies to
assure cursor-level stability only.
542 Chapter 12

SQL Statements S - Z
SET TRANSACTION
RC Read Committed. Means that your transaction uses locking strategies to
ensure that you retrieve only rows that have been committed by some
transaction.

RU Read Uncommitted. Means that the transaction reads data without
obtaining additional locks.

REPEATABLE READSame as RR.

SERIALIZABLE Same as RR.

CURSOR STABILITY Same as CS.

READ COMMITTEDSame as RC.

READ UNCOMMITTEDSame as RU.

HostVariable1 is a string host variable containing one of the isolation level
specifications above.

Priority is an integer from 0 to 255 specifying the priority of the transaction.
Priority 127 is the default. ALLBASE/SQL uses the priority to resolve a
deadlock. The transaction with the largest priority number is aborted to
remove the deadlock.

For example, if a priority-0 transaction and a priority-1 transaction are
deadlocked, the priority-1 transaction is aborted. If two transactions
involved in a deadlock have the same priority, the deadlock is resolved by
aborting the newer transaction (the last transaction begun, either
implicitly or with a BEGIN WORK statement).

HostVariable2 is an integer host variable containing the priority specification.

LabelString is a user defined character string of up to 8 characters. The default is a
blank string.

The label is visible in the SYSTEM.TRANSACTION pseudo-table and also
in SQLMON. Transaction labels can be useful for troubleshooting and
performance tuning. Each transaction in an application program can be
marked uniquely, allowing the DBA to easily identify the transaction being
executed by any user at any moment.

Labels for a new transaction can be specified with the BEGIN WORK, SET
TRANSACTION, and SET SESSIONstatements. SET TRANSACTIONcan also be
used to change the existing label of an active transaction. If a transaction
consists of multiple queries and unique labels are set between each query,
a DBA can identify the actual query being executed by an active
transaction.

HostVariable3 is a string host variable containing the LabelString .

ConstraintType identifies the types of constraints that are affected by the DEFERRED
and IMMEDIATE options. Each ConstraintType can be one of the
following:

 UNIQUE
 REFERENTIAL
 CHECK
Chapter 12 543

SQL Statements S - Z
SET TRANSACTION
DEFERRED specifies that constraint errors are not checked until the constraint
checking mode is reset to IMMEDIATE or the current transaction ends.

IMMEDIATE specifies that constraint errors are checked when a statement executes.
This is the default.

STATEMENT specifies that error checking occurs at the statement level. This is the
default.

ROW specifies that error checking occurs at the row level.

QUERY sets the action for timeouts or deadlocks to rollback the statement or
query.

TRANSACTION sets the action for timeouts or deadlocks to rollback the transaction.

DEFAULT specifies to use the default timeout duration for the DBE specified in the
START DBE statement.

MAXIMUM specifies to use the maximum timeout duration for the DBE specified in
the START DBE statement.

TimeoutValue specifies the timeout duration to use in seconds or minutes.

:HostVariable4 is an integer host variable specifying the timeout duration to use in
seconds or minutes.

SESSION specifies self-termination at the session level, and allows external
termination at the session level only.

TRANSACTION specifies self-termination at the transaction level, and allows external
termination at the session or transaction level.

QUERY specifies self-termination at the query level, and allows external
termination at the session, transaction, or query level.

RESTRICTED specifies no self-termination, and allows external termination at the
session level only. This is the default.

Description

• Detailed information about isolation levels is presented in the "Concurrency Control
through Locks and Isolation Levels" chapter.

• You can issue the SET TRANSACTIONstatement at any point in an application or ISQL
session. If the SET TRANSACTION statement is issued outside of an active transaction,
its attribute(s) apply to the next transaction. If issued within a transaction, its
attribute(s) apply to the current transaction.

• Within a transaction, any attribute specified in a SET TRANSACTION statement
remains in effect until the transaction terminates or until reset by another statement
issued within the transaction. See Chapter 2 , “Using ALLBASE/SQL,” "Scoping of
Transaction and Session Attributes" section for information about statements used to
set transaction attributes.

• When using RC or RU, you should verify the existence of a row before you issue an
UPDATE statement. In application programs that employ cursors, you can use the
544 Chapter 12

SQL Statements S - Z
SET TRANSACTION
REFETCHstatement prior to updating. REFETCHis not available in ISQL. Therefore, you
should use caution in employing RC and RU in ISQL if you are doing updates.

• Within a transaction, different isolation levels can be set for different DML statements.
For example, a cursor opened following a SET TRANSACTION statement is opened with
the specified isolation level, but any cursor opened prior to this SET TRANSACTION
statement maintains the isolation level with which it was opened.

• As with the SET CONSTRAINTS statement, the SET TRANSACTION statement allows
you to set the UNIQUE, REFERENTIAL or CHECK constraint error checking mode. If
the constraint checking mode is deferred, checking of constraints is deferred until the
end of a transaction or until the constraint mode is set back to immediate. If the
constraint mode is immediate, integrity constraints are checked following processing of
each SQL statement (if statement level atomicity is in effect) or each row (if row level
atomicity is in effect). Refer to the SET DML ATOMICITY statement in this chapter for
further information on statement and row level error checking. The following
paragraph assumes that statement level atomicity is in effect.

When constraint checking is deferred, a COMMIT WORK, or SET CONSTRAINTS
IMMEDIATE statement executes if zero constraint violations exist at that time,
otherwise a constraint error is reported. When constraint checking is immediate (the
default), zero constraint violations must exist when an SQL statement executes,
otherwise a constraint error is reported and the statement is rolled back. The SET
CONSTRAINTS statement in this chapter gives further detail about constraint checking.

• As with the SET DML ATOMICITYstatement, the SET TRANSACTIONstatement allows
you to set the general error checking level in data manipulation statements. General
error checking refers to any errors, for example, arithmetic overflows or constraint
violation errors.

Setting ROW LEVEL atomicity guarantees that internal savepoints are not generated.
For example, if an error occurs on the nth row of a bulk statement such as LOAD, BULK
INSERT, or Type2 INSERT, the row is not processed, statement execution terminates,
and any previously processed rows are not rolled back. In contrast, STATEMENT
LEVEL atomicity guarantees that the entire statement is rolled back if it does not
execute without error. STATEMENT LEVEL atomicity is the default. Refer to the SET
DML ATOMICITYstatement in this chapter for further information on statement and row
level error checking.

• All transaction attributes are sensitive to savepoints. That is, if you establish a
savepoint, then change the transaction attribute(s) by issuing a SET TRANSACTION
statement, and then roll back to the savepoint, the transaction attribute(s) set after the
savepoint are undone.

• When ON TIMEOUT ROLLBACK or ON DEADLOCK ROLLBACK is set to
TRANSACTION, the whole transaction is aborted as a result of a timeout or deadlock.

• When ON TIMEOUT ROLLBACK or ON DEADLOCK ROLLBACK is set to QUERY,
only the SQL statement which has timed out will be rolled back. This means rolling
back results of statements that modify the database and closing cursor for the
cursor-related statements. (Cursor-related statements change the cursor position, and
are not statements like UPDATE or DELETE WHERE CURRENT.)

• In general, if a transaction with KEEP cursor(s) is committed, the new transaction
Chapter 12 545

SQL Statements S - Z
SET TRANSACTION
started on behalf of the user inherits the most recent transaction attributes of the old
transaction. However, the KEEP cursor(s) inherit the isolation level attribute of the old
transaction at the time the cursor(s) were opened. For example:

 BEGIN WORK RC
 .
 .
 .
 OPEN C1 KEEP CURSOR ...
 .
 .
 .
 SET TRANSACTION ISOLATION LEVEL CS
 .
 .
 .
 OPEN C2 KEEP CURSOR ...
 .
 .
 .
 SET TRANSACTION ISOLATION LEVEL RU
 .
 .
 .
 COMMIT WORK
 .
 .
 .
 OPEN C3
 .
 .
 .

In the above example, the new transaction started on behalf of the user after the
COMMIT WORKhas isolation level RU; cursor C1 has isolation RC; cursor C2 has isolation
level CS; and cursor C3 has isolation level RU.

• The SET TRANSACTION statement is not allowed within a stored procedure.

Authorization

You do not need authorization to use the SET TRANSACTION statement.
546 Chapter 12

SQL Statements S - Z
SET TRANSACTION
Example

Declare multiple cursors

 DECLARE C1 CURSOR FOR SELECT BranchNo FROM Branches
 WHERE TellerNo > :TellerNo

 DECLARE C2 CURSOR FOR SELECT BranchNo FROM Tellers
 WHERE BranchNo = :HostBranchNo FOR UPDATE OF Credit

 DECLARE C3 CURSOR FOR SELECT * FROM PurchDB.Parts

Set the isolation level to RC.

 SET TRANSACTION ISOLATION LEVEL RC, PRIORITY 100, LABEL 'xact1'
 .
 .
 .

Implicit BEGIN WORK with transaction isolation level RC.

 OPEN C1
 FETCH C1 INTO :HostBranchNo1
 .
 .
 .

Change isolation level to CS.

 SET TRANSACTION ISOLATION LEVEL CS
 OPEN C2
 FETCH C2 INTO :HostBranchNo2
 UPDATE Tellers SET Credit = Credit * 0.005
 WHERE CURRENT OF C2
 CLOSE C2 Close cursor C2.
 CLOSE C1 Close cursor C1.

Change the transaction isolation level back to RC.

 SET TRANSACTION ISOLATION LEVEL RC
 OPEN C3
 FETCH C3 INTO :PartsBuffer
 .
 .
 .

End the transaction. Transaction attributes return to those set at the session level or to
the session default.

 COMMIT WORK
Chapter 12 547

SQL Statements S - Z
SET USER TIMEOUT
SET USER TIMEOUT
The SET USER TIMEOUT statement specifies the amount of time the user will wait if the
requested database resource is unavailable.

Scope

ISQL or Application Programs

SQL Syntax
SET USER TIMEOUT [TO] {{ TimeoutValue

:HostVariable }[SECONDS
MINUTES]

DEFAULT
MAXIMUM }

Parameters

TimeoutValue is an integer literal greater than or equal to zero. If the TimeoutValue is
not qualified by MINUTES, SECONDS is assumed. If representing
seconds, TimeoutValue must be in the range of 0 to 2,147,483,647. If
representing minutes, TimeoutValue must be in the range of 0 to
35,791,394.

HostVariable identifies an integer host variable containing a timeout value.

DEFAULT indicates that the user timeout value will be set to the default timeout
value specified by the database administrator.

MAXIMUM indicates that the user timeout value will be set to the maximum timeout
value specified by the database administrator.

Description

• The value specified by SET USER TIMEOUT remains in effect only for the duration of
the user's session and only affects that session, and does not modify the value stored in
the DBECon file.

• Database resources that may cause a user to wait include the following:

Locks The user attempts to lock a database object that is already locked by
another transaction in a conflicting mode.

Transaction Slots The application tries to begin a transaction but the maximum
number of transactions allowed has been reached. ALLBASE/SQL
creates an implicit, brief transaction when the CONNECT statement is
issued.

• If the TimeoutValue is zero and the database resource is unavailable, the user will not
wait and an error will occur. To implement locking with no waiting, set the
TimeoutValue to zero.
548 Chapter 12

SQL Statements S - Z
SET USER TIMEOUT
• The TimeoutValue may not exceed the maximum timeout value set by the database
administrator.

• The database administrator may specify the maximum and default timeout values with
the SQLUtil ALTDBE command, or with the following SQL statements:

• START DBE

• START DBE NEW

• START DBE NEWLOG

• You may view the current maximum and default timeout values with the SQLUtil
SHOWDBE command.

• The SET USER TIMEOUT statement is not allowed in the PREPARE statement. A host
variable is not permitted if the SET USER TIMEOUTstatement is used in the EXECUTE
IMMEDIATE statement. No section is created for the SET USER TIMEOUT statement.

• An active transaction is not required to execute a SET USER TIMEOUT statement. An
automatic transaction is not started when a SET USER TIMEOUTstatement is executed.

Authorization

You do not need authorization to use SET USER TIMEOUT.

Example

Examples of setting the user timeout value in seconds:

 SET USER TIMEOUT TO 10

 SET USER TIMEOUT TO 5 SECONDS

Set user timeout in minutes:

 SET USER TIMEOUT 1 MINUTES

When setting the user timeout value to 0, the user will not wait for a database resource
that is unavailable, such as a lock.

 SET USER TIMEOUT 0

Set the user timeout value to the default or the maximum value.

 SET USER TIMEOUT DEFAULT

 SET USER TIMEOUT MAXIMUM
Chapter 12 549

SQL Statements S - Z
SQLEXPLAIN
SQLEXPLAIN
The SQLEXPLAINstatement places a message describing the meaning of a return code into
a host variable. The text of messages comes from the ALLBASE/SQL message catalog.

Scope

Application Programs Only

SQL Syntax

SQLEXPLAIN : HostVariable

Parameters

HostVariable identifies a host variable used to hold an ALLBASE/SQL exception
message. The message describes the meaning of a return code.
ALLBASE/SQL puts a return code into the SQLCA after each SQL
statement in a program is executed. The SQLCA is an area for information
on errors, warnings, truncation, null values, and other conditions related
to the execution of an SQL statement.

Description

• This statement cannot be used interactively or in procedures.

• If more than one error occurs, SQLEXPLAIN can be used to obtain more than one
message. You execute SQLEXPLAIN repeatedly until the SQLCODE field of the SQLCA
data structure is equal to zero. Refer to the ALLBASE/SQL application programming
guide for the language you are using for more information on status checking in a
program.

• The fully qualified name for the default message catalog is as follows:

/usr/lib/nls/n-computer/hpsqlcat

For native language users, the following is the name of the catalog:

/usr/lib/nls/$LANG/hpsqlcat

where $LANG is the current language.

If this catalog is not available, ALLBASE/SQL uses the default catalog instead.

Authorization

You do not need authorization to use SQLEXPLAIN.
550 Chapter 12

SQL Statements S - Z
SQLEXPLAIN
Example

 INCLUDE SQLCA

SQLStatement1

The host variable named :Message contains a message characterizing the execution of
SQLStatement1.

 SQLEXPLAIN :Message
Chapter 12 551

SQL Statements S - Z
START DBE
START DBE
The START DBE statement establishes a connection with a given DBEnvironment and
establishes a set of startup parameters that apply to this and all subsequent connections
until all connections to the DBEnvironment have been terminated. Any startup
parameters not explicitly specified are taken from the DBECon file. The changes are only
temporary for START DBE parameters; use START DBE NEW to specify the start up
parameters to be stored in the DBECon file in a new DBE. Use SQLUtil to change the
parameters in the DBECon file in an existing DBE.

Scope

ISQL or Application Programs

SQL Syntax
START DBE ‘DBEnvironmentName’ [AS ‘ConnectionName’][MULTI]
[BUFFER = DataBufferPages, LogBufferPages)

TRANSACTION = MaxTransactions
MAXIMUM TIMEOUT = { TimeoutValue [SECONDS

MINUTES]
NONE }

DEFAULT TIMEOUT = { TimeoutValue [SECONDS
MINUTES]

MAXIMUM }
RUN BLOCK = ControlBlockPages]|,...|

Parameters

DBEnvironmentName identifies the DBEnvironment in which the session is established.
Unless you specify an absolute path name, the name you specify is
assumed to be relative to your current working directory.

ConnectionName associates a user specified name with this connection.
ConnectionName must be unique for each DBEnvironment connection
within an application or an ISQL session. If a ConnectionName is not
specified, DBEnvironmentName is the default. ConnectionName cannot
exceed 128 bytes.

MULTI indicates the DBEnvironment can be accessed by multiple users
simultaneously. If omitted, the DBEnvironment can be accessed only by
the user issuing the START DBE statement. If the MULTI option is
specified, other users can start DBE sessions by using the CONNECT
statement.

DataBufferPages specifies the number of 4096-byte data buffer pages to be used. Data
buffer pages hold index and data pages.

You can request up to 50,000 data buffer pages. The minimum number of
data buffers is 15. The default number is 100. The total number of data
buffer pages and runtime control block pages cannot exceed 256 Mbytes.
552 Chapter 12

SQL Statements S - Z
START DBE
See the "ALLBASE/SQL Limits" Appendix in the ALLBASE/SQL
Database Administration Guide.

LogBufferPages specifies the number of 512-byte log buffer pages to be used. You can
request from 24 to 1024 log buffer pages, limited by the amount of storage
available. The default number of log buffer pages is 24.

MaxTransactions specifies the maximum number of concurrent transactions that can be
concurrently active. You can specify a value in the range from 2 to 240. The
default is 50.This value overrides the maximum value stored in the
DBECon file. Any attempt to start a transaction beyond the maximum
limit waits for the specified TIMEOUT and returns an error if TIMEOUT
is exceeded. For each user logged on to the system at any point in time you
should allow 2 concurrent transactions for just being connected to the
DBE.

MAXIMUM TIMEOUTspecifies the maximum user timeout value. This value temporarily
overrides the maximum stored in the DBECon file. When no value is
specified, the DBECon file value is the default.

DEFAULT TIMEOUT specifies the maximum user timeout value. This value temporarily
overrides the maximum stored in the DBECon file. When no value is
specified, the DBECon file value is the default.

TimeoutValue is an integer literal greater than zero. If the TimeoutValue is not
qualified by MINUTES, SECONDS is assumed. If representing seconds,
TimeoutValue must be in the range of 1 to 2,147,483,647. If representing
minutes, TimeoutValue must be in the range of 1 to 35,791,394.

ControlBlockPages specifies the number of runtime control blocks allocated.

You can specify a value from 17 to 2,000 pages for this parameter. The
default is 37 pages. The total number of data buffer pages and runtime
control block pages cannot exceed 256 Mbytes.

Description

• Any parameters (except the MULTI option) not specified in the START DBE statement
are assigned values currently stored in the DBECon file (which has the same name as
the DBEnvironment name specified). The user mode in the DBECon file is always
overridden by the user mode specified in the START DBE statement.

• Normally, if autostart mode has the value of ON, DBE sessions are established by using
the CONNECT statement. The START DBE statement is needed only to temporarily
override DBECon file parameters for the DBEnvironment, as when you need to start a
single-user DBEnvironment in multiuser mode or vice versa. When you issue the
CONNECT statement and autostart mode is on, ALLBASE/SQL executes a START DBE
statement on your behalf if no sessions for the DBEnvironment are active.
ALLBASE/SQL starts your session using all parameters in the current DBECon file.

• If autostart mode has a value of OFF, you always use the START DBEstatement to start
up a DBEnvironment. If the MULTI option is not specified, the DBEnvironment is
started up in single-user mode. If the MULTI option is specified, the DBEnvironment is
started up in multiuser mode and other users can initiate DBE sessions by using the
Chapter 12 553

SQL Statements S - Z
START DBE
CONNECT statement.

• Timeout values set in the START DBEstatement remain in effect only as long as there is
a session established for connected DBEnvironments and do not modify the values
stored in the DBECon file.

• If no MAXIMUM TIMEOUT limit is specified, the MAXIMUM TIMEOUT limit stored
in the DBECon file remains in effect. If no DEFAULT TIMEOUT value is specified, the
DEFAULT TIMEOUT value stored in the DBECon file remains in effect.

• If MAXIMUM TIMEOUT = NONE, infinity (no timeout) is assumed. If DEFAULT
TIMEOUT = MAXIMUM, the value of MAXIMUM TIMEOUT is assumed. The
DEFAULT TIMEOUT value may not exceed the MAXIMUM TIMEOUT value.

• No connections to the DBEnvironment can be in effect when this command is issued.

• The START DBE statement is also used before using the START DBE NEWLOG
statement. Refer to the START DBE NEWLOG statement for additional information.

Authorization

You can issue the START DBE statement only if you have DBA authority.

Example

The sample DBEnvironment is started in single-user mode. All parameters except the user
mode in the DBECon file are used for the duration of the single-user session. After this
session ends, a CONNECT statement can be used to establish a multiuser session for this
DBEnvironment, because the user mode in the DBECon file is still multiuser and the
autostart flag is still ON.

 START DBE '../sampledb/PartsDBE'
554 Chapter 12

SQL Statements S - Z
START DBE NEW
START DBE NEW
The START DBE NEW statement configures and establishes a connection with a new
DBEnvironment. It establishes a set of startup parameters that apply to this and all
subsequent connections until all connections to the DBEnvironment have been
terminated. Startup parameters are also stored in the DBECon file.

Scope

ISQL or Application Programs

SQL Syntax — START DBE NEW
START DBE ‘DBEnvironmentName’ [AS ‘ConnectionName’][MULTI] NEW
[{ DUAL

AUDIT}|...| LOG
BUFFER = DataBufferPages, LogBufferPages)
LANG = LanguageName
TRANSACTION = MaxTransactions
MAXIMUM TIMEOUT = { TimeoutValue [SECONDS

MINUTES]
NONE }

DEFAULT TIMEOUT = { TimeoutValue [SECONDS
MINUTES]

MAXIMUM }
RUN BLOCK = ControlBlockPages]
DEFAULT PARTITION = { DefaultPartitionNumber

NONE }
COMMENT PARTITION = { CommentPartitionNumber

DEFAULT
NONE }

MAXPARTITIONS = MaximumNumberOfPartitions
AUDIT NAME = ‘AuditName’
{ COMMENT

DATA
DEFINITION
STORAGE
AUTHORIZATION
SECTION
ALL }|...| AUDIT ELEMENTS

DBEFile0Definition
DBELogDefinition]|,...|

Parameters — START DBE NEW

DBEnvironmentName identifies the DBEnvironment name used in the CONNECT
statement. This name also identifies the DBECon file that stores the
values of all parameters specified in the START DBE NEW statement that
are also used in the CONNECT statement. Unless you specify an absolute
path name, ALLBASE/SQL assumes the name is relative to your current
working directory.

ConnectionName associates a user specified name with this connection.
Chapter 12 555

SQL Statements S - Z
START DBE NEW
ConnectionName must be unique for each DBEnvironment connection
within an application. If a ConnectionName is not specified,
DBEnvironmentName is the default. ConnectionName cannot exceed 128
bytes.

MULTI indicates the DBEnvironment can be accessed by multiple users
simultaneously. If omitted, the DBEnvironment can be accessed only in
single-user mode.

DUAL LOG causes ALLBASE/SQL to maintain two separate logs, preferably on
different media. Keeping the log files on separate media ensures that a
media failure on one device leaves the other log undamaged. Each log
write operation is performed on both logs; if an error is detected, the write
continues on the good log only. Normally, only one log is read, but if an
error is encountered, ALLBASE/SQL switches to the other log. Data
integrity is maintained provided is at least one good copy of each log record
is on at least one of the logs.

AUDIT LOG identifies the DBEnvironment as one that will have audit logging
performed on it with the elements specified in the AUDIT ELEMENTS
clause. This causes ALLBASE/SQL to create audit log records as well as
normal log records in the log file so that the database can be audited.

DataBufferPages specifies the number of 4096-byte data buffer pages to be used. Data
buffer pages hold index and data pages.

You can request up to 50,000 data buffer pages. The minimum number of
data buffer pages is 15. The default number is 100. The total number of
data buffer pages and runtime control block pages cannot exceed 256
Mbytes.

LogBufferPages specifies the number of 512-byte log buffer pages to be used. You can
request from 24 to 1024 log buffer pages, limited by the amount of storage
available. The default number of log buffer pages is 24.

LANG specifies the language for the DBEnvironment. If the name of the
language contains a hyphen, use double quotes in specifying it, as in the
following (c-french means Canadian French):

 LANG = "c-french"

MaxTransactions specifies the maximum number of concurrent transactions to be
supported. You can specify a value from 2 to 240. The default is 50. Any
attempt to start a transaction beyond the maximum limit waits for the
specified TIMEOUT and returns an error if TIMEOUT is exceeded. For
each user logged on to the system at any point in time you should allow 2
concurrent transactions for just being connected to the DBE.

MAXIMUM TIMEOUTspecifies the maximum user timeout value that is stored in the
DBECon file. The default is the MAXIMUM.

DEFAULT TIMEOUT specifies the default user timeout value that is stored in the DBECon
file. The default is NONE (infinity).
556 Chapter 12

SQL Statements S - Z
START DBE NEW
TimeoutValue is an integer literal greater than zero. If the TimeoutValue is not
qualified by MINUTES, SECONDS is assumed. If representing seconds,
TimeoutValue must be in the range of 1 to 2,147,483,647. If representing
minutes, TimeoutValue must be in the range of 1 to 35,791,394.

ControlBlockPages specifies the number of runtime control blocks to be allocated. The
value specified is stored in the DBECon file.

You can specify a value from 17 to 2,000 pages for this parameter. The
default is 37 pages. The total number of data buffer pages and runtime
control block pages cannot exceed 256 Mbytes.

DefaultPartitionNumber specifies the default partition number for the
DBEnvironment. This clause must be specified if AUDIT LOG is specified.
DefaultPartitionNumber must be in the range 1 and 32767. If NONE
is specified, tables in the DBEnvironment that are in the default partition
do not generate audit log records. See the CREATE TABLE and ALTER
TABLE statements for information on assigning a table to a partition.

CommentPartitionNumber specifies the partition number for comments made in the
DBEnvironment. CommentPartitionNumber must be a number between
1 and 32767. If no COMMENT PARTITION is specified, DEFAULT is
implied.

If the comment partition is DEFAULT and the default partition number is
later changed in a START DBE NEWLOG statement (but the comment
partition is not changed from DEFAULT), the comment partition number
will also change to the new default partition number.

MaximumNumberOfPartitions specifies the maximum number of partitions for the
DBEnvironment. This clause must be specified if AUDIT LOG has been
specified. MaximumNumberOfPartitions is required to be a number
between 1 and 831. This number indicates the number of partition
instances the DBEnvironment is expected to track.

For audit logging purposes, the number of partition instances is calculated
as the sum of the number of DATA partitions and the number of elements
(not counting the DATA element) specified in the AUDIT ELEMENTS
clause. Specifying ALL audit elements (see below) includes 6 elements,
implying that 6 partitions are used. Set this value only as high as needed
so that unnecessary space is not reserved unless you plan more partitions
or audit elements in the future.

AuditName specifies the name of this audit DBEnvironment. AuditName is limited to
8 bytes. This clause must be specified if AUDIT LOG has been specified.
The AuditName appears in outputs of the Audit Tool.

AUDIT ELEMENTS Specifies the types of audit logging that will be done for the database. If
this clause is omitted and AUDIT LOG is specified, DATA AUDIT
ELEMENTS is implicit. The audit elements are as follows:

COMMENT permits use of the LOG COMMENT statement in the
DBEnvironment. Comments are logged to the defined
COMMENT PARTITION. If this element is not chosen,
Chapter 12 557

SQL Statements S - Z
START DBE NEW
the LOG COMMENT statement returns an error.

DATA is the default element. It causes audit log records to be
done for any data operations (INSERT, UPDATE , or
DELETE) on tables that are in an audit partition of the
DBEnvironment other than NONE. (Tables can be
specified to be in partition NONE and thus not participate
in the audit logging process.)

DEFINITION includes audit logging of the following statements:

 CREATE TABLE
 ALTER TABLE
 DROP TABLE
 CREATE INDEX
 CREATE VIEW
 DROP VIEW
 CREATE RULE
 DROP RULE
 CREATE PROCEDURE
 DROP PROCEDURE
 TRANSFER OWNERSHIP
 CREATE GROUP
 DROP GROUP
 CREATE DBEFILESET
 DROP DBEFILESET
 CREATE PARTITION
 DROP PARTITION
 TRUNCATE TABLE

STORAGE includes audit logging of the following statements:

 CREATE DBEFILE
 DROP DBEFILE
 ADD DBEFILE TO DBEFILESET
 REMOVE DBEFILE FROM DBEFILESET
 CREATE TEMPSPACE
 DROP TEMPSPACE

AUTHORIZATION includes audit logging of the following statements:

 GRANT
 REVOKE
 ADD TO GROUP
 REMOVE FROM GROUP

SECTION includes audit logging of the creation and deletion of
permanent sections or procedures. Permanent sections or
procedures are created when a program is preprocessed,
and are deleted by the DROP MODULEstatement. The DROP
PROCEDURE statement deletes procedures. Logging of
section creation does not include any SETOPT information
associated with the section. See the SETOPT statement.

ALL is equivalent to specifying COMMENT DATA
DEFINITION STORAGE AUTHORIZATION SECTION
558 Chapter 12

SQL Statements S - Z
START DBE NEW
AUDIT ELEMENTS as described above.

DBEFile0Definition is a clause that provides the information ALLBASE/SQL needs to
automatically create DBEFile0 and add it to the SYSTEM DBEFileSet.
The syntax for this clause is presented separately below. If
DBEFile0Definition is omitted, ALLBASE/SQL assumes the following:

 DBEFILE0 DBEFILE DBEFILE0
 WITH PAGES = 150,
 NAME = 'DBEFile0'

By default, DBEFile0 resides in the same directory as the DBECon file.
However, you can use the SQLUtil MOVEFILE command to move it to
another directory.

DBELogDefinition is a clause that provides ALLBASE/SQL with the information
needed to create one or more log files. Syntax for this clause is presented
separately below. If DBELogDefinition is omitted, ALLBASE/SQL
assumes the following:

 LOG DBEFILE DBELOG1
 WITH PAGES = 250,
 NAME = 'DBELOG1

By default, DBELOG1 resides in the same directory as the
DBECon file.

SQL Syntax — DBEFile0Definition

DBEFILE0 DBEFILE DBEFile0ID
WITH PAGES = DBEFile0Size ,
NAME = ' SystemFileName1 '

Parameters — DBEFile0Definition

DBEFILE0 DBEFILE describes a DBEFile known as DBEFile0, which contains the portion
of the system catalog needed for activating a DBEnvironment, including
definitions of other DBEFiles. Each DBEnvironment must have a
DBEFile0 associated with a unique SystemFileName , which is assigned
in this clause.

DBEFile0ID is the basic name identifying DBEFile0.

DBEFile0Size specifies the number of 4096-byte pages in DBEFile0. You can specify
from 150 to 524,287 pages. The default and minimum is 150.

SystemFileName1 identifies how DBEFile0 is known to the operating system. DBEFile0
is created relative to the directory specified in the DBEnvironment name
parameter unless an absolute path name is specified. The default file
name is 'DBEFile0'.
Chapter 12 559

SQL Statements S - Z
START DBE NEW
SQL Syntax — DBELogDefinition

LOG DBEFILE DBELog1ID [AND DBELog2ID]
WITH PAGES = DBELogSize ,
NAME = ' SystemFileName2 ' [AND ' SystemFileName3 ']

Parameters — DBELogDefinition

LOG DBEFILE describes the two log files if the DUAL LOG option is specified, or a single
log file otherwise. If you give information for two log files but omit the
DUAL LOG option, the information for the second log file is ignored.

DBELog1ID and DBELog2ID are the basic names identifying the log files.

DBELogSize specifies the number of 512-byte pages in one log file. If dual logging is
used, both logs must be the same size. The DBE log size should be at least
250 pages and no greater than 524,287 pages. The default is 250. If you
choose an odd number of pages, the number is rounded up to an even
number.

SystemFileName2 and SystemFileName3 identify how the logs are known to HP-UX.
The logs are created relative to the directory specified in the
DBEnvironment name parameter unless an absolute path name is
specified.

Description

• When you issue this statement, ALLBASE/SQL creates a DBECon file with the same
name as the DBEnvironmentName .

• The following parameters defined in the START DBE NEW statement are stored in the
DBECon file:

• DBEnvironment language
• User mode (single versus multi)
• Number of data buffer pages
• Number of log buffer pages
• Maximum transactions
• Maximum timeout value
• Default timeout value
• Number of runtime control block pages
• DBEFile0 system file name
• Log system file name(s)
• Audit logging (chosen versus not)
• Audit name
• Audit elements
• Default partition
• Comment partition
• Maximum number of partitions
560 Chapter 12

SQL Statements S - Z
START DBE NEW
• The following additional parameters are stored in the DBECon file:

• The autostart flag determines how DBE sessions are started. If the value of
autostart is ON, a DBE session can be established by using the CONNECTstatement.
If the value of autostart is OFF, the START DBEstatement must be used to start up a
DBEnvironment; if the START DBE statement contains the MULTI option, other
users establish DBE sessions with the CONNECT statement. Autostart is on by
default.

• The DDL Enabled flag determines whether data definition is enabled for the
DBEnvironment. The DDL Enabled flag is set to YES by default. See "Maintenance"
in the ALLBASE/SQL Database Administration
Guide for additional information about the DDL Enabled flag.

• The archive mode flag determines whether the DBEnvironment is operating in
archive mode. In archive mode, ALLBASE/SQL does rollforward logging. The
rollforward log can be used to redo transactions in case it is necessary to restore the
DBEnvironment from a backed up (archival) copy. When archive mode has the value
of OFF, log space can be recovered by using the CHECKPOINTstatement. If you want
to do rollforward recovery, you must always operate in archive mode. Rollback
recovery is enabled regardless of the archive mode. Archive mode is off by default.

• When you choose an odd number of log pages using the WITH PAGES clause of the
DBEFile definitions, the number is rounded up to an even number, which is displayed
in SHOWLOG.

• The size of DBEFile0 is fixed at the time you configure a DBEnvironment and cannot be
changed. If you need more space at a later time, add a DBEFile to the SYSTEM
DBEFileSet.

• DBEFile0 cannot be restricted to containing data pages only or index pages only; the
storage in DBEFile0 is used for both data and index pages.

• You can reconfigure a DBEnvironment by using SQLUtil to alter DBECon file
parameters. All parameters except the name of the DBECon file and DBEFile0 may be
changed. Refer to the ALLBASE/SQL Database Administration Guide for
additional information.

• The files created with this statement are owned by hpdb and have the following
permissions:

-rw------

• If no MAXIMUM TIMEOUT limit is specified, or if MAXIMUM TIMEOUT = NONE,
infinity (no timeout) is assumed. If no DEFAULT TIMEOUT value is specified, or if
DEFAULT TIMEOUT = MAXIMUM, the value of MAXIMUM TIMEOUT is assumed.
The DEFAULT TIMEOUT value may not exceed the MAXIMUM TIMEOUT value.

• You cannot use the START DBE NEW statement on a diskless machine. A
DBEnvironment for use in diskless clusters must be created on the cluster server. Refer
to the ALLBASE/NET User's Guide for further information.

• You can reconfigure a DBEnvironment by using SQLUtil to alter DBECon file
parameters. All parameters except the audit information (logging, audit elements,
name, default, comment and maximum partition), or the name of the DBECon file and
Chapter 12 561

SQL Statements S - Z
START DBE NEW
DBEFile0 may be changed. Refer to the ALLBASE/SQL Database Administration
Guide for additional information.

• If AUDIT LOG is specified, the clauses AUDIT NAME, DEFAULT PARTITION, and
MAXPARTITIONS must also be specified. Further, if no AUDIT ELEMENTS are
specified, DATA is used as a default. If no COMMENT PARTITION is specified,
DEFAULT is assumed. The DEFAULT PARTITION or the COMMENT PARTITION
can be specified as NONE.

• Use of the clause ALL AUDIT ELEMENTS implies specification of all of the audit
elements.

• Additional log files should be added using the SQLUtil ADDLOG command.

Authorization

No authorization is needed for using the START DBE NEWstatement. hpdb must have write
permission in the target directory for all the files the START DBE NEW statement creates.

Example

The DBEnvironment for the sample database is a multiuser DBEnvironment in which as
many as five transactions can execute concurrently. The DBEnvironment is initially
configured for two rollback logs and a DBEFile0 residing in PartsF0. The number of
runtime control pages to be used is 500. By default, autostart mode is set to ON.

 START DBE '../sampledb/PartsDBE' MULTI NEW
 DUAL LOG,
 TRANSACTION = 5,
 DBEFILE0 DBEFILE PartsDBE0
 WITH PAGES = 150, NAME = 'PartsF0',
 LOG DBEFILE PartsDBELog1 AND PartsDBELog2
 WITH PAGES = 256, NAME = 'PartsLg1' AND 'PartsLg2',
 RUN BLOCK = 500

The DBEnvironment has all the above parameters listed and it is enabled for audit
logging. All DML and DDL changes in the DBEnvironment are subject to audit logging
since all audit elements are selected. Up to 20 partitions can coexist in this
DBEnvironment, allowing for 14 data partitions in addition to the other elements'
partitions. The log files should be made large enough for the added audit log records.

 START DBE '../sampledb/PartsDBE' MULTI NEW
 DUAL AUDIT LOG,
 TRANSACTION = 5,
 RUN BLOCK = 500,
 AUDIT NAME = 'PrtsDBE1',
 DEFAULT PARTITION = 1,
 COMMENT PARTITION = 2,
 MAXPARTITIONS = 20,
 ALL AUDIT ELEMENTS,
 DBEFILE0 DBEFILE PartsDBE0
 WITH PAGES = 150, NAME = 'PartsF0',
 LOG DBEFILE PartsDBELog1 AND PartsDBELog2
 WITH PAGES = 1000, NAME = 'PartsLg1' AND 'PartsLg2'
562 Chapter 12

SQL Statements S - Z
START DBE NEWLOG
START DBE NEWLOG
The START DBE NEWLOG statement establishes a connection with a given DBEnvironment
and creates one or two new log files for that DBEnvironment. It establishes a set of startup
parameters that apply to this and all subsequent connections until all connections to the
DBEnvironment have been terminated. Any start up parameters not explicitly specified
are taken from the DBECon file except the enabling of audit logging. This statement
reinitializes log file(s) when you need to change the size, invoke a dual logging or startup,
or alter audit logging.

Scope

ISQL or Application Programs

SQL Syntax — START DBE NEWLOG
START DBE ‘DBEnvironmentName’ [AS ‘ConnectionName’][MULTI] NEWLOG
[{ ARCHIVE

DUAL
AUDIT}|...| LOG

BUFFER = (DataBufferPages, LogBufferPages)
TRANSACTION = MaxTransactions
MAXIMUM TIMEOUT = { TimeoutValue [SECONDS

MINUTES]
NONE }

DEFAULT TIMEOUT = { TimeoutValue [SECONDS
MINUTES]

MAXIMUM }
RUN BLOCK = ControlBlockPages
DEFAULT PARTITION = { DefaultPartitionNumber

NONE }
COMMENT PARTITION = { CommentPartitionNumber

DEFAULT
NONE }

MAXPARTITIONS = MaximumNumberOfPartitions
AUDIT NAME = ‘AuditName’
{ COMMENT

DATA
DEFINITION
STORAGE
AUTHORIZATION
SECTION
ALL }|...| AUDIT ELEMENTS]|,...| NewLogDefinition

Parameters — START DBE NEWLOG

DBEnvironmentName identifies the DBEnvironment in which you want to initialize one
or two new log files. Unless you specify an absolute path name,
ALLBASE/SQL assumes the name is relative to your current working
directory.

ConnectionName associates a user specified name with this connection. This name must
Chapter 12 563

SQL Statements S - Z
START DBE NEWLOG
be unique for each DBEnvironment connection within an application. If a
ConnectionName is not specified, DBEnvironmentName is the default.
ConnectionName cannot exceed 128 bytes.

MULTI indicates the DBEnvironment can be accessed after log initialization in
multiuser mode.

ARCHIVE causes ALLBASE/SQL to initialize a new log in archive mode. If you omit
this parameter, the log starts in nonarchive mode.

DUAL causes ALLBASE/SQL to maintain two separate logs, preferably on
different media. Keeping the log files on separate media ensures that a
media failure on one device leaves the other log undamaged. Each log
write operation is performed on both logs. Normally, only one log is read;
but if an error is encountered, ALLBASE/SQL switches to the other log.
Data integrity is maintained provided at least one good copy of each log
record is on at least one of the logs.

AUDIT Identifies the DBEnvironment as one that will have audit logging
performed on it with the elements specified in the AUDIT ELEMENTS
clause. This causes ALLBASE/SQL to create audit log records as well as
normal log records in the log file so that the database can be audited.

DataBufferPages specifies the number of 4096-byte data buffer pages to be used. Data
buffer pages hold index and data pages.

You can request up to 50,000 data buffer pages. The minimum number of
data buffer pages is 15. The default number is 100. The total number of
data buffer pages and runtime control block pages cannot exceed 256
Mbytes.

LogBufferPages specifies the number of log buffer pages to be used. You as can request
from 24 to 1024 log buffer pages, limited by the amount of storage
available. The default number of log buffer pages is 24.

MaxTransactions specifies the maximum number of concurrent transactions to be
supported. You can specify a value from 2 to 240. The default is 50. This
value overrides the maximum value stored in the DBECon file. Any
attempt to start a transaction beyond the maximum limit waits for the
specified TIMEOUT and returns an error if TIMEOUT is exceeded. For
each user logged on to the system at any one time, you should allow 2
concurrent transactions for just being connected to the DBE.

MAXIMUM TIMEOUTspecifies the maximum user timeout value. This value temporarily
overrides the maximum stored in the DBECon file. When no value is
specified, the DBECon file value is the default.

DEFAULT TIMEOUT specifies the default user timeout value. This value temporarily
overrides the maximum stored in the DBECon file. When no value is
specified, the DBECon file value is the default.

TimeoutValue is an integer literal greater than zero. If the TimeoutValue is not
qualified by MINUTES, SECONDS is assumed. If representing seconds,
TimeoutValue must be in the range of 1 to 2,147,483,647. If representing
minutes, TimeoutValue must be in the range of 1 to 35,791,394.
564 Chapter 12

SQL Statements S - Z
START DBE NEWLOG
ControlBlockPages specifies the number of runtime control blocks to be allocated. Any
value specified here temporarily overrides the value specified in the
DBECon file.

You can specify a value from 17 to 2,000 pages for this parameter. The
default is 37 pages. The total number of data buffer pages and runtime
control block pages cannot exceed 256 Mbytes.

DefaultPartitionNumber Specifies the default partition number for the
DBEnvironment. DefaultPartitionNumber must be in the range 1 and
32767. If NONE is specified, tables assigned to the DEFAULT PARTITION
do not generate audit log records. no tables in the DBEnvironment are
prepared for audit logging and no operation done on these tables is logged.
See the CREATE TABLE and ALTER TABLE statements for information on
assigning a partition for a table.

CommentPartitionNumber Specifies the partition number for comments made in the
DBEnvironment. CommentPartitionNumber must be a number between
1 and 32767. If no COMMENT PARTITION is specified, DEFAULT is
implied.

If the comment partition is DEFAULT and the default partition number is
later changed in a START DBE NEWLOG statement (but the comment
partition is not changed from DEFAULT), the comment partition number
will also change to the new default partition number.

MaximumNumberOfPartitions Specifies the maximum number of partitions for the
DBEnvironment. MaximumNumberOfPartitions is required to be a
number between 1 and 831. This number indicates the number of partition
instances the DBEnvironment is expected to track.

For audit logging purposes, the number of partition instances is calculated
as the sum of the number of DATA partitions and the number of elements
(except the DATA audit element) specified in the AUDIT ELEMENTS
clause. Specifying ALL audit elements (see below) includes 6 elements,
implying that 6 partitions are used. Set this value only as high as needed
so that unnecessary space is not reserved unless you plan for more
partitions or audit elements.

AuditName Specifies the name of this audit DBEnvironment. AuditName is limited to
8 bytes. This clause must be specified if AUDIT LOG has been specified.
The AuditName appears in outputs of the Audit Tool.

AUDIT ELEMENTS Specifies the types of audit logging that will be done for the database. If
this clause is omitted and AUDIT LOG is specified, DATA AUDIT
ELEMENTS is implicit. The audit elements are as follow:

COMMENT This permits use of the LOG COMMENT statement in the
DBEnvironment. Comments are logged to the defined
COMMENT PARTITION. If this element is not chosen,
the LOG COMMENT statement returns an error.

DATA This is the default element. It causes audit log records to
be generated for any data operations (INSERT, UPDATE,
Chapter 12 565

SQL Statements S - Z
START DBE NEWLOG
or DELETE) on tables that are in an audit partition of the
DBEnvironment other than NONE. (Tables can be
specified to be in partition NONE and thus not participate
in the audit logging process.)

DEFINITION This includes audit logging of the following statements:

 CREATE TABLE
 ALTER TABLE
 DROP TABLE
 CREATE INDEX
 DROP INDEX
 CREATE VIEW
 DROP VIEW
 CREATE RULE
 DROP RULE
 CREATE PROCEDURE
 DROP PROCEDURE
 TRANSFER OWNERSHIP
 CREATE GROUP
 DROP GROUP
 CREATE DBEFILESET
 DROP DBEFILESET
 CREATE PARTITION
 DROP PARTITION
 TRUNCATE TABLE

STORAGE This includes audit logging of the following statements:

 CREATE DBEFILE
 DROP DBEFILE
 ADD DBEFILE TO DBEFILESET
 REMOVE DBEFILE FROM DBEFILESET
 CREATE TEMPSPACE
 DROP TEMPSPACE

AUTHORIZATION This includes audit logging of the following statements:

 GRANT
 REVOKE
 ADD TO GROUP
 REMOVE FROM GROUP

SECTION This includes audit logging of the creation and deletion of
permanent sections. Permanent sections are created when
a program is preprocessed, and are deleted by the DROP
MODULE statement. Logging of section creation does not
include any SETOPT information associated with the
section. See the SETOPT statement in this chapter.

ALL This is equivalent to specifying COMMENT DATA
DEFINITION STORAGE AUTHORIZATION SECTION
AUDIT ELEMENTS as described above.

NewLogDefinition is a clause that provides ALLBASE/SQL with the information
needed to create one or more new log files. The syntax for this clause is
presented in the next section.
566 Chapter 12

SQL Statements S - Z
START DBE NEWLOG
SQL Syntax — NewLogDefinition

LOG DBEFILE DBELog1ID [AND DBELog2ID]
WITH PAGES = DBELogSize ,
NAME = ' SystemFileName1 ' [AND ' SystemFileName2 ']

Parameters — NewLogDefinition

LOG DBEFILE describes the two log files if the DUAL LOG option is specified, or a single
log file otherwise.

DBELog1ID and DBELog2ID are the basic names identifying the log files.

DBELogSize specifies the number of 512-byte pages in one log file. If dual logging is
used, both logs must be the same size. The DBE log size should be at least
250 pages and no greater than 524,287 pages. The default is 250. If you
choose an odd number of pages, the number is rounded up to an even
number.

SystemFileName1 and SystemFileName2 identify how the logs are known to the
operating system. The logs are created relative to the DBECon file
directory unless an absolute path name is specified. If a log file by the
same name already exists, use SQLUtil to purge it before issuing the
START DBE NEWLOG statement.

Description

• The usual reason for using START DBE NEWLOGis to increase or decrease log file space
or to invoke dual logging.

• The logs are always created in the same group and account as the DBEnvironment.

• When you choose an odd number of log pages using the WITH PAGES clause of the new
log definition, the number is rounded up to an even number, which is displayed in
SHOWLOG.

• Do not use this statement unless you are certain that the preceding termination of
ALLBASE/SQL was normal and all active sessions terminated normally. Before using
the START DBE NEWLOG statement, it is recommended that you issue a START DBE
statement in single user mode to ensure the DBEnvironment is in a consistent state
before the existing log(s) are disassociated from the DBEnvironment.

• Use the ARCHIVE option only as a part of a static backup procedure with archive
logging. Refer to the "Backup and Recovery" chapter in the ALLBASE/SQL Database
Administration Guide for more information. The preferred method for starting archive
logging is to use the SQLUtil STOREONLINE command after initial loading of the
DBEnvironment is complete.

• No DBE sessions for the DBEnvironment can be in effect when this statement is
processed.

• Timeout values set in the START DBE NEWLOG statement remain in effect only as long
as there is a DBEnvironment session connected to the DBEnvironment, and do not
modify the values stored in the DBECon file.
Chapter 12 567

SQL Statements S - Z
START DBE NEWLOG
• If no MAXIMUM TIMEOUT limit is specified, the MAXIMUM TIMEOUT limit stored
in the DBECon file remains in effect. If no DEFAULT TIMEOUT value is specified, the
DEFAULT TIMEOUT value stored in the DBECon file remains in effect.

• If MAXIMUM TIMEOUT = NONE, infinity (no timeout) is assumed. If DEFAULT
TIMEOUT = MAXIMUM, the value of MAXIMUM TIMEOUT is assumed. The
DEFAULT TIMEOUT value may not exceed the MAXIMUM TIMEOUT value.

• The following parameters defined in the START DBE NEW statement are stored in the
DBECon file:

• DBEnvironment language

• User mode (single versus multi)

• Number of data buffer pages

• Number of log buffer pages

• Maximum transactions

• Maximum timeout value

• Default timeout value

• Number of runtime control block pages

• DBEFile0 system file name

• Log system file name(s)

• Audit logging (chosen versus not)

• Audit name

• Audit elements

• Default partition

• Comment partition

• Maximum number of partitions

• You can reconfigure a DBEnvironment by using SQLUtil to alter DBECon file
parameters. All parameters except the audit information (logging, audit elements,
name, default, comment and maximum partition), or the name of the DBECon file and
DBEFile0 may be changed. Refer to the ALLBASE/SQL Database Administration
Guide for additional information.

• If AUDIT LOG is specified, the clauses AUDIT NAME, DEFAULT PARTITION, and
MAXPARTITIONS must also be specified. Further, if no AUDIT ELEMENTS are
specified, DATA is used as a default.

• Use of the clause ALL AUDIT ELEMENTS implies specification of all of the audit
elements.

• The usual reason for using START DBE NEWLOGis to increase or decrease log file space,
to invoke dual logging or audit logging, or to alter audit logging parameters.

• Audit parameters set in the START DBE NEWLOGstatement modify the values stored in
the DBECon file.
568 Chapter 12

SQL Statements S - Z
START DBE NEWLOG
• If an audit parameter is not specified in the statement, the audit parameter remains
unchanged. The parameters AUDIT NAME, DEFAULT PARTITION,
MAXPARTITIONS, COMMENT PARTITION, and AUDIT ELEMENTS can be changed
at any time through the START DBE NEWLOG statement.

• If AUDIT LOG is not specified in this statement, the default is that it is disabled. Thus
if the DBEnvironment had audit logging enabled and then specified a START DBE
NEWLOG statement without AUDIT LOG, audit logging would then be disabled.

• Changing MAXPARTITIONS on a START DBE NEWLOG prevents roll forward recovery
through prior log files, since their structure will differ from the new logs' structure. The
same is true of going from non-audit logs to audit logs and vice versa. Therefore, it is
recommended that an audit DBEnvironment be designed with a large enough
MAXPARTITIONS when it is created.

• Additional log files should be created with the SQLUtil ADDLOG command.

• Refer to the ALLBASE/SQL Database Administration Guide for additional
information on log file management.

Authorization

You need to be the DBECreator or super-user to issue the START DBE NEWLOG statement.
hpdb must have write permission in the target directory for the log file(s).

Example

The DBEnvironment is restored to a consistent state. Any transactions incomplete when
the DBEnvironment was last shut down are rolled back, and work done by completed
transactions is committed.

 START DBE '../sampledb/PartsDBE'

SQLUtil is used to delete the existing log files: PartsLg1 and PartsLg2.

 STOP DBE

The log files are reinitialized.

 START DBE '../sampledb/PartsDBE' MULTI NEWLOG DUAL LOG
 LOG DBEFILE PartsDBELog1 AND PartsDBELog2
 WITH PAGES = 250, NAME = 'PartsLg1' AND 'PartsLg2'

The DBEnvironment is restored to a consistent state. Any transactions incomplete when
the DBEnvironment was last shut down are rolled back, and work done by completed
transactions is committed.

 START DBE '../sampledb/PartsDBE'

 STOP DBE

After the DBEnvironment is stopped, the log files can be purged.
Chapter 12 569

SQL Statements S - Z
START DBE NEWLOG
New log files are reinitialized and audit logging is enabled.

 START DBE '../sampledb/PartsDBE' MULTI NEWLOG DUAL
AUDIT LOG,
AUDIT NAME = 'PrtsDBE1',
DEFAULT PARTITION = 1,
MAXPARTITIONS = 20,
DATA AUDIT ELEMENTS,

 LOG DBEFILE PartsDBELog1 AND PartsDBELog2
 WITH PAGES = 1000, NAME = 'PartsLg1' AND 'PartsLg2'

You must create additional log files with the SQLUtil ADDLOG command.
570 Chapter 12

SQL Statements S - Z
STOP DBE
STOP DBE
The STOP DBE statement concludes ALLBASE/SQL operations and shuts down
DBEnvironment operations.

Scope

ISQL or Application Programs

SQL Syntax

STOP DBE

Description

• Any transactions in progress are aborted, but their changes are not backed out until the
START DBE statement is processed.

• A checkpoint is taken.

• Any locks still held are released. Any cursors still open are closed.

Authorization

You must have DBA authority to use this statement.

Example

Two users establish DBE sessions.

 CONNECT TO '../sampledb/PartsDBE'
 CONNECT TO '../sampledb/PartsDBE'

The DBA shuts down ALLBASE/SQL, and the two DBE sessions are aborted. Any
incomplete transactions are rolled back when the DBEnvironment is next started up.

 STOP DBE
Chapter 12 571

SQL Statements S - Z
TERMINATE QUERY
TERMINATE QUERY
The TERMINATE QUERY statement terminates a running QUERY.

Scope

ISQL or Application Programs

SQL Syntax
TERMINATE QUERY FOR { CID ConnectionID

XID TransactionID }

Parameters

CIDConnectionID identifies a specific connection in which the 'query' to be terminated is
running.

XIDTransactionID identifies a specific transaction in which the 'query' to be terminated
is running.

Description

• A 'query' in this case refers to a command being executed.

• The current command in progress for the specified connection or transaction is
terminated and any changes are backed out.

Authorization

You can terminate a query, if it is your own query, or if you have DBA authority. Also the
TERMINATE AT QUERY LEVEL option must have been set for the specified connection
or transaction. See SET TRANSACTION or SET SESSION for more information on the
TERMINATE AT QUERY LEVEL option.

Example

 TERMINATE QUERY FOR CID ConnectionID3
572 Chapter 12

SQL Statements S - Z
TERMINATE TRANSACTION
TERMINATE TRANSACTION
The TERMINATE TRANSACTION statement terminates a given transaction.

Scope

ISQL or Application Programs

SQL Syntax
TERMINATE TRANSACTION FOR { CID ConnectionID

XID TransactionID }

Parameters

CID ConnectionID identifies the specific connection in which the transaction to be
terminated is running.

XID TransactionID identifies a specific transaction to be terminated.

Description

• The transaction in progress for the connection is terminated and any changes are
backed out.

Authorization

You can terminate a transaction if it is your own transaction, or if you have DBA authority.
Also the TERMINATE AT QUERY LEVEL or TERMINATE AT TRANSACTION LEVEL
option must have been set for the specified connection or transaction. See SET
TRANSACTION or SET SESSION for more information on these options.

Example

 TERMINATE TRANSACTION FOR CID ConnectionID3
Chapter 12 573

SQL Statements S - Z
TERMINATE USER
TERMINATE USER
The TERMINATE USER statement terminates one or more DBE sessions associated with
your user name or another user name.

Scope

ISQL or Application Programs

SQL Syntax
TERMINATE USER { DBEUserID

SessionID
CID ConnectionID }

Parameters

DBEUserID identifies the user to terminate all sessions for. Users currently on the
system appear in the system view SYSTEM.USER.

SessionID identifies a specific session to be terminated. Session identifiers can be
found in the system view SYSTEM.USER. One user may have several
session IDs active at the same time.

CID ConnectionID identifies the specific connection to terminate.

Description

• Any transactions in progress in the session(s) are terminated and any changes are
backed out. Any locks still held are released, and any cursor still open is closed.

Authorization

You can terminate a session if it is your own session, or if you have DBA authority.
574 Chapter 12

SQL Statements S - Z
TERMINATE USER
Example
User1 starts a DBE session SessionID1

 CONNECT TO '../sampledb/PartsDBE'

User1 starts a DBE session SessionID2

 CONNECT TO '../sampledb/PartsDBE'

User2 starts a DBE session SessionID3

 CONNECT TO '../sampledb/PartsDBE'

User2 starts a DBE session SessionID4

 CONNECT TO '../sampledb/PartsDBE'

Both of User1's DBE sessions terminate. Either User1 or a DBA can enter this statement.

TERMINATE USER User1

One of User2's DBE sessions terminates. Either User2 or a DBA can enter this statement.

TERMINATE USER SessionID3
Chapter 12 575

SQL Statements S - Z
TRANSFER OWNERSHIP
TRANSFER OWNERSHIP
The TRANSFER OWNERSHIP statement makes a different user or authorization group or
class name the owner of a table, view, procedure, or authorization group.

Scope

ISQL or Application Programs

SQL Syntax
TRANSFER OWNERSHIP OF {[TABLE][Owner.] TableName

[VIEW][Owner.] ViewName
PROCEDURE [Owner.] ProcedureName
GROUPGroupName } TO NewOwnerName

Parameters

[TABLE][Owner.] TableName is the name of a table to transfer. All indexes, constraints
and rules are also transferred.

[VIEW] [Owner.] ViewName is the name of a view to transfer.

PROCEDURE [Owner.] ProcedureName is the name of a procedure to transfer.

GROUPGroupName is the name of an authorization group to transfer.

NewOwnerName designates the new owner. The new owner can be a user or an
authorization group or a class name.

Description

• The TRANSFER OWNERSHIP statement may invalidate stored sections. Refer to the
ALLBASE/SQL Databast Administration Guide for additional information on the
validation of stored sections.

• You cannot use this statement on system tables or system views.

• Transferring ownership of a table changes the owner's grants to have the new owner as
grantor.

• Transferring ownership of a table drops any views based on the table as well as
revoking all authorities related to the views.

• Indexes and rules are owned by the owner of the table with which they are associated.
When the owner of a table is transferred, then the owner of the indexes and rules
associated with it are automatically transferred.

Authorization

You can transfer ownership of a table, view, procedure, or authorization group if you have
OWNER authority for that table, view, procedure, or group, or if you have DBA authority.
576 Chapter 12

SQL Statements S - Z
TRANSFER OWNERSHIP
Transfers of ownership for tables involving referential constraints are subject to the
following additional considerations:

• The new owner must have the REFERENCES or DBA authorities necessary to allow
ownership of a table containing such constraints. If the new owner does not have the
needed authorities, the transfer is not allowed.

• The name of any constraint or rule defined on the table must not already be in use by
the new owner.

• The new owner is dependent on these authorizations for the duration of the ownership
(the old dependencies are dropped). The authorities cannot be removed from the new
owner by the REVOKE, REMOVE FROM GROUP, or DROP GROUP statements.

Example

 CREATE PUBLIC TABLE Parts
 (PartNumber CHAR(16) NOT NULL,
 PartName CHAR(30),
 SalesPrice DECIMAL(10,2))
 IN WarehFS

The table is owned by the DBEUserID of its creator.

 TRANSFER OWNERSHIP OF Parts TO PurchDB

Now the table is owned by the class named PurchDB.
Chapter 12 577

SQL Statements S - Z
TRUNCATE TABLE
TRUNCATE TABLE
The TRUNCATE TABLE statement deletes all rows from the specified table.

Scope

ISQL, Application Programs, or Stored Procedures

SQL Syntax

TRUNCATE TABLE [Owner.] TableName

Parameters

[Owner.] TableName identifies the table whose rows are deleted.

Description

• Use the TRUNCATE TABLE when you want to delete all rows from a table, yet leave the
table's structure intact. The TRUNCATE TABLE statement is faster than the DELETE
statement and generates fewer log records.

• The table definition is not removed or modified. All indexes, views, constraints, rules,
default values, and authorizations defined for the table are unchanged.

• The DBEFile space occupied by the table cannot be reused until the transaction ends.

• The DDL (data definition language) flag must be set to YES. Use the ALTDBEcommand
in SQLUtil to set the DDL flag.

• If audit logging is enabled and the DEFINITION AUDIT ELEMENT option is specified,
then audit log records are generated.

• If a constraint violation occurs when constraint checking is deferred, a warning is
generated and the rows are deleted unless the transaction is explicitly rolled back.
Should the violation occur when constraint checking is set to immediate, an error is
generated and the rows are not deleted.

• All sections that access the specified table are invalidated.

• If the table is specified by a referential constraint, it may be more efficient to drop the
constraint, issue the TRUNCATE TABLE statement, and specify the constraint again.

• Rules are automatically disabled during execution of the TRUNCATE TABLE statement.

Authorization

You can issue this statement if you have OWNER authority for the table or if you have
DBA authority.
578 Chapter 12

SQL Statements S - Z
TRUNCATE TABLE
Example

The following statement deletes all rows from the PurchDB.Parts table:

 TRUNCATE TABLE PurchDB.Parts
Chapter 12 579

SQL Statements S - Z
UPDATE
UPDATE
The UPDATE statement updates the values of one or more columns in all rows of a table or
in rows that satisfy a search condition.

Scope

ISQL or Application Programs

SQL Syntax
UPDATE {[Owner.] TableName

[Owner.] ViewName)
SET { ColumnName = { Expression

‘LongColumnIOString’
NULL } } [,...]

[WHERESearchCondition]

Parameters

[Owner.] TableName specifies the table to be updated.

[Owner.] ViewName specifies a view; the table on which the view is based is updated.
Refer to the CREATE VIEW statement for restrictions governing updates
via views.

ColumnName designates a column to be updated. You can update several columns of the
same table with a single UPDATE statement.

Expression is any expression that does not contain an aggregate function or a LONG
column (except via the long column function). The expression is evaluated
for each row qualifying for the update operation. The data type of the
expression must be compatible with the column's data type.

'LongColumnIOString ' specifies the input and output locations for the LONG data. The
syntax for this string is presented in a separate section below.

NULL puts a null value in the specified column of each row satisfying the
WHERE clause. The column must allow null values.

SearchCondition specifies a search condition; the search condition cannot contain an
aggregate function. All rows for which the search condition is true are
updated as specified in the SET clause. Rows that do not satisfy the search
condition are not affected. If no rows satisfy the search condition, the table
is not changed.

Description

• If the WHERE clause is omitted, all rows of the table are updated as specified by the
SET clause.

• If the WHERE clause is present, then the search condition is evaluated for each row of
580 Chapter 12

SQL Statements S - Z
UPDATE
the table before updating any row. Each subquery in the search condition is effectively
executed for each row of the table, and the results used in the application of the search
condition to the given row. If any executed subquery contains an outer reference to a
column of the table, the reference is to the value of that column in the given row.

• If ALLBASE/SQL detects an error during a multiple-row UPDATE operation, the error
handling behavior depends on the setting of the SET DML ATOMICITY and the SET
CONSTRAINTS statements. Refer to the discussion of these statements in this chapter.

• No error or warning condition is generated by ALLBASE/SQL when a character or
binary string is truncated during an UPDATE operation.

• Using UPDATE with views requires that the views be updatable. See "Updatability of
Queries" in Chapter 3 , “SQL Queries.”

• The target table of the UPDATE is designated by TableName or is the base table of
ViewName. This target table must be updatable and must not be identified in a FROM
clause of any subquery contained in the SearchCondition .

• A table on which a unique constraint is defined cannot contain duplicate rows.

• An update of a primary key column in either a referential or unique constraint will fail
if any of the rows being updated are currently referred to by any table's foreign key row
or if any of the rows being updated ends up matching the value of another unique row.
In order to update such primary key rows, the foreign keys must be changed to refer to
other primary keys, changed to a value of NULL, or deleted. An update of a foreign key
column will fail if it leaves a non-NULL foreign key row without any matching primary
key row.

• Integrity constraints on tables or views are enforced on a statement level basis, when
SET DML ATOMICITY and SET CONSTRAINTS are at their default values. Thus it is
possible to update constraint keys using SET clauses like the following:

 SET Column1 = Column1 + 1

even when the initial values of Column1 are a set of sequential integers, such as 1, 2, 3,
4 (which causes a temporary unique constraint violation). If at the end of the UPDATE
statement (that is, after all rows have been incremented), the unique constraint is
satisfied, no error message is generated.

• Rows being updated must not cause the search condition of the table check constraint to
be false and must cause the search condition of the view check constraint to be true
when error checking is done.

• Rows being updated in the table through a view having a WITH CHECK OPTION must
be visible through the query expression of the view and any underlying views, in
addition to satisfying any constraints of the table. Refer to the "Check Constraints"
section of the "Constraints, Procedures, and Rules" chapter.

• Rules defined with a StatementType of UPDATE will affect UPDATE statements
performed on the rules' target tables. Rules defined with a StatementType of
UPDATE including a list of column names will affect only those UPDATE statements
performed on the rules' target tables that include at least one of the columns in the
UPDATE's SET clause. When the UPDATE is performed, ALLBASE/SQL considers all
the rules defined for that table with the UPDATE StatementType and a matching
Chapter 12 581

SQL Statements S - Z
UPDATE
column. If the rule has no condition, it will fire for all rows affected by the statement
and invoke its associated procedure with the specified parameters on each row. If the
rule has a condition, it will evaluate the condition on each row. The rule will fire on rows
for which the condition evaluates to TRUE and invoke the associated procedure with
the specified parameters for each row. Invoking the procedure could cause other rules,
and thus other procedures, to be invoked if statements within the procedure trigger
other rules.

• If a DISABLE RULES statement is issued, the UPDATE statement will not fire any
otherwise applicable rules. When a subsequent ENABLE RULES is issued, applicable
rules will fire again, but only for subsequent UPDATE statements, not for those rows
processed when rule firing was disabled.

• In a rule defined with a StatementType of UPDATE, any column reference in the
Condition or any ParameterValue that specifies the OldCorrelationName will
refer to the value of the column before the SET clause assignment is performed on it.
Any column reference that specifies the NewCorrelationName or TableName will
refer to the value of the column after the SET clause assignment is performed on it.

• The set of rows to be affected by the UPDATE statement is determined before any rule
fires, and this set remains fixed until the completion of the rule. If the rule adds to,
deletes from, or modifies this set, such changes are ignored.

• When a rule is fired by this statement, the rule's procedure is invoked after the changes
have been made to the database for that row and all previous rows. The rule's
procedure, and any chained rules, will thus see the state of the database with the
current partial execution of the statement.

• If an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the
statement and any procedures invoked by any rules will have no effect. Nothing will
have been altered in the DBEnvironment as a result of this statement or the rules it
fired. Error messages are returned in the normal way.

SQL Syntax — LongColumnIOString
{ [<{[PathName/] FileName

%SharedMemoryAddress }]
[{ >

>>
>! }[PathName/]{ FileName

CharString $
CharString $ CharString }

>% { SharedMemoryAddress
$ }] } |...|

Parameters — LongColumnIOString

< [PathName/] FileName is the location of the input file.

<% SharedMemoryAddress is the shared memory address where the input is located.

> specifies that output is placed in the following file. If the file already exists,
it is not overwritten nor appended to, and an error is generated.
582 Chapter 12

SQL Statements S - Z
UPDATE
>> specifies that output is appended to the following file name. If the file does
not exist, it is created.

>! specifies that output is placed in the following file name. If the file already
exists, it is overwritten.

>% SharedMemoryAddress is the shared memory address where the output is placed.

>%$ is the shared memory address, determined by ALLBASE/SQL, where the
output is placed.

$ is the wildcard character that represents a random, five-byte
alphanumeric character string generated by ALLBASE/SQL. This is a file
name.

Description — LongColumnIOString

• The input device must have a permission allowing the login user to access it. For
example, if the file belongs to the login user, permission must be at least 400. If the file
belongs to another user, in a different group, permission must be at least 004.

• When an output device has been specified and it exists prior to a SELECT or FETCH
statement, ALLBASE/SQL does not change the file's owner or permission.

• The output device, if it does not exist prior to a SELECT or FETCH statement, is created
with the following characteristics.

• If the output device exists prior to a SELECT or FETCH statement, in order for
ALLBASE/SQL to access it for append or overwrite, the above characteristics are
recommended.

• When you specify a portion of the output file name in conjunction with the wildcard
character ($), a five-byte, alphanumeric character string replaces the wildcard. The
wildcard character can appear in any position of the output device name except the
first. The maximum file name being 14 bytes, you can specify 9 bytes of the device
name.

• When no portion of the output device name is specified, the default file name, tmp$.LF,
is used. The wildcard character ($) indicates a random, five-byte, alphanumeric
character string. This file is created in the local directory.

• The wildcard character, whether user specified or part of the default output device
name, is a unique five-byte, alphanumeric character string.

• When a file is used as the LONG column input or output device and you do not give it a
specific path name in the LONG column I/O string, the default is the path where ISQL

Table 12-2. Default Output Device Characteristics

Device Type Permission UserID (uid) GroupID (gid)

OUTPUT create 700 Current user login id Current user login group

OUTPUT append 200 Current user login id Current user login group

OUTPUT overwrite 200 Current user login id Current user login group
Chapter 12 583

SQL Statements S - Z
UPDATE
or your program is running.

• The output device cannot be overwritten with a SELECTor FETCHstatement unless you
use the INSERT or UPDATE statement with the overwrite option.

• LONG columns cannot be used as follows:

• In a WHERE clause.

• In a type II INSERT statement.

• Remotely through ALLBASE/NET.

• As hash or B-tree index key columns.

• In a GROUP BY, ORDER BY, DISTINCT, or UNION clause.

• In an expression.

• In a subquery.

• In aggregate functions (AVG, SUM, MIN, MAX).

• As columns to which integrity constraints are assigned.

• With the DEFAULT option of the CREATE or ALTER TABLE statements.

• If no input device is specified, only output information of LONG columns is reset.

• If no output device is specified, only value is reset.

Authorization

You can update a table if you have UPDATE authority for the entire table, UPDATE
authority for all of the columns specified in the SET clause, OWNER authority for the
table, or DBA authority.

To update using a view, the authority needed as described below depends on whether you
own the view:

• If you own the view, you need UPDATE or OWNER authority for the base table, or
UPDATE authority for each column of the base table to be updated as specified in the
SET clause, or DBA authority.

• If you do not own the view, you must have UPDATE authority for the view, or UPDATE
authority for each column of the view specified in the SET clause, or DBA authority. In
addition, the owner of the view must have UPDATE or OWNER authority with respect
to the view's definition, or the owner must have DBA authority.

• Using UPDATE with views requires that the views be updatable. See "Updatability of
Queries" in the "SQL Queries" chapter.

Example
 UPDATE PurchDB.Parts SET SalesPrice = SalesPrice * 1.25
 WHERE SalesPrice > 500.00
584 Chapter 12

SQL Statements S - Z
UPDATE STATISTICS
UPDATE STATISTICS
The UPDATE STATISTICSstatement updates the system catalog to reflect a table's current
characteristics, such as the number of rows and average row size. ALLBASE/SQL uses
these statistics to choose an optimal way to process a query.

Scope

ISQL or Application Programs

SQL Syntax
UPDATE STATISTICS FOR TABLE {[Owner.] TableName

SYSTEM. SystemViewName }

Parameters

[Owner.] TableName identifies a table.

SYSTEM.SystemViewName identifies a system view.

Description

• The UPDATE STATISTICS statement affects specific columns in certain system catalog
views:

View Name Columns Affected

SYSTEM.DBEFILE DBEFUPAGES

SYSTEM.DBEFILESET DBEFSUPAGES

SYSTEM.COLUMN AVGLEN

SYSTEM.INDEX CCOUNT

NPAGES

SYSTEM.TABLE AVGLEN

NPAGES

NROWS

USTIME

• Any sections that reference a table named in the UPDATE STATISTICS statement are
marked invalid, but are revalidated the next time they are executed or the VALIDATE
statement is issued if access and authorization criteria are satisfied.

• Use this statement sparingly before preprocessing, after creating an index, and after
periods of heavy update activity. For more information, on the UPDATE STATISTICS
statement, refer to the ALLBASE/SQL
Performance Guidelines .
Chapter 12 585

SQL Statements S - Z
UPDATE STATISTICS
• The only views this statement works for are system views. Refer to the ALLBASE/SQL
Database Administration Guide for a description of the system views.

• UPDATE STATISTICS cannot be used with pseudotables — SYSTEM.ACCOUNT,
SYSTEM.CALL, SYSTEM.COUNTER, SYSTEM.TRANSACTION, and
SYSTEM.USER.

• You may find it convenient to use the VALIDATE statement after an UPDATE
STATISTICS . If you issue both statements during a period of low activity for the
DBEnvironment, the optimizer will have current statistics on which to base its
calculations, with minimal performance degradation.

Authorization

You can issue this statement if you have OWNER authority for the table or if you have
DBA authority.

Example

You issue this statement after periods of heavy data update activity in order to keep access
paths optimal.

 UPDATE STATISTICS FOR TABLE PurchDB.Orders
586 Chapter 12

SQL Statements S - Z
UPDATE WHERE CURRENT
UPDATE WHERE CURRENT
The UPDATE WHERE CURRENT statement updates the values of one or more columns in the
current row associated with a cursor. The current row is the row pointed to by a cursor
after the FETCH or REFETCH statement is issued.

Scope

Application Programs Only

SQL Syntax
UPDATE {[Owner.] TableName

[Owner.] ViewName}
SET { ColumnName = { Expression

‘LongColumnIOString’
NULL }}[,...]

WHERE CURRENT OFCursorName

Parameters

[Owner.] TableName specifies the table to be updated.

[Owner.] ViewName specifies a view; the table on which the view is based is
updated. Refer to the CREATE VIEW statement for
restrictions governing updates via views.

ColumnName designates a column to be updated. You can update several
columns of the same table with a single UPDATE WHERE
CURRENT statement.

Expression is any expression that does not contain an aggregate
function or a LONG column (except via a long column
function). The data type of the expression must be
compatible with the column's data type.

'LongColumnIOString ' specifies the input and output locations for the LONG
data. The syntax for this string is presented in a separate
section below.

NULL puts a null value in the specified column. The column
must allow null values.

CursorName designates an opened cursor. The current row of the cursor
is updated as specified by the SET clause. The column(s)
named in the SET clause must also be named in the FOR
UPDATE clause of the DECLARE CURSOR statement
defining the cursor. After the update, the row updated
remains the current row.
Chapter 12 587

SQL Statements S - Z
UPDATE WHERE CURRENT

T

Description

• This statement cannot be used interactively and should not be used in conjunction with
rows fetched using the BULK FETCH statement.

• For constraint violations, the error handling behavior depends on the setting of the SET
CONSTRAINTS statement. Refer to the discussion of this statement in this chapter.

• No error or warning condition is generated by ALLBASE/SQL when a character or
binary string is truncated during an UPDATE operation.

• Using UPDATE WHERE CURRENT OF CURSOR requires that the cursor be based on
an updatable query. See "Updatability of Queries" in the "SQL Queries" chapter.

• The target table of the UPDATE WHERE CURRENTis designated by TableName or is the
base table underlying the ViewName. The base table restrictions that govern updates
via a cursor were presented in the description of the DECLARE CURSOR statement.

• A table on which a unique constraint is defined cannot contain duplicate rows.

• For constraint violations, the error handling behavior depends on the setting of the SET
CONSTRAINTS statement. Refer to the discussion of this statement in this chapter.

• An update of a primary key column in either a referential or unique constraint will fail
if any of the rows being updated are currently referred to by any table's foreign key row
or if any of the rows being updated ends up matching the value of another unique row.
In order to update such primary key rows, the foreign keys must be changed to refer to
other primary keys, changed to a value of NULL, or deleted. An update of a foreign key
column will fail if it leaves a non-NULL foreign key row without any matching primary
key row.

• Rows being updated must not cause the search condition of the table check constraint to
be false and must cause the search condition of the view check constraint to be true
when error checking is done.

• Rows being updated in the table through a view having a WITH CHECK OPTION must
still be visible through the query expression of the check constraint of the view and any
underlying views, in addition to satisfying any constraints of the table. Refer to the
"Check Constraints" section of Chapter 4 , “Constraints, Procedures, and Rules,” for a
further discussion on check constraints.

• A rule defined with a StatementType of UPDATE will affect UPDATE WHERE CURREN
statements performed on the rules' target tables. Rules defined with a StatementType
of UPDATE including a list of column names will affect only those UPDATE WHERE
CURRENT statements performed on the rules' target tables that include at least one of
the columns in their SET clause. When the UPDATE WHERE CURRENT is performed,
ALLBASE/SQL considers all the rules defined for that table with the UPDATE
StatementType and a matching column. If the rule has no condition, it will fire for the
current row and invoke its associated procedure with the specified parameters. If the
rule has a condition, it will evaluate the condition and fire if the condition evaluates to
TRUE, invoking the associated procedure with the specified parameters for the current
row. Invoking the procedure could cause other rules, and thus other procedures, to be
invoked if statements within the procedure trigger other rules.

• If a DISABLE RULES statement is in effect, the UPDATE WHERE CURRENT statement
588 Chapter 12

SQL Statements S - Z
UPDATE WHERE CURRENT
will not fire any otherwise applicable rules. When a subsequent ENABLE RULES is
issued, applicable rules will fire again, but only for subsequent UPDATE WHERE
CURRENT statements, not for those rows processed when rule firing was disabled.

• In a rule defined with a StatementType of UPDATE, any column reference in the
Condition or any ParameterValue that specifies the OldCorrelationName will
refer to the value of the column before the SET clause assignment is performed on it.
Any column reference that specifies the NewCorrelationName or TableName will
refer to the value of the column after the SET clause assignment is performed on it.

• When a rule is fired by this statement, the rule's procedure is invoked after the changes
have been made to the database for that row. The rule's procedure, and any chained
rules, will thus see the state of the database with the current partial execution of the
statement.

• If an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the
statement and any procedures invoked by any rules will have no effect. Nothing will
have been altered in the DBEnvironment as a result of this statement or the rules it
fired. Error messages are returned in the normal way.

SQL Syntax — LongColumnIOString
{ [<{[PathName/] FileName

%SharedMemoryAddress }]
[{ >

>>
>! }[PathName/]{ FileName

CharString$
CharString$CharString }

>% { SharedMemoryAddress
$ }] } |...|

Parameters — LongColumnIOString

< [PathName/] FileName is the location of the input file.

<% SharedMemoryAddress is the shared memory address where the input is located.

> specifies that output is placed in the following file. If the file already exists,
it is not overwritten nor appended to, and an error is generated.

>> specifies that output is appended to the following file name. If the file does
not exist, it is created.

>! specifies that output is placed in the following file name. If the file already
exists, it is overwritten.

>% SharedMemoryAddress is the shared memory address where the output is placed.

>%$ is the shared memory address, determined by ALLBASE/SQL, where the
output is placed.

$ is the wildcard character that represents a random, five-byte
alphanumeric character string generated by ALLBASE/SQL. This is a file
name.
Chapter 12 589

SQL Statements S - Z
UPDATE WHERE CURRENT
Description — LongColumnIOString

• The input device must have a permission allowing the login user to access it. For
example, if the file belongs to the login user, permission must be at least 400. If the file
belongs to another user, in a different group, permission must be at least 004.

• When an output device has been specified and it exists prior to a SELECT or FETCH
statement, ALLBASE/SQL does not change the file's owner or permission.

• The output device, if it does not exist prior to a SELECT or FETCH statement, is created
with the following characteristics.

• If the output device exists prior to a SELECT or FETCH statement, in order for
ALLBASE/SQL to access it for append or overwrite, the above characteristics are
recommended.

• When you specify a portion of the output file name in conjunction with the wildcard
character ($), a five-byte, alphanumeric character string replaces the wildcard. The
wildcard character can appear in any position of the output device name except the
first. The maximum file name being 14 bytes, you can specify 9 bytes of the device
name.

• When no portion of the output device name is specified, the default file name, tmp$.LF,
is used. The wildcard character ($) indicates a random, five-byte, alphanumeric
character string. This file is created in the local directory.

• The wildcard character, whether user specified or part of the default output device
name, is a unique five-byte, alphanumeric character string.

• When a file is used as the LONG column input or output device and you do not give it a
specific path name in the LONG column I/O string, the default is the path where ISQL
or your program is running.

• The output device cannot be overwritten with a SELECTor FETCHstatement unless you
use the INSERT or UPDATE statement with the overwrite option.

• LONG columns cannot be used as follows:

• In a WHERE clause.

• In a type II INSERT statement.

• Remotely through ALLBASE/NET.

• As hash or B-tree index key columns.

• In a GROUP BY, ORDER BY, DISTINCT, or UNION clause.

Table 12-3. Default Output Device Characteristics

Device Type Permission UserID (uid) GroupID (gid)

OUTPUT create 700 Current user login id Current user login group

OUTPUT append 200 Current user login id Current user login group

OUTPUT overwrite 200 Current user login id Current user login group
590 Chapter 12

SQL Statements S - Z
UPDATE WHERE CURRENT
• In an expression.

• In a subquery.

• In aggregate functions (AVG, SUM, MIN, MAX).

• As columns to which integrity constraints are assigned.

• With the DEFAULT option of the CREATE or ALTER TABLE statements.

• If no input device is specified, only output information of LONG columns is reset.

• If no output device is specified, only value is reset.

Authorization

You can update a table if you have UPDATE authority for the entire table, UPDATE
authority for all of the columns specified in the SET clause, OWNER authority for the
table, or DBA authority.

To update using a view, authority needed depends on whether you own the view:

• If you own the view, you need UPDATE or OWNER authority for the base table, or
UPDATE authority for each column of the base table to be updated as specified in the
SET clause, or DBA authority.

• If you do not own the view, you must have UPDATE authority for the view, or UPDATE
authority for each column of the view specified in the SET clause, or DBA authority. In
addition, the owner of the view must have UPDATE or OWNER authority with respect
to the view's definition, or the owner must have DBA authority.

Example

A cursor for use in updating values in column QtyOnHand is declared and opened.

 DECLARE NewQtyCursor CURSOR FOR
 SELECT PartNumber,QtyOnHand FROM PurchDB.Inventory
 FOR UPDATE OF QtyOnHand

 OPEN NewQtyCursor

Statements setting up a FETCH-UPDATE loop appear next.

 FETCH NewQtyCursor INTO :Num :Numnul, :Qty :Qtynul

Statements for displaying a row to and accepting a new QtyOnHand value from a user go
here. The new value is stored in :NewQty.

 UPDATE PurchDB.Inventory\
 SET QtyOnHand = :NewQty\
 WHERE CURRENT OF NewQtyCursor
 .
 .
 .
 CLOSE NewQtyCursor
Chapter 12 591

SQL Statements S - Z
VALIDATE
VALIDATE
The VALIDATE statement validates modules and procedures that have already been
created.

Scope

ISQL or Application Programs

SQL Syntax
VALIDATE [FORCE

DROP SETOPTINFO]
{ MODULE { {[Owner.] ModuleName} [,...]

{ SECTION [Owner.] ModuleName (SectionNumber)} [,...] }
PROCEDURE { {[Owner.] ProcedureName } [,...]

{ SECTION [Owner.] ProcedureName (SectionNumber)} [,...] }
ALL{MODULES

PROCEDURES} [WITH AUTOCOMMIT] }

Parameters

WITH AUTOCOMMIT executes automatically a COMMIT WORKafter each module
or procedure is updated.

[Owner.]ModuleName identifies the module containing sections to be validated.
The owner name is the DBEUserID of the person who
preprocessed the program or the owner name specified
when the program was preprocessed. The module name is
the name stored in the SYSTEM.SECTION view.

[Owner.]ModuleName (SectionNumber) identifies the section number as well as the
module to be validated.

[Owner.]ProcedureName identifies the procedure to validate. The owner name is the
DBEUserID of the person who created the procedure or
the owner name specified when the procedure was created.
The procedure name is the name stored in the
SYSTEM.SECTION view.

 [Owner.]ProcedureName (SectionNumber) identifies the section number as well as the
procedure to be validated.

Description

• When you validate a module or procedure, all the sections within it are checked and
validation is attempted. If an embedded SQL statement accesses an object that does not
exist or that the module or procedure owner is not authorized to execute, then the
corresponding section is marked invalid.

• You may find it convenient to use the VALIDATE statement after an UPDATE
592 Chapter 12

SQL Statements S - Z
VALIDATE
STATISTICS , since UPDATE STATISTICS will invalidate stored sections. If you issue
both statements during a period of low activity for the DBEnvironment, the optimizer
will have current statistics on which to base its calculations, with minimal performance
degradation.

• A temporary section cannot be validated.

• Users can specify the access plan of a query with the SETOPT statement. To validate a
module or procedure without the user-specified access plan, include the DROP
SETOPTINFOkeyword in the VALIDATE statement. The default access plan determined
by ALLBASE/SQL is stored in the system catalog instead.

• If a module or procedure cannot be validated, ALLBASE/SQL returns an error.

• If a section is still invalid after revalidation, the module is considered invalid.

• To find the names of procedures with invalid sections, use ISQL to query the
SYSTEM.SECTION view with Stype = 0.

• The VALIDATE statement will not revalidate sections that have been stored prior to this
release, for example, sections that have been migrated from a previous release. These
sections can only be revalidated by running the application to execute all the sections.
An alternative is to recreate the module by preprocessing the application again.
Thereafter, you can use the VALIDATE statement.

• For detailed information on modules refer to the section "Invalidation and Revalidation
of Sections" in the "Maintenance" chapter of the ALLBASE/SQL Database
Administration Guide and the "Using the Preprocessor" chapter in your ALLBASE/SQL
application programming guide.

• For detailed information on procedures, refer to Chapter 4 , “Constraints, Procedures,
and Rules.”

• When the WITH AUTOCOMMIT clause is used, a COMMIT WORKstatement is executed
automatically after each MODULE or PROCEDURE is validated. This can reduce both
log space and shared memory requirements for the VALIDATE command.

• When the FORCE clause is used, all sections associated with the MODULE or
PROCEDURE are revalidated, regardless of whether they are valid or invalid.

• When the FORCE clause is used with VALIDATE ALL MODULES and VALIDATE
ALL PROCEDURES, every stored section in the database is forced to recompile using
the latest release. These statements have essentially the same effect as preprocessing
every program again that uses the database.

Authorization

You can execute this statement if you have OWNER or RUN authority on a module or you
have OWNER or EXECUTE authority for a procedure or if you have DBA authority.
Chapter 12 593

SQL Statements S - Z
VALIDATE
Examples

1. Validating sections in a module

ALLBASE/SQL validates sections at preprocessing time and run time. To validate a
section before running your application, you can use the VALIDATE statement. To find
the names of modules with invalid sections, use ISQL to query the SYSTEM.SECTION
view.

 isql=> SELECT Name, Section FROM System.Section
 > WHERE valid = 0 and stype = 0;

 SELECT Name, Section FROM System.Section WHERE Valid=0 and Stype=0;
 --------------------+---------------
 NAME |SECTION
 --------------------+---------------
 CEXP06 |1
 CEXP06 |2
 CEXP06 |3

--
 First 3 rows have been selected.
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>,or e[nd]>

Three sections of the module named CEX06 are invalid. Issue the VALIDATE statement
to attempt validation.

 isql => VALIDATE MODULE CEXP06;

2. Dropping SETOPT access plan

The following SETOPT statement specifies that every table with an index is accessed
with an index scan.

 isql => SETOPT GENERAL INDEXSCAN;

Validate the CEX09 module, but ignore the access plan specified in the preceding
SETOPT statement.

 isql => VALIDATE DROP SETOPTINFO MODULE CEXP09;

3. When the WITH AUTOCOMMIT clause is used, a COMMIT WORKstatement is executed
automatically after each module or procedure is validated.

 VALIDATE ALL MODULES WITH AUTOCOMMIT;
 VALIDATE ALL PROCEDURES WITH AUTOCOMMIT;

4. When the FORCE clause is used, all sections associated with the MODULE or
PROCEDURE are revalidated regardless of whether they are valid or invalid.

 VALIDATE FORCE ALL MODULES WITH AUTOCOMMIT;
 VALIDATE FORCE ALL PROCEDURES WITH AUTOCOMMIT;
594 Chapter 12

SQL Statements S - Z
WHENEVER
WHENEVER
WHENEVERis a directive used in an application program or a procedure to specify an action
to be taken depending on the outcome of subsequent SQL statements.

Scope

Application Programs and Procedures Only

SQL Syntax
WHENEVER { SQLERROR

SQLWARNING
NOT FOUND } { STOP

CONTINUE
GOTO [:] Label
GO TO [:] Label }

Parameters

SQLERROR refers to a test for the condition SQLCODE < 0.

SQLWARNING refers to a test for the condition SQLWARN0 = 'W'.

NOT FOUND refers to a test for the condition SQLCODE = 100.

STOP causes a ROLLBACK WORK statement and terminates the application
program or procedure, whenever an SQL statement produces the specified
condition.

CONTINUE means no special action is taken automatically when a SQL statement
produces the specified condition. Sequential execution will continue.

GOTO [:]Label specifies a label to jump to whenever the condition is found to be true after
executing a SQL statement. In an application, the label must conform to
the SQL syntax rules for a basic name or any other legitimate label in the
host language as well as the requirements of the host language.

In a procedure, the label is an integer or a name which conforms to the
SQL syntax rules for a basic name. You can optionally include a colon (:)
before the label to conform to FIPS 127.1 flagger standards.

Description

• In an application, SQLCODE and SQLWARN0 are fields in the SQLCA or built-in
variables. They are structures ALLBASE/SQL uses to return status information about
SQL statements. In a procedure, ::sqlcode and ::sqlwarn0 are built-in variables. If the
WHENEVER statement is not specified for a condition, the default action is CONTINUE.

• A WHENEVER directive affects all SQL statements that come after it in the source
program listing or procedure, up to the next WHENEVERdirective for the same condition.

• You can write code of your own to check the SQLCA for error or warning conditions,
Chapter 12 595

SQL Statements S - Z
WHENEVER
whether or not you use the WHENEVER directive.

• This directive cannot be used interactively or with dynamic parameters.

Authorization

You do not need authorization to use the WHENEVER directive.

Example

Execution of the program terminates if the CONNECT TO statement cannot be executed
successfully.

 INCLUDE SQLCA
 .
 .
 .

 WHENEVER SQLERROR STOP

 CONNECT TO '.../sampledb/PartsDBE'
 .
 .
 .

If a row does not qualify, control is passed to the statement labeled 9000.

 INCLUDE SQLCA
 .
 .
 .
 WHENEVER NOT FOUND GO TO 9000

 SELECT OrderDate
 FROM PurchDB.Orders
 WHERE OrderNumber = :OrdNum
596 Chapter 12

SQL Statements S - Z
WHILE
WHILE
The WHILE statement is used to allow looping within a procedure.

Scope

Procedures only

SQL Syntax

WHILE Condition DO [Statement ; [...]] ENDWHILE;

Parameters

Condition specifies anything that is allowed in a search condition except subqueries,
column references, host variables, dynamic parameters, aggregate
functions, string functions, date/time functions involving column
references, long column functions, or TID functions. Local variables,
built-in variables, and parameters may be included. See Chapter 9 ,
“Search Conditions.”

Statement is any SQL statement allowed in a procedure-- including a compound
statement.

Description

• Statement is executed as long as the Condition evaluates to TRUE.

• WHILE statements can be nested.

• Local variables, built-in variables, and parameters can be used in a procedure as host
variables are used in an application program.

Authorization

Anyone can use the WHILE statement.

Example

Create and execute a procedure to display all the quantities in the LargeOrders table for a
given part:

 CREATE PROCEDURE ShowOrders AS
 BEGIN
 DECLARE Quantity INTEGER;
 DECLARE PartName CHAR(16);

 DECLARE QtyCursor CURSOR FOR
 SELECT PartName, Quantity
 FROM LargeOrders;
Chapter 12 597

SQL Statements S - Z
WHILE
 OPEN QtyCursor;
 WHILE ::sqlcode <> 100 DO
 FETCH QtyCursor INTO :PartName, :Quantity
 PRINT :PartName;
 PRINT :Quantity;
 ENDWHILE;
 CLOSE QtyCursor;
 END;
 EXECUTE PROCEDURE ShowOrders;
598 Chapter 12

SQL Syntax Summary
A SQL Syntax Summary

This listing of SQL syntax differs from the previous version in the following ways:

• The braces { } and brackets [] are shown in standard type size.

• Commands and keywords are shown in BOLD UPPERCASE characters

ADD DBEFILE

ADD DBEFILE DBEFileName TO DBEFILESET DBEFileSetName

ADD TO GROUP
ADD { DBEUserID

GroupName
ClassName }[,...] TO GROUPTargetGroupName

ADVANCE
ADVANCECursorName [USING [SQL] DESCRIPTOR { SQLDA

AreaName}]

ALTER DBEFILE
ALTER DBEFILE DBEFileName SET TYPE = { TABLE

INDEX
MIXED }

ALTER TABLE
ALTER TABLE [Owner.] TableName { AddColumnSpecification

AddConstraintSpecification
DropConstraintSpecification
SetTypeSpecification
SetPartitionSpecification }

AddColumnSpecification

ADD{ (ColumnDefinition [,...])
ColumnDefinition } [CLUSTERING ON CONSTRAINT [ConstraintID]]
Appendix A 599

SQL Syntax Summary
AddConstraintSpecification

ADD CONSTRAINT ({ UniqueConstraint
ReferentialConstraint
CheckConstraint }[,...])

[CLUSTERING ON CONSTRAINT [ConstraintID1]]

DropConstraintSpecification

DROP CONSTRAINT {(ConstraintID [,...])
ConstraintID }

SetTypeSpecification

SET TYPE { PRIVATE
PUBLICREAD
PUBLIC
PUBLICROW } [RESET AUTHORITY

PRESERVE AUTHORITY]

SetPartitionSpecification

SET PARTITION { PartitionName
DEFAULT
NONE }

Assignment (=)
{: LocalVariable

: ProcedureParameter }= Expression ;

BEGIN

BEGIN [Statement ;] [...] END;

BEGIN ARCHIVE

BEGIN ARCHIVE

BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

BEGIN WORK
BEGIN WORK [Priority] [RR

CS
RC
RU] [LABEL { ‘LabelString’

: HostVariable }] [[PARALLEL
NO] FILL]
600 Appendix A

SQL Syntax Summary
CHECKPOINT
CHECKPOINT [: HostVariable

 : LocalVariable
 : ProcedureParameter]

CLOSE
CLOSE CursorName [USING {[SQL] DESCRIPTOR { SQLDA

Areaname }
: HostVariable [[INDICATOR]: Indicator][,...] }]

COMMIT ARCHIVE

COMMIT ARCHIVE

COMMIT WORK

COMMIT WORK [RELEASE]

CONNECT
CONNECT TO { ‘DBEnvironmentName’

: HostVariable1 }[AS { ‘ConnectionName’
:HostVariable2 }]

[USER { ‘UserID’
:HostVariable3 }[USING : HostVariable4]]

CREATE DBEFILE
CREATE DBEFILE DBEFileName WITH PAGES = DBEFileSize , NAME = ‘SystemFileName’
[, INCREMENT = DBEFileIncrSize [, MAXPAGES = DBEFileMaxSize]]
[, TYPE = { TABLE

INDEX
MIXED }]

CREATE DBEFILESET

CREATE DBEFILESET DBEFileSetName

CREATE GROUP

CREATE GROUP[Owner.] GroupName

CREATE INDEX
CREATE [UNIQUE][CLUSTERING] INDEX [Owner.] Indexname ON
[Owner.] TableName ({ColumnName [ASC

 DESC]}[,...])
Appendix A 601

SQL Syntax Summary
CREATE PARTITION

CREATE PARTITION PartitionName WITH ID = PartitionNumber

CREATE PROCEDURE
CREATE PROCEDURE [Owner.] ProcedureName [LANG = ProcLangName]
[(ParameterDeclaration [, ParameterDeclaration][...])]
[WITH RESULT ResultDeclaration [, ResultDeclaration][...]]
AS BEGIN [ProcedureStatement][...] END [IN DBEFileSetName]

ParameterDeclaration

ParameterName ParameterType [LANG = ParameterLanguage]
[DEFAULT DefaultValue][NOT NULL][OUTPUT[ONLY]]

ResultDeclaration

ResultType [LANG = ResultLanguage][NOT NULL]

CREATE RULE
CREATE RULE [Owner.] RuleName
AFTER StatementType [,...][ON

OF
FROM
INTO} [Owner.] TableName

[REFERENCING{ OLD AS OldCorrellationName
NEW ASNewCorrelationName }[...]] [WHEREFiringCondition]

EXECUTE PROCEDURE [OwnerName.] ProcedureName [(ParameterValue [,...])]
[IN DBEFileSetName]

CREATE SCHEMA
CREATE SCHEMA AUTHORIZATIONAuthorizationName [TableDefinition

ViewDefinition
IndexDefinition
ProcedureDefinition
RuleDefinition
CreateGroup
AddToGroup
GrantStatement][...]
602 Appendix A

SQL Syntax Summary
CREATE TABLE
CREATE [PRIVATE

PUBLICREAD
PUBLIC
PUBLICROW] TABLE [Owner.] TableName

[LANG = TableLanguageName]
({ ColumnDefinition

UniqueConstraint
ReferentialConstraint
CheckConstraint }[,...])

[UNIQUE HASH ON (HashColumnName [,...]) PAGES = PrimaryPages
HASH ON CONSTRAINT [ConstraintID] PAGES = PrimaryPages
CLUSTERING ON CONSTRAINT [ConstraintID]]

[IN PARTITION { PartitionName
DEFAULT
NONE }]

[IN DBEFileSetName1]

Column Definition

ColumnName{ ColumnDataType
LongColumnType [IN DBEFileSetName2]}

[LANG = ColumnLanguageName]
[[NOT] CASE SENSITIVE]
[DEFAULT{ Constant

USER
NULL
CurrentFunction }]

[NOT NULL [{ UNIQUE
PRIMARY KEY} [CONSTRAINTConstraintID]]

REFERENCESRefTableName [(RefColumnName)][CONSTRAINTConstraintID]
[...]

CHECK (SearchCondition) [CONSTRAINT ConstraintID]
[IN DBEFileSetName3]][...]

Unique Constraint (Table Level)

{ UNIQUE
PRIMARY KEY}(ColumnName [,...]) [CONSTRAINTConstraintI D]

Referential Constraint (Table Level)

FOREIGN KEY (FKColumnName [,...])
REFERENCESRefTableName [(RefColumnName [,...])] [CONSTRAINTConstraintID]

Check Constraint (Table Level)

CHECK (SearchCondition) [CONSTRAINTConstraintID] [IN DBEFileSetName3]

CREATE TEMPSPACE
CREATE TEMPSPACETempSpaceName
WITH [MAXFILEPAGES = MaxTempFileSize ,] LOCATION =’ PhysicalLocation ’
Appendix A 603

SQL Syntax Summary
CREATE VIEW
CREATE VIEW [Owner.] ViewName [(ColumnName[,...])]
AS QueryExpression [IN DBEFileSetName]
[WITH CHECK OPTION [CONSTRAINTConstraintID]]

DECLARE CURSOR
DECLARECursorName [IN DBEFileSetName] CURSOR FOR
{ { QueryExpression

SelectStatementName }[FOR UPDATE OF { ColumnName}[,...]
FOR READ ONLY]

ExecuteProcedureStatement
ExecuteStatementName }

DECLARE Variable

DECLARE { LocalVariable }[,...] VariableType { LANG = VariableLangName]
[DEFAULT { Constant

NULL
 CurrentFunction }][NOT NULL]

DELETE
DELETE [WITH AUTOCOMMIT] FROM {[Owner.] TableName

[Owner.] ViewName} [WHERESearchCondition]

DELETE WHERE CURRENT
DELETE FROM {[Owner.] TableName

[Owner.] ViewName} WHERE CURRENT OFCursorName

DESCRIBE
DESCRIBE [OUTPUT

INPUT
RESULT] StatementName { INTO [[SQL] DESCRIPTOR]

USING [SQL] DESCRIPTOR}{ SQLDA
AreaName}

DISABLE AUDIT LOGGING

DISABLE AUDIT LOGGING

DISABLE RULES

DISABLE RULES
604 Appendix A

SQL Syntax Summary
DISCONNECT
DISCONNECT {‘ ConnectionName ’

‘ DBEnvironmentName ’
: HostVariable
ALL
CURRENT }

DROP DBEFILE

DROP DBEFILE DBEFileName

DROP DBEFILESET

DROP DBEFILESET DBEFileSetName

DROP GROUP

DROP GROUPGroupName

DROP INDEX

DROP INDEX [Owner.] IndexName [FROM [Owner.] TableName]

DROP MODULE

DROP MODULE [Owner.] ModuleName [PRESERVE]

DROP PARTITION

DROP PARTITION PartitionName

DROP PROCEDURE

DROP PROCEDURE [Owner.] ProcedureName [PRESERVE]

DROP RULE

DROP RULE [Owner.] RuleName [FROM TABLE [Owner.] TableName]

DROP TABLE

DROP TABLE [Owner.] TableName

DROP TEMPSPACE

DROP TEMPSPACETempSpaceName

DROP VIEW

DROP VIEW [Owner.] ViewName
Appendix A 605

SQL Syntax Summary
ENABLE AUDIT LOGGING

ENABLE AUDIT LOGGING

ENABLE RULES

ENABLE RULES

END DECLARE SECTION

END DECLARE SECTION

EXECUTE
EXECUTE{ StatementName

[Owner.] ModuleName [(SectionNumber)]}
[USING{[SQL] DESCRIPTOR{[INPUT]{ SQLDA

AreaName1}
[AND OUTPUT { SQLDA

AreaName2}]
OUTPUT { SQLDA

AreaName}}
[INPUT] HostVariableSpecification1
[AND OUTPUTHostVariableSpecification2]
OUTPUTHostVariableSpecification
: Buffer [,: StartIndex [,: NumberOfRows]] }]

HostVariableSpecification

: HostVariableName [[INDICATOR]: IndicatorVariable] [,...]

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE { ‘String’

:HostVariable }

EXECUTE PROCEDURE
EXECUTE PROCEDURE [: ReturnStatusVariable =][Owner.] ProcedureName
[([ActualParameter][,[ActualParameter]][...])]

ActualParameter

[ParameterName =]ParameterValue [OUTPUT[ONLY]]

FETCH
[BULK] FETCH CursorName { INTO HostVariableSpecification

USING{ [SQL] DESCRIPTOR { SQLDA
AreaName}

HostVariableSpecification } }

BULK HostVariableSpecification

: Buffer [,: StartIndex [,: NumberOfRows]]
606 Appendix A

SQL Syntax Summary
Non-BULK HostVariableSpecification

{: HostVariable [[INDICATOR]: Indicator] } [,...]

GENPLAN
GENPLAN [WITH (HostVariableDefinition)] FOR
{ SQLStatement

MODULE SECTION [Owner.] ModuleName(Section Number)
PROCEDURE SECTION [Owner.] ProcedureName(Section Number)}

GOTO
{ GOTO

GO TO}{ Label
Integer }

GRANT
GRANT { ALL [PRIVILEGES]

{ SELECT
INSERT
DELETE
ALTER
INDEX
UPDATE [({ ColumnName}[,...])]
REFERENCES [({ ColumnName}[,...])]}|,...|}

ON {[Owner.] TableName
[Owner.] ViewName} TO { DBEUserID

GroupName
ClassName
PUBLIC } [,...][WITH GRANT OPTION]

[BY { DBEUserID
ClassName }]

Grant RUN or EXECUTE Authority

GRANT { RUN ON [Owner.] ModuleName
EXECUTE ON PROCEDURE [Owner.] ProcedureName } TO

{{ DBEUserID
GroupName
ClassName } [,...]
PUBLIC }

Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority

GRANT { CONNECT
DBA
INSTALL [AS OwnerID]
MONITOR
RESOURCE } TO { DBEUserID

GroupName
ClassName } [,...]
Appendix A 607

SQL Syntax Summary
Grant DBEFileSet Authority

GRANT { SECTIONSPACE
TABLESPACE } [,...] ON DBEFILESET DBEFileSetName TO

{ DBEUserID
GroupName
ClassName
PUBLIC } [,...]

IF
IF Condition THEN [Statement ;[...]]
[ELSEIF Condition THEN [Statement ; [...]]]
[ELSE [Statement ; [...]]] ENDIF;

INCLUDE
INCLUDE { SQLCA [[IS] EXTERNAL]

SQLDA }

INSERT - 1
[BULK] INSERT INTO { [Owner.] TableName

[Owner.] ViewName}
[({ ColumnName}[,...])]

VALUES ({ SingleRowValues
BulkValues
? })

SingleRowValues

{ NULL
USER
: HostVariable [[INDICATOR]: IndicatorVariable]
?
: LocalVariable
:ProcedureParameter
:: Built-inVariable
ConversionFunction
CurrentFunction
[+

-]{ Integer
Float
Decimal }

‘ CharacterString ’
OxHexadeciamalString
‘ LongColumnIOString ’ }[,...]
608 Appendix A

SQL Syntax Summary
LongColumnIOString

<{[PathName/] FileName
%SharedMemoryAddress }

[{ >
>>
>! }[PathName/]{ FileName

CharSting $
CharString $ CharString }

>%{ SharedMemoryAddress
$ }]

BulkValues

:Buffer [,:StartIndex [, :NumberOfRows]]

Dynamic Parameter Substitution

(? [,...])

INSERT - 2
INSERT INTO {[Owner.] TableName

[Owner.] ViewName}[(ColumnName [,...])] QueryExpression

Labeled Statement

Label : Statement

LOCK TABLE
LOCK TABLE [Owner.] TableName IN { SHARE [UPDATE]

EXCLUSIVE } MODE

LOG COMMENT
LOG COMMENT { ‘String’

:HostVariable
:ProcedureParameter
:ProcedureLocalVariable
? }

OPEN
OPEN CursorName [KEEP CURSOR [WITH LOCKS

WITH NOLOCKS]]
[USING { [SQL] DESCRIPTOR { SQLDA

AreaName}
HostVariableName [[INDICATOR]: IndicatorVariable][,...]}]
Appendix A 609

SQL Syntax Summary
PREPARE
PREPARE [REPEAT]{ StatementName

[Owner.] ModuleName [(SectionNumber)]}
[IN DBEFileSetName] FROM { ‘String’

:HostVariable }

PRINT

PRINT {‘Constant’
:LocalVariable
:Parameter
::Built-inVariable };

RAISE ERROR

RAISE ERROR [ErrorNumber] [MESSAGEErrorText]

REFETCH

REFETCHCursorName INTO {: HostVariable [[INDICATOR] : Indicator]}[,...]

RELEASE

RELEASE

REMOVE DBEFILE

REMOVE DBEFILE DBEFileName FROM DBEFILESET DBEFileSetName

REMOVE FROM GROUP
REMOVE { DBEuserID

GroupName
ClassName }[,...] FROM GROUP [Owner.] TargetGroupName

RENAME COLUMN

RENAME COLUMN [Owner.] TableName.ColumnName TO NewColumnName

RENAME TABLE

RENAME TABLE [Owner.] TableName TO NewTableName

RESET
RESET { SYSTEM.ACCOUNT [FOR USER { *

DBEUserID }]
SYSTEM.COUNTER }
610 Appendix A

SQL Syntax Summary
RETURN

RETURN [ReturnStatus];

REVOKE

Revoke Table or View Authority

REVOKE { ALL [PRIVILEGES]
[SELECT

INSERT
DELETE
ALTER
INDEX
UPDATE [({ ColumnName}[,...])]
REFERENCES [({ ColumnName}[,...])]]|,...|}

ON {[Owner.] TableName
[Owner. } ViewName } FROM { DBEUserID

GroupName
ClassName
PUBLIC }[,...][CASCADE]

Revoke RUN or EXECUTE Authority

REVOKE [RUN ON [Owner.] ModuleName
EXECUTE ON PROCEDURE [Owner.] ProcedureName] FROM

{{ DBEUserID
GroupName
ClassName }[,...]

PUBLIC }

Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority

REVOKE { CONNECT
DBA
INSTALL [AS OwnerID]
MONITOR
RESOURCE } FROM { DBEUserID

GroupName
ClassName }[,...]

SQL Syntax—Revoke DBEFileSet Authority

REVOKE { SECTIONSPACE
TABLESPACE} |,...| ON DBEFILESET DBEFileSetName FROM

{ { DBEUserID
GroupName
ClassName }[,...]

PUBLIC }

ROLLBACK WORK
ROLLBACK WORK [TO { SavePointNumber

: HostVariable
: LocalVariable
: ProcedureParameter }

RELEASE]
Appendix A 611

SQL Syntax Summary
SAVEPOINT
SAVEPOINT [: HostVariable

: LocalVariable
: ProcedureParameter]

SELECT

Select Statement Level

[BULK] QueryExpression [ORDER BY { ColumnID [ASC
DESC]}[,...]]

Subquery Level

(QueryExpression)

Query Expression Level

{ QueryBlock
(QueryExpression)}[UNION [ALL]{ QueryBlock

(QueryExpreession)}][...]

Query Block Level

SELECT [ALL
DISTINCT] SelectList [INTO HostVariableSpecification]

FROMFromSpec [,...]
[WHERESearchCondition1]
[GROUP BY GroupColumnList]
[HAVING SearchCondition2]

SelectList

{ *
[Owner.] Table. *
CorrelationName. *
Expression
[[Owner.] Table.] ColumnName
CorrelationName.ColumnName }[,...]

HostVariableSpecification--With BULK Option

:Buffer [,:StartIndex [,:NumberOfRows]]

HostVariableSpecification--Without BULK Option

{ :HostVariable [[INDICATOR] : Indicator]) [,...]
612 Appendix A

SQL Syntax Summary
FromSpec

{ TableSpec
(FromSpec)
FromSpec NATURAL [INNER

LEFT [OUTER]
RIGHT [OUTER]] JOIN { TableSpec

(FromSpec) }
FromSpec [INNER

LEFT [OUTER]
RIGHT [OUTER]] JOIN { TableSpec

(FromSpec)}{ ON SearchCondition3
USING (ColumnList) } }

TableSpec

[Owner.] TableName [CorrelationName]

SET CONNECTION
SET CONNECTION { ‘ConnectionName’

:HostVariable }

SET CONSTRAINTS
SET ConstraintType [,...] CONSTRAINTS { DEFERRED

IMMEDIATE}

SET DEFAULT DBEFILESET
SET DEFAULT { SECTIONSPACE

TABLESPACE } TO DBEFILESET DBEFileSetName FOR PUBLIC

SET DML ATOMICITY
SET DML ATOMICITY AT { ROW

STATEMENT} LEVEL

SET MULTITRANSACTION
SET MULTITRANSACTION { ON

OFF}

SETOPT
SETOPT { CLEAR

GENERAL { ScanAccess
JoinAlgorithm }[,...]

BEGIN { GENERAL { ScanAccess
JoinAlgorithm } } [,...] END }
Appendix A 613

SQL Syntax Summary
Scan Access

[NO]{ SERIALSCAN
INDEXSCAN
HASHSCAN
SORTINDEX }

Join Algorithm

[NO] { NESTEDLOOP
NLJ
SORTMERGE
SMJ }

SET PRINTRULES
SET PRINTRULES [ON

OFF]

SET SESSION
SET SESSION { ISOLATION LEVEL { RR

CS
RC
RU
REPEATABLE READ
SERIALIZABLE
CURSOR STABILITY
READ COMMITTED
READ UNCOMMITTED
:HostVariable1 }

PRIORITY { Priority
:HostVariable2 }

LABEL { ‘LabelString’
:HostVariable3 }

ConstraintType [,...] CONSTRAINTS { DEFERRED
IMMEDIATE}

DML ATOMICITY AT { STATEMENT
ROW } LEVEL

ON { TIMEOUT
DEADLOCK} ROLLBACK { QUERY

TRANSACTION}
USER TIMEOUT [TO] { DEFAULT

MAXIMUM
TimeoutValue [{ SECONDS

MINUTES}]
:HostVariable4 [{ SECONDS

 MINUTES}] }
TERMINATION AT { SESSION

TRANSACTION
QUERY
RESTRICTED } LEVEL

[{ PARALLEL
NO }] FILL }[,...]
614 Appendix A

SQL Syntax Summary
SET TRANSACTION
SET TRANSACTION { ISOLATION LEVEL { RR

CS
RC
RU
REPEATABLE READ
SERIALIZABLE
CURSOR STABILITY
READ COMMITTED
READ UNCOMMITTED
:HostVariable1 }

PRIORITY { Priority
:HostVariable2 }

LABEL { ‘LabelString’
:HostVariable3 }

ConstraintType [,...] CONSTRAINTS { DEFERRED
IMMEDIATE}

DML ATOMICITY AT { STATEMENT
ROW } LEVEL

ON { TIMEOUT
DEADLOCK} ROLLBACK { QUERY

TRANSACTION}
USER TIMEOUT [TO] { DEFAULT

MAXIMUM
TimeoutValue [{ SECONDS

MINUTES}]
:HostVariable4 [{ SECONDS

 MINUTES}]
TERMINATION AT { SESSION

TRANSACTION
QUERY
RESTRICTED } LEVEL }[,...]

SET USER TIMEOUT
SET USER TIMEOUT [TO] {{ TimeoutValue

:HostVariable } [SECONDS
MINUTES]

DEFAULT
MAXIMUM }

SQLEXPLAIN

SQLEXPLAIN : HostVariable
Appendix A 615

SQL Syntax Summary
START DBE
START DBE ‘DBEnvironmentName’ [AS ‘ConnectionName’][MULTI]
[BUFFER = (DataBufferPages, LogBufferPages)

TRANSACTION = MaxTransactions
MAXIMUM TIMEOUT = { TimeoutValue [SECONDS

MINUTES]
NONE }

DEFAULT TIMEOUT = { TimeoutValue [SECONDS
MINUTES]

MAXIMUM }
RUN BLOCK = ControlBlockPages]|,...|

START DBE NEW
START DBE ‘DBEnvironmentName’ [AS ‘ConnectionName’][MULTI] NEW
[{ DUAL

AUDIT}|...| LOG
BUFFER = (DataBufferPages, LogBufferPages)
LANG = LanguageName
TRANSACTION = MaxTransactions
MAXIMUM TIMEOUT = { TimeoutValue [SECONDS

MINUTES]
NONE }

DEFAULT TIMEOUT = { TimeoutValue [SECONDS
MINUTES]

MAXIMUM }
RUN BLOCK = ControlBlockPages
DEFAULT PARTITION = { DefaultPartitionNumber

NONE }
COMMENT PARTITION = { CommentPartitionNumber

DEFAULT
NONE }

MAXPARTITIONS = MaximumNumberOfPartitions
AUDIT NAME = ‘AuditName’
{ COMMENT

DATA
DEFINITION

 STORAGE
AUTHORIZATION
SECTION
ALL }|...| AUDIT ELEMENTS

DBEFile0Definition
DBELogDefinition]|,...|

DBEFile0Definition

DBEFILE0 DBEFILE DBEDile0ID
WITH PAGES = DBEFile0Size
NAME = ‘SystemFileName1’

DBELogDefinition

LOG DBEFILE DBELog1ID [AND DBELog2ID]
WITH PAGES = DBELogSize,
NAME = ‘SystemFileName2’ [AND ‘SystemFileName3’]
616 Appendix A

SQL Syntax Summary
START DBE NEWLOG
START DBE ‘DBEnvironmentName’ [AS ‘ConnectionName’][MULTI] NEWLOG
[{ ARCHIVE

DUAL
AUDIT}|...| LOG

BUFFER = (DataBufferPages, LogBufferPages)
TRANSACTION = MaxTransactions
MAXIMUM TIMEOUT = { TimeoutValue [SECONDS

MINUTES]
NONE }

DEFAULT TIMEOUT = { TimeoutValue [SECONDS
MINUTES]

MAXIMUM }
RUN BLOCK = ControlBlockPages
DEFAULT PARTITION = { DefaultPartitionNumber

NONE }
COMMENT PARTITION = { CommentPartitionNumber

DEFAULT
NONE }

MAXPARTITIONS = MaximumNumberOfPartitions
AUDIT NAME = ‘AuditName’
{ COMMENT

DATA
DEFINITION
STORAGE
AUTHORIZATION
SECTION
ALL }|...| AUDIT ELEMENTS]|,...| NewLogDefinition

NewLogDefinition

LOG DBEFILE DBELog1ID [AND DBELog2ID]
WITH PAGES = DBELogSize ,
NAME = ' SystemFileName1 ' [AND ' SystemFileName2 ']

STOP DBE

STOP DBE

TERMINATE QUERY
TERMINATE QUERY FOR { CID ConnectionID

XID TransactionID }

TERMINATE TRANSACTION
TERMINATE TRANSACTION FOR { CID ConnectionID

XID TransactionID }
Appendix A 617

SQL Syntax Summary
TERMINATE USER
TERMINATE USER { DBEUserID

SessionID
CID ConnectionID }

TRANSFER OWNERSHIP
TRANSFER OWNERSHIP OF {[TABLE][Owner.] TableName

[VIEW][Owner.] ViewName
PROCEDURE [Owner.] ProcedureName
GROUPGroupName } TO NewOwnerName

TRUNCATE TABLE

TRUNCATE TABLE [Owner.] TableName

UPDATE
UPDATE {[Owner.] TableName

[Owner.] ViewName }
SET { ColumnName = { Expression

‘LongColumnIOString’
NULL } } [,...]

[WHERESearchCondition]

LongColumnIOString

{ [<{[PathName/] FileName
%SharedMemoryAddress }]

[{ >
>>
>! }[PathName/]{ FileName

CharString $
CharString $ CharString }

>% { SharedMemoryAddress
$ }] } |...|

UPDATE STATISTICS
UPDATE STATISTICS FOR TABLE {[Owner.] TableName

SYSTEM. SystemViewName }

UPDATE WHERE CURRENT
UPDATE {[Owner.] TableName

[Owner.] ViewName}
SET { ColumnName = { Expression

‘LongColumnIOString’
NULL }}[,...]

WHERE CURRENT OFCursorName
618 Appendix A

SQL Syntax Summary
LongColumnIOString

{ [<{[PathName/] FileName
%SharedMemoryAddress }]

[{ >
>>
>! }[PathName/]{ FileName

CharString $
CharString $ CharString }

>% { SharedMemoryAddress
$ }] } |...|

VALIDATE
VALIDATE [FORCE

DROP SETOPTINFO]
{ MODULE { {[Owner.] ModuleName} [,...]

{ SECTION [Owner.] ModuleName (SectionNumber)} [,...] }
PROCEDURE { {[Owner.] ProcedureName } [,...]

{ SECTION [Owner.] ProcedureName (SectionNumber)} [,...] }
ALL{ MODULES

PROCEDURES} [WITH AUTOCOMMIT] }

WHENEVER
WHENEVER { SQLERROR

SQLWARNING
NOT FOUND } { STOP

CONTINUE
GOTO [:] Label
GO TO [:] Label }

WHILE

WHILE Condition DO [Statement; [...]] ENDWHILE;
Appendix A 619

SQL Syntax Summary
620 Appendix A

ISQL Syntax Summary
B ISQL Syntax Summary

ISQL is the interactive interface to ALLBASE/SQL. Some, but not all, ALLBASE/SQL
statements can be entered interactively as ISQL commands.

CHANGE

C[HANGE] Delimiter OldString Delimiter NewString Delimiter [@]

DO
DO [CommandNumber

 CommandString]

EDIT

ED[IT][FileName]

END

EN[D]

ERASE

ER[ASE] FileName

EXIT

EX[IT]

EXTRACT
EXTRACT{ MODULE[Owner.] ModuleName[,...]

SECTION [Owner.] ModuleName(SectionNumber) [,...]
ALL MODULES }

[NO SETOPTINFO] INTO FileName

HELP
HE[LP]{ @

SQLStatement
ISQLCommand} [D[ESCRIPTION]

S[YNTAX]
E[XAMPLE]]
Appendix B 621

ISQL Syntax Summary
HOLD
HO[LD]{ SQLStatement

ISQLCommand}[EscapeCharacter ;{ SQLStatement
ISQLCommand}][...]

INFO
IN [FO]{[Owner.]TableName

[Owner.]ViewName}

INPUT
INP [UT]{[Owner.] TableName

 [Owner.]ViewName } (ColumnName[,ColumnName][...])
{ (Value [,Value][...])[ROLLBACK WORK

COMMIT WORK] } [...] E[ND]

INSTALL

IN [STALL] FileName [DROP][IN DBEFileSetName][NO OPTINFO]

LIST FILE

LI [ST] F[ILE] FileName

LIST HISTORY
LI [ST] H[ISTORY]{ CommandNumber

@ }

LIST INSTALL

LI [ST[I [NSTALL] FileName

LIST SET
LI [ST] S[ET]{ Option

@ }

LOAD
LO[AD][P[ARTIAL]] FROM { E[XTERNAL]

I [NTERNAL]} InputFileName [AT StartingRow]
[FOR NumberOfRows] TO { [Owner.] TableName

[Owner.] ViewName}[ExternalInputSpec
 USING DescriptionFileName]

{ Y[ES] PatternLocation Pattern
N[O] }
622 Appendix B

ISQL Syntax Summary
ExternalInputSpec

{ ColumnName StartingLocation Length [NullIndicator]
[FormatType] } [...] E[ND]

RECALL
REC[ALL]{ C[URRENT]

F[ILE] FileName
H[ISTORY] CommandNumber}

REDO
RED[O][CommandNumber

CommandString]

Subcommands

 B Break
 D Delete
 E Exit
 H Help
 I Insert
 L List
 R Replace
 X Execute
 +[n] Forward n
 -[n] Backward n

Return Next Line

RENAME

REN[AME] OldFileName NewFileName

SELECTSTATEMENT

SelectStatement ;[PA[USE];][BrowseOption ;][...] E[ND]

SET
SE[T] Option OptionValue

Options and Values

AUTOC[OMMIT] ON | OFF
AUTOL[OCK] ON | OFF
AUTOS[AVE] NumberofRows
C[ONTINUE] ON | OFF
CONV[ERT] ASCII | EBCDIC | OFF
EC[HO] ON | OFF
ECHO_[ALL] ON | OFF
EDITOR EditorName
Appendix B 623

ISQL Syntax Summary
ES[CAPE] Character
EXIT [_ON_DBERR] ON | OFF
EXIT_ON_DBWARN ON | OFF
FL[AGGER] FlaggerName
F[RACTION] Length
N[ULL] [Character]
OU[TPUT] FileName
OW[NER] OwnerName
LOAD_B[UFFER] BufferSize
PA[GEWIDTH] PageWidth
PR[OMPT] PromptString

SQLGEN

SQLG[EN]

SQLUTIL

SQLU[TIL]

START

STA[RT][CommandFileName][(Value [, Value][...])]

STORE

STO[RE] FileName [R[EPLACE]]

SYSTEM
{ S[YSTEM]
 ! }[HP-UXCommand]

UNLOAD
U[NLOAD] TO { E[XTERNAL]

I [NTERNAL]} OutputFileName
FROM {[Owner.] TableName

[Owner.] ViewName
“SelectCommand” } ExternalOutputSpec

ExternalOutputSpec

DescriptionFileName { OutputLength [FractionLength]
[NullIndicator] }[...]
624 Appendix B

Sample DBEnvironment
C Sample DBEnvironment

The DBEnvironment used in examples throughout the ALLBASE/SQL manual set is
called PartsDBE . Your installation package includes the necessary files to create a working
version of this DBEnvironment so that users can try the examples while learning about
the features of ALLBASE/SQL. Also included is a set of sample applications that access
PurchDB, the main database in PartsDBE.

This appendix presents the steps for setting up the sample DBEnvironment and then
displays some important files and tables related to PartsDBE. It contains the following
sections:

• Installing the Files for PartsDBE

• Setting Up PartsDBE

• ISQL command files for creating and loading PartsDBE

• Tables in the ManufDB, PurchDB, and RecDB Databases

• Sample Program Files

Before you can use PartsDBE, you must install the sample database files, then run a setup
script to create and load PartsDBE. Optionally, you can preprocess and compile the sample
application programs.
Appendix C 625

Sample DBEnvironment
Installing the Files for PartsDBE
Installing the Files for PartsDBE
You can install the files for setting up PartsDBE when you install ALLBASE/SQL or at a
later time. Refer to the pamphlet entitled ALLBASE/SQL Release Notes for installation
instructions. This pamphlet accompanies the media for the software.

The files for PartsDBE are installed into the following directory structure:

 /
 |
 usr
 |
 lib
 |
 allbase
 |
 hpsql
 |
 --
 | | | | |
 readme setup sqlsetup sampledb programs
 (file) (file) (file) (directory) (directory)

The hpsql directory contains the files that are important for loading the sample
DBEnvironment. Included are the following three files:

• readme, a file describing the files in the hpsql directory and how to use them

• sqlsetup, a C shell script that displays a menu of options for creating sample
DBEnvironments (sqlsetup calls setup)

• setup, a script you use to copy the hpsql directory and subdirectories into your current
working directory, create and load PartsDBE, and preprocess and compile the sample
source code files

Also included are the two directories listed here:

• sampledb, which contains files for creating and loading PartsDBE

• programs, which contains source code files for sample ALLBASE/SQL C, COBOL,
Pascal, and FORTRAN programs
626 Appendix C

Sample DBEnvironment
Setting Up PartsDBE
Setting Up PartsDBE
Before beginning, change into the directory where you want to create PartsDBE. Use an
empty directory if possible. Then choose one of the following two methods for setting up
PartsDBE:

• Using SQLSetup

• Using Setup

SQLSetup is a sample database setup tool which simplifies the process of installing
PartsDBE in your work space. Setup is a lower-level script called by SQLSetup.

Using SQLSetup

Run SQLSetup by issuing the proper command. From the C shell, issue the following
command:

 $ /usr/lib/allbase/hpsql/sqlsetup Return

From the K shell or Bourne shell, issue the following command:

 $ csh /usr/lib/allbase/hpsql/sqlsetup Return

A menu like the one in <Undefined Cross-Reference> appears on your screen.

Figure C-1. SQLSetup Menu

 Options for Setting Up ALLBASE/SQL Sample DBEnvironments

 ===

 Choose one:

 1. Create PartsDBE without sample programs
 2. Create PartsDBE, copy, preprocess and compile sample programs
 3. Copy, preprocess and compile sample programs only
 4. Generate a schema for PartsDBE
 5. Display schema for PartsDBE
 6. Purge PartsDBE and sample programs
 7. Help
 0. Exit

 ===

 Enter your choice=>

From this menu, you select an option to create a copy of PartsDBE in your directory. Before
choosing an option, examine each line on the menu. The first option simply creates a copy
of PartsDBE. The second option, in addition to creating PartsDBE, copies a set of
application programs into the current directory, then preprocesses and compiles them.
(This is time-consuming.)
Appendix C 627

Sample DBEnvironment
Setting Up PartsDBE
Option 3 creates just the sample program set. Option 4 creates a database schema by
calling SQLGEN. Option 5 displays the schema once it has been created. Option 6 lets you
purge the sample DBEnvironment and programs.

Choose the Help option to see more information about SQLSetup, or choose 0 to exit.

Creating PartsDBE

To create PartsDBE, choose option 1 from the SQLSetup menu. This option runs a set of
ISQL command files that create the DBEnvironment, define all its tables, views, indexes
and security structure, and then load it with data.

As the system creates PartsDBE, you see several messages displayed. At the end of the
creation process, you see the following message:

 Creation and Loading of PartsDBE is now complete!

When you return to the menu, choose 0 to exit.

Using Setup

The following is an alternate method for setting up PartsDBE.

Use the following command:

 $ /usr/lib/allbase/hpsql/setup 2 Return

You will see a display of messages showing the progress of the setup script. For more
information about setup, read the comments at the beginning of the file itself.
628 Appendix C

Sample DBEnvironment
Listings of ISQL Command Files
Listings of ISQL Command Files
Both SQLSetup and setup use a group of ISQL command files to create and load local
copies of PartsDBE. These files, located in /usr/lib/allbase/hpsql/sampledb, are as follows:

• STARTDBE, an ISQL command file containing the START DBE command.

• CREATABS, an ISQL command file containing SQL commands. for creating
DBEFileSets, DBEFiles, tables, and views

• LOADTABS, an ISQL command file containing ISQL and SQL commands for loading
the two tables in the ManufDB database, the six tables in the PurchDB database, and
the three tables in the RecDB database in the PartsDBE DBEnvironment. LOADTABS
uses the following ASCII files, which contain sample data:

• SupplyBa contains data for the ManufDB.SupplyBatches table.

• TestData contains data for the ManufDB.TestData table.

• Inventor contains data for the PurchDB.Inventory table.

• OrderIte contains data for the PurchDB.OrderItems table.

• Orders contains data for the PurchDB.Orders table.

• Parts contains data for the PurchDB.Parts table.

• Report1 contains data for the PurchDB.Reports table.

• SupplyPr contains data for the PurchDB.SupplyPrice table.

• Vendors contains data for the PurchDB.Vendors table.

• Members contains data for the RecDB.Members table.

• Clubs contains data for the RecDB.Clubs table.

• Events contains data for the RecDB.Events table.

• CREAINDX, an ISQL command file containing CREATE INDEX commands.

• CREASEC, an ISQL command file containing SQL commands for granting various
authorities.

Listings of these files appear in the following sections.
Appendix C 629

Sample DBEnvironment
STARTDBE Command File
STARTDBE Command File
 /*This file creates the PartsDBE DBEnvironment with MULTI user mode and dual
logging. */

 START DBE 'sampledb/PartsDBE' MULTI NEW
 DUAL LOG,
 TRANSACTION = 5,
 DBEFILE0 DBEFILE PartsDBE0
 WITH PAGES = 150,
 NAME = 'PartsF0',
 LOG DBEFILE PartsDBELog1 AND PartsDBELog2
 WITH PAGES = 256,
 NAME = 'PartsLG1' AND 'PartsLG2';
630 Appendix C

Sample DBEnvironment
CREATABS Command File
CREATABS Command File
 /* The following commands create the Purchasing Department's DBEFileSet
with two DBEFiles. */

 CREATE DBEFILESET PurchFS;

 CREATE DBEFILE PurchDataF1
 WITH PAGES = 50, NAME = 'PurchDF1',
 TYPE = TABLE;

 CREATE DBEFILE PurchIndxF1
 WITH PAGES = 50, NAME = 'PurchXF1',
 TYPE = INDEX;

 ADD DBEFILE PurchDataF1
 TO DBEFILESET PurchFS;

 ADD DBEFILE PurchIndxF1
 TO DBEFILESET PurchFS;

 /* The following commands create the Warehouse Department's DBEFileSet
with two DBEFiles. */

 CREATE DBEFILESET WarehFS;
 CREATE DBEFILE WarehDataF1
 WITH PAGES = 50, NAME = 'WarehDF1',
 TYPE = TABLE;
 CREATE DBEFILE WarehIndxF1
 WITH PAGES = 50, NAME = 'WarehXF1',
 TYPE = INDEX;
 ADD DBEFILE WarehDataF1
 TO DBEFILESET WarehFS;
 ADD DBEFILE WarehIndxF1
 TO DBEFILESET WarehFS;

 /* The following commands create the Receiving Department's DBEFileSet
with two DBEFiles. */

 CREATE DBEFILESET OrderFS;
 CREATE DBEFILE OrderDataF1
 WITH PAGES = 50, NAME = 'OrderDF1',
 TYPE = TABLE;
 CREATE DBEFILE OrderIndxF1
 WITH PAGES = 50, NAME = 'OrderXF1',
 TYPE = INDEX;
 ADD DBEFILE OrderDataF1
 TO DBEFILESET OrderFS;
 ADD DBEFILE OrderIndxF1
 TO DBEFILESET OrderFS;
Appendix C 631

Sample DBEnvironment
CREATABS Command File
 /* The following commands create a DBEFileSet with one DBEFile for
 storage of long field data in the PurchDB.Reports table .*/

 CREATE DBEFILESET FileFS;

 CREATE DBEFILE FileData
 WITH PAGES=50, NAME='FileData',
 TYPE=TABLE;

 ADD DBEFILE FileData TO DBEFILESET FileFS;
 /* The following commands create the two tables that comprise the ManufDB
database. */

 CREATE PUBLIC TABLE ManufDB.SupplyBatches
 (VendPartNumber CHAR(16) NOT NULL,
 BatchStamp DATETIME DEFAULT CURRENT_DATETIME
 NOT NULL
 PRIMARY KEY,
 MinPassRate FLOAT)
 IN WarehFS;

 CREATE PUBLIC TABLE ManufDB.TestData
 (BatchStamp DATETIME NOT NULL
 REFERENCES ManufDB.SupplyBatches (BatchStamp),
 TestDate DATE,
 TestStart TIME,
 TestEnd TIME,
 LabTime INTERVAL,
 PassQty INTEGER,
 TestQty INTEGER)
 IN WarehFS;

 /* The following commands create the seven tables and two views
 that comprise the PurchDB database. */

 CREATE PUBLIC TABLE PurchDB.Parts
 (PartNumber CHAR(16) NOT NULL,
 PartName CHAR(30),
 SalesPrice DECIMAL(10,2))
 IN WarehFS;

 CREATE PUBLIC TABLE PurchDB.Inventory
 (PartNumber CHAR(16) NOT NULL,
 BinNumber SMALLINT NOT NULL,
 QtyOnHand SMALLINT,
 LastCountDate CHAR(8),
 CountCycle SMALLINT,
 AdjustmentQty SMALLINT,
 ReorderQty SMALLINT,
 ReorderPoint SMALLINT)
 IN WarehFS;

 CREATE PUBLIC TABLE PurchDB.SupplyPrice
 (PartNumber CHAR(16) NOT NULL,
 VendorNumber INTEGER NOT NULL,
 VendPartNumber CHAR(16) NOT NULL,
 UnitPrice DECIMAL(10,2),
 DeliveryDays SMALLINT,
632 Appendix C

Sample DBEnvironment
CREATABS Command File
 DiscountQty SMALLINT)
 IN PurchFS;

 CREATE PUBLIC TABLE PurchDB.Vendors
 (VendorNumber INTEGER NOT NULL,
 VendorName CHAR(30) NOT NULL,
 ContactName CHAR(30),
 PhoneNumber CHAR(15),
 VendorStreet CHAR(30) NOT NULL,
 VendorCity CHAR(20) NOT NULL,
 VendorState CHAR(2) NOT NULL,
 VendorZipCode CHAR(10) NOT NULL,
 VendorRemarks VARCHAR(60))
 IN PurchFS;

 CREATE PUBLIC TABLE PurchDB.Orders
 (OrderNumber INTEGER NOT NULL,
 VendorNumber INTEGER,
 OrderDate CHAR(8))
 IN OrderFS;
 CREATE PUBLIC TABLE PurchDB.OrderItems
 (OrderNumber INTEGER NOT NULL,
 ItemNumber INTEGER NOT NULL,
 VendPartNumber CHAR(16),
 PurchasePrice DECIMAL(10,2) NOT NULL,
 OrderQty SMALLINT,
 ItemDueDate CHAR(8),
 ReceivedQty SMALLINT)
 IN OrderFS;

 CREATE PUBLIC TABLE PurchDB.Reports
 (ReportName CHAR(20) NOT NULL,
 ReportOwner CHAR(20) NOT NULL,
 FileData LONG VARBINARY(100000)IN FileFS NOT NULL)
 IN OrderFS;

 CREATE VIEW PurchDB.PartInfo
 (PartNumber,
 PartName,
 VendorNumber,
 VendorName,
 VendorPartNumber,
 ListPrice,
 Quantity) AS
 SELECT PurchDB.SupplyPrice.PartNumber,
 PurchDB.Parts.PartName,
 PurchDB.SupplyPrice.VendorNumber,
 PurchDB.Vendors.VendorName,
 PurchDB.Supplyprice.VendPartNumber,
 PurchDB.SupplyPrice.UnitPrice,
 PurchDB.SupplyPrice.DiscountQty
 FROM PurchDB.Parts,
 PurchDB.SupplyPrice,
 PurchDB.Vendors
 WHERE PurchDB.SupplyPrice.PartNumber =
 PurchDB.Parts.PartNumber
 AND PurchDB.SupplyPrice.VendorNumber =
 PurchDB.Vendors.VendorNumber;
Appendix C 633

Sample DBEnvironment
CREATABS Command File
CREATE VIEW PurchDB.VendorStatistics
 (VendorNumber,
 VendorName,
 OrderDate,
 OrderQuantity,
 TotalPrice) AS
 SELECT PurchDB.Vendors.VendorNumber,
 PurchDB.Vendors.VendorName,
 OrderDate,
 OrderQty,
 OrderQty * PurchasePrice
 FROM PurchDB.Vendors,
 PurchDB.Orders,
 PurchDB.OrderItems
 WHERE PurchDB.Vendors.VendorNumber =
 PurchDB.Orders.VendorNumber
 AND PurchDB.Orders.OrderNumber =
 PurchDB.OrderItems.OrderNumber;

 /* The following commands create the Recreation DBEFileSet
 with one DBEFile. */

 CREATE DBEFILESET RecFS;

 CREATE DBEFILE RecDataF1
 WITH PAGES = 50, NAME = 'RecDF1',
 TYPE = MIXED;

 ADD DBEFILE RecDataF1
 TO DBEFILESET RecFS;

 /* The following commands create three tables
 that comprise the RecDB database. */

 CREATE PUBLIC TABLE RecDB.Clubs
 (ClubName CHAR(15) NOT NULL PRIMARY KEY CONSTRAINT Clubs_PK,
 ClubPhone SMALLINT,
 Activity CHAR(18))
 IN RecFS;

 CREATE PUBLIC TABLE RecDB.Members
 (MemberName CHAR(20) NOT NULL,
 Club CHAR(15) NOT NULL,
 MemberPhone SMALLINT,
 PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
 FOREIGN KEY (Club)
 REFERENCES RecDB.Clubs (ClubName) CONSTRAINT Members_FK)
 IN RecFS;

 CREATE PUBLIC TABLE RecDB.Events
 (SponsorClub CHAR(15),
 Event CHAR(30),
 Date DATE DEFAULT CURRENT_DATE,
 Time TIME,
 Coordinator CHAR(20),
 FOREIGN KEY (Coordinator, SponsorClub)
 REFERENCES RecDB.Members (MemberName, Club) CONSTRAINT Events_FK)
 IN RecFS;
634 Appendix C

Sample DBEnvironment
LOADTABS Command File
LOADTABS Command File
 /* This file loads each of the two tables in the ManufDB */
 /* database, the six tables in the PurchDB database, */
 /* and the three tables in the RecDB database with data. */

 LOAD FROM EXTERNAL sampledb/SupplyBa TO ManufDB.SupplyBatches
 VENDPARTNUMBER 1 16
 BATCHSTAMP 18 23
 MINPASSRATE 43 8 ?
 END
 N;
 COMMIT WORK;
 !echo Table SupplyBatches successfully loaded!;

 LOAD FROM EXTERNAL sampledb/TestData TO ManufDB.TestData
 BATCHSTAMP 1 23
 TESTDATE 25 10 ?
 TESTSTART 36 8 ?
 TESTEND 45 8 ?
 LABTIME 54 20 ?
 PASSQTY 75 2 ?
 TESTQTY 78 2 ?
 ENDATA
 N;
 COMMIT WORK;
 !echo Table TestData successfully loaded!;

 LOAD FROM EXTERNAL sampledb/Parts TO PurchDB.Parts
 PartNumber 1 16
 PartName 17 30 ?
 SalesPrice 47 12 ?
 END
 N;
 COMMIT WORK;
 !echo Table Parts successfully loaded!;

 LOAD FROM EXTERNAL sampledb/Inventor TO PurchDB.Inventory
 PartNumber 1 16
 BinNumber 17 5
 QtyOnHand 22 5 ?
 LastCountDate 27 8 ?
 CountCycle 35 5 ?
 AdjustmentQty 40 5 ?
 ReorderQty 45 5 ?
 ReorderPoint 50 5 ?
 END
 N;
 COMMIT WORK;
 !echo Table Inventory successfully loaded!;

 LOAD FROM EXTERNAL sampledb/SupplyPr TO PurchDB.SupplyPrice
 PartNumber 1 16
 VendorNumber 17 10
 VendPartNumber 27 16
 UnitPrice 43 12 ?
Appendix C 635

Sample DBEnvironment
LOADTABS Command File
 DeliveryDays 55 5 ?
 DiscountQty 60 5 ?
 END
 N;
 COMMIT WORK;
 !echo Table SupplyPrice successfully loaded!;

 LOAD FROM EXTERNAL sampledb/Orders TO PurchDB.Orders
 OrderNumber 1 10
 VendorNumber 11 10 ?
 OrderDate 21 8 ?
 END
 N;
 COMMIT WORK;
 !echo Table Orders successfully loaded!;

 LOAD FROM EXTERNAL sampledb/OrderIte TO PurchDB.OrderItems
 OrderNumber 1 10
 ItemNumber 11 10
 VendPartNumber 21 16 ?
 PurchasePrice 37 12
 OrderQty 49 5 ?
 ItemDueDate 54 8 ?
 ReceivedQty 62 5 ?
 END
 N;
 COMMIT WORK;
 !echo Table OrderItems successfully loaded!;

 LOAD FROM EXTERNAL sampledb/Vendors TO PurchDB.Vendors
 VendorNumber 3 4
 VendorName 7 30
 ContactName 39 30 ?
 PhoneNumber 71 12 ?
 VendorStreet 88 30
 VendorCity 120 20
 VendorState 142 2
 VendorZipCode 146 5
 VendorRemarks 152 60 ?
 END
 N;
 COMMIT WORK;
 !echo Table Vendors successfully loaded!;

 LOAD FROM EXTERNAL sampledb/Clubs TO RecDB.Clubs
 ClubName 1 15
 ClubPhone 25 4 ?
 Activity 35 18 ?
 END
 N;
 COMMIT WORK;
 !echo Table Clubs successfully loaded!;

 LOAD FROM EXTERNAL sampledb/Members TO RecDB.Members
 MemberName 1 20
 Club 25 15
 MemberPhone 45 4 ?
 END
636 Appendix C

Sample DBEnvironment
LOADTABS Command File
 N;
 COMMIT WORK;
 !echo Table Members successfully loaded!;

 LOAD FROM EXTERNAL sampledb/Events TO RecDB.Events
 SponsorClub 1 15 ?
 Event 20 30 ?
 Date 50 10 ?
 Time 62 8 ?
 Coordinator 71 20 ?
 END
 N;
 COMMIT WORK;
 !echo Table Events successfully loaded!;

 INSERT INTO PURCHDB.REPORTS VALUES ('Report1', 'FREE',
 '< sampledb/Report1>! Report1');
 COMMIT WORK;
 !echo Table Reports successfully loaded!;

 !echo Loading of databases is now done!;
Appendix C 637

Sample DBEnvironment
CREAINDEX Command File
CREAINDEX Command File
 /* This file creates the indexes for the PurchDB database */
 /* and then updates the statistics for each of the tables. */

 CREATE UNIQUE INDEX PartNumIndex
 ON PurchDB.Parts (PartNumber);
 CREATE CLUSTERING INDEX PartToNumIndex
 ON PurchDB.SupplyPrice (PartNumber);
 CREATE INDEX PartToVendIndex
 ON PurchDB.SupplyPrice (VendorNumber);
 CREATE UNIQUE INDEX VendPartIndex
 ON PurchDB.SupplyPrice (VendPartNumber);
 CREATE UNIQUE INDEX VendorNumIndex
 ON PurchDB.Vendors (VendorNumber);
 CREATE UNIQUE CLUSTERING INDEX OrderNumIndex
 ON PurchDB.Orders (OrderNumber);
 CREATE INDEX OrderVendIndex
 ON PurchDB.Orders (VendorNumber);
 CREATE CLUSTERING INDEX OrderItemIndex
 ON PurchDB.OrderItems (OrderNumber);
 CREATE UNIQUE INDEX InvPartNumIndex
 ON PurchDB.Inventory (PartNumber);

 !echo Indexes have been created on tables in PurchDB!;

 UPDATE STATISTICS FOR TABLE ManufDB.SupplyBatches;
 UPDATE STATISTICS FOR TABLE ManufDB.TestData;
 UPDATE STATISTICS FOR TABLE PurchDB.Parts;
 UPDATE STATISTICS FOR TABLE PurchDB.Inventory;
 UPDATE STATISTICS FOR TABLE PurchDB.SupplyPrice;
 UPDATE STATISTICS FOR TABLE PurchDB.Vendors;
 UPDATE STATISTICS FOR TABLE PurchDB.Orders;
 UPDATE STATISTICS FOR TABLE PurchDB.OrderItems;
 UPDATE STATISTICS FOR TABLE PurchDB.Reports;
 UPDATE STATISTICS FOR TABLE RecDB.Members;
 UPDATE STATISTICS FOR TABLE RecDB.Clubs;
 UPDATE STATISTICS FOR TABLE RecDB.Events;

 !echo Statistics have now been updated for all tables!;
638 Appendix C

Sample DBEnvironment
CREASEC Command File
CREASEC Command File
 /* This file sets up authorities for the PurchDB and RecDB databases.*/
 /* The DBA for the sampledb DBEnvironment is the DBEUserID John. */

 REVOKE ALL ON ManufDB.SupplyBatches FROM PUBLIC;
 REVOKE ALL ON ManufDB.TestData FROM PUBLIC;
 REVOKE ALL ON PurchDB.Parts FROM PUBLIC;
 REVOKE ALL ON PurchDB.Inventory FROM PUBLIC;
 REVOKE ALL ON PurchDB.SupplyPrice FROM PUBLIC;
 REVOKE ALL ON PurchDB.Vendors FROM PUBLIC;
 REVOKE ALL ON PurchDB.Orders FROM PUBLIC;
 REVOKE ALL ON PurchDB.OrderItems FROM PUBLIC;
 REVOKE ALL ON PurchDB.Reports FROM PUBLIC;
 REVOKE ALL ON RecDB.Members FROM PUBLIC;
 REVOKE ALL ON RecDB.Clubs FROM PUBLIC;
 REVOKE ALL ON RecDB.Events FROM PUBLIC;

 GRANT DBA TO John;

 /* The following commands create the group for the Purchasing */
 /* Department. This group has SELECT authority on all tables */
 /* and views of the PurchDB database. It also has INSERT */
 /* and UPDATE authority for reports. */

 CREATE GROUP PurchManagers;
 ADD Margy TO GROUP PurchManagers;
 ADD Ron TO GROUP PurchManagers;
 ADD Sharon TO GROUP PurchManagers;

 GRANT SELECT ON PurchDB.Parts TO PurchManagers;
 GRANT SELECT ON PurchDB.Inventory TO PurchManagers;
 GRANT SELECT ON PurchDB.SupplyPrice TO PurchManagers;
 GRANT SELECT ON PurchDB.Vendors TO PurchManagers;
 GRANT SELECT ON PurchDB.Orders TO PurchManagers;
 GRANT SELECT ON PurchDB.OrderItems TO PurchManagers;
 GRANT SELECT ON PurchDB.VendorStatistics TO PurchManagers;
 GRANT SELECT ON PurchDB.PartInfo TO PurchManagers;
 GRANT SELECT, INSERT, UPDATE ON PurchDB.Reports TO PurchManagers;

 /* The following commands create the group that will maintain */
 /* the database. This group has RESOURCE authority, and all */
 /* table and view authorities for the tables and views of the */
 /* PurchDB database. */

 CREATE GROUP PurchDBMaint;

 ADD Annie TO GROUP PurchDBMaint;
 ADD Doug TO GROUP PurchDBMaint;
 ADD David TO GROUP PurchDBMaint;

 GRANT RESOURCE TO PurchDBMaint;
 GRANT ALL ON PurchDB.Parts TO PurchDBMaint;
 GRANT ALL ON PurchDB.Inventory TO PurchDBMaint;
Appendix C 639

Sample DBEnvironment
CREASEC Command File
 GRANT ALL ON PurchDB.SupplyPrice TO PurchDBMaint;
 GRANT ALL ON PurchDB.Vendors TO PurchDBMaint;
 GRANT ALL ON PurchDB.Orders TO PurchDBMaint;
 GRANT ALL ON PurchDB.Reports TO PurchDBMaint;
 GRANT ALL ON PurchDB.OrderItems TO PurchDBMaint;
 GRANT SELECT ON PurchDB.VendorStatistics TO PurchDBMaint;
 GRANT SELECT ON PurchDB.PartInfo TO PurchDBMaint;

 /* The following commands create the Purchasing Department's */
 /* group. This group has SELECT, INSERT, DELETE, and UPDATE */
 /* authority for the Inventory, SupplyPrice, Vendors, Orders,*/
 /* and OrderItems tables of the PurchDB database. */

 CREATE GROUP Purchasing;

 ADD AJ TO GROUP Purchasing;
 ADD Jorge TO GROUP Purchasing;
 ADD Ragaa TO GROUP Purchasing;
 ADD Greg TO GROUP Purchasing;
 ADD Karen TO GROUP Purchasing;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Inventory
 TO Purchasing;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.SupplyPrice
 TO Purchasing;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Vendors
 TO Purchasing;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Orders
 TO Purchasing;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.OrderItems
 TO Purchasing;

 /* The following commands create the Receiving Department's */
640 Appendix C

Sample DBEnvironment
CREASEC Command File
 /* group. This group has SELECT, INSERT, DELETE, and UPDATE*/
 /* authority for the Orders and OrderItems tables of the */
 /* PurchDB database. */

 CREATE GROUP Receiving;

 ADD Al TO GROUP Receiving;
 ADD Sue TO GROUP Receiving;
 ADD Martha TO GROUP Receiving;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Orders
 TO Receiving;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.OrderItems
 TO Receiving;

 /* The following commands create the Warehouse Department's */
 /* group. This group has SELECT, INSERT, DELETE, and UPDATE */
 /* authority for the Parts and Inventory tables of the */
 /* PurchDB database. */

 CREATE GROUP Warehouse;
 ADD Kelly TO GROUP Warehouse;
 ADD Al TO GROUP Warehouse;
 ADD Peter TO GROUP Warehouse;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Parts
 TO Warehouse;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Inventory
 TO Warehouse;

 /* The following commands create the Accounts Payable Department's */
 /* group. This group has SELECT, INSERT, DELETE, and UPDATE */
 /* authority for the SupplyPrice, Vendors, Orders, and OrderItems */
 /* tables of the PurchDB database. */

 CREATE GROUP AccountsPayable;

 ADD Michele TO GROUP AccountsPayable;
 ADD Jim TO GROUP AccountsPayable;
 ADD Karen TO GROUP AccountsPayable;
Appendix C 641

Sample DBEnvironment
CREASEC Command File
 ADD Stacey TO GROUP AccountsPayable;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.SupplyPrice
 TO AccountsPayable;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Vendors
 TO AccountsPayable;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Orders
 TO AccountsPayable;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.OrderItems
 TO AccountsPayable;

 /* The following commands create the group called Purch. All DBEUserIDs
 or the groups to which they belong are made members of this group.
 This group has CONNECT authority only to the PartsDBE DBEnvironment. */

 CREATE GROUP Purch;

 ADD PurchManagers TO GROUP Purch;
 ADD PurchDBMaint TO GROUP Purch;
 ADD Purchasing TO GROUP Purch;
 ADD Receiving TO GROUP Purch;
 ADD Warehouse TO GROUP Purch;
 ADD AccountsPayable TO GROUP Purch;
 ADD Tom@Wilkens TO GROUP Purch;

 GRANT CONNECT TO Purch;

 /* The following commands create the Manufacturing Department's */
 /* group. This group has SELECT, INSERT, DELETE, and UPDATE */
 /* authority for the TestData and SupplyBatches tables of the */
 /* ManufDB database. */

 CREATE GROUP Manuf;
 ADD Henry TO GROUP Manuf;
 ADD Peter TO GROUP Manuf;

 GRANT SELECT,
 INSERT,
642 Appendix C

Sample DBEnvironment
CREASEC Command File
 DELETE,
 UPDATE
 ON ManufDB.SupplyBatches
 TO Manuf;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON ManufDB.TestData
 TO Manuf;

 GRANT CONNECT TO Manuf;

 /* The following commands GRANT specific authorities to */
 /* specific DBEUserIDs. */

 GRANT SELECT ON PurchDB.Vendors TO Tom;
 GRANT SELECT ON PurchDB.VendorStatistics TO Tom;
 GRANT SELECT ON PurchDB.PartInfo TO Tom;
 GRANT UPDATE (BinNumber,QtyOnHand,LastCountDate)
 ON PurchDB.Inventory TO Kelly;
 GRANT UPDATE (BinNumber,QtyOnHand,LastCountDate)
 ON PurchDB.Inventory TO Peter;
 GRANT UPDATE (PhoneNumber,VendorStreet,VendorCity,
 VendorState,VendorZipCode)
 ON PurchDB.Vendors TO Karen;
 GRANT UPDATE (PhoneNumber,VendorStreet,VendorCity,
 VendorState,VendorZipCode)
 ON PurchDB.Vendors TO Jim;

 /* The following commands create a group called DBEUser */
 /* for all other DBEUserIDs, and GRANTS specific */
 /* authorities to this group. */

 CREATE GROUP DBEUsers;

 GRANT CONNECT TO DBEUsers;
 GRANT RESOURCE TO DBEUsers;
 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Parts
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Inventory
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Vendors
Appendix C 643

Sample DBEnvironment
CREASEC Command File
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.Orders
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.OrderItems
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON PurchDB.VendorStatistics
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON RecDB.Members
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON RecDB.Clubs
 TO DBEUsers;

 GRANT SELECT,
 INSERT,
 DELETE,
 UPDATE
 ON RecDB.Events
 TO DBEUsers;
644 Appendix C

Sample DBEnvironment
Data in the Sample DBEnvironment
Data in the Sample DBEnvironment
There are three databases in the DBEnvironment PartsDBE-- ManufDB, PurchDB, and
RecDB. Use the SELECT command to retrieve all the data in every table in each database,
as shown in the following sections.
Appendix C 645

Sample DBEnvironment
ManufDB.SupplyBatches Table
ManufDB.SupplyBatches Table
 isql=> select * from manufdb.supplybatches;

 select * from manufdb.supplybatches;
 ----------------+--------------------------+-----------------
 VENDPARTNUMBER |BATCHSTAMP |MINPASSRATE
 ----------------+--------------------------+-----------------
 7310 |1984-06-19 08:45:33.123 | 0.99
 8113 |1984-06-14 11:13:15.437 | 0.93
 790805 |1984-07-02 14:54:07.984 | 0.95
 70250 |1984-07-22 09:06:23.319 | 0.97
 9040 |1984-07-09 16:07:17.394 | 0.94
 9050 |1984-07-13 09:25:53.183 | 0.97
 29201 |1984-07-15 15:32:03.529 | 0.98
 13350 |1984-07-25 10:15:58.159 | 0.97
 549335 |1984-08-19 08:45:33.123 | 0.98

Number of rows selected is 10
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
646 Appendix C

Sample DBEnvironment
ManufDB.TestData Table
ManufDB.TestData Table
 select * from manufdb.testdata;
 --------------------------+------------+----------+----------+
 BATCHSTAMP |TESTDATE |TESTSTART |TESTEND |
 --------------------------+------------+----------+----------+
 1984-06-19 08:45:33.123 |1984-06-23 |08:12:19 |13:23:01 |
 1984-06-14 11:13:15.437 |1984-06-17 |08:05:02 |14:01:27 |
 1984-07-02 14:54:07.984 |1984-07-05 |14:03:21 |19:33:54 |
 1984-07-22 09:06:23.319 |1984-07-29 |14:01:28 |20:16:07 |
 1984-06-19 08:45:33.123 |1984-06-27 |08:02:29 |14:13:31 |
 1984-07-09 16:07:17.394 |1984-07-13 |08:43:16 |13:22:44 |
 1984-07-13 09:25:53.183 |1984-07-18 |14:07:01 |20:03:22 |
 1984-07-15 13:22:13.782 |1984-07-22 |09:01:48 |14:47:02 |
 1984-07-09 16:07:17.394 |1984-07-19 |08:13:26 |13:45:34 |
 1984-07-15 15:32:03.529 |1984-07-23 |14:02:34 |19:56:02 |
 1984-07-25 10:15:58.159 |1984-07-30 |08:25:11 |13:34:22 |
 1984-07-25 10:15:58.159 |1984-08-02 |08:01:13 |14:29:03 |
 1984-08-19 08:45:33.123 |1984-08-25 |08:12:19 |19:30:00 |
 --
Number of rows selected is 13
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >

 -+----------------------+-----------+-----------
 |LABTIME |PASSQTY |TESTQTY
 -+----------------------+-----------+-----------
 | 0 05:10:42.000 | 49| 50
 | 0 05:56:25.000 | 47| 50
 | 0 05:30:33.000 | 48| 50
 | 0 06:14:39.000 | 50| 50
 | 0 06:11:02.000 | 49| 50
 | 0 04:39:28.000 | 46| 50
 | 0 05:56:21.000 | 49| 50
 | 0 05:45:14.000 | 50| 50
 | 0 05:32:08.000 | 49| 50
 | 0 05:53:28.000 | 49| 50
 | 0 05:09:11.000 | 48| 50
 | 0 06:27:50.000 | 47| 50
 | 5 04:23:00.000 | 49| 50

 Number of rows selected is 13
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] >
Appendix C 647

Sample DBEnvironment
PurchDB.Inventory Table
PurchDB.Inventory Table
select partnumber,binnumber,qtyonhand,lastcountdate from purchdb.inventory;
 ----------------+---------+---------+-------------
 PARTNUMBER |BINNUMBER|QTYONHAND|LASTCOUNTDATE
 ----------------+---------+---------+-------------
 1123-P-01 | 4003| 5|19841207
 1133-P-01 | 4007| 11|19841207
 1143-P-01 | 4016| 8|19841207
 1153-P-01 | 4027| 5|19841207
 1223-MU-01 | 5031| 12|19841207
 1233-MU-01 | 5036| 11|19841207
 1243-MU-01 | 5042| 15|19841207
 1323-D-01 | 3007| 12|19841207
 1333-D-01 | 3015| 47|19841207
 1343-D-01 | 3025| 18|19841207
 1353-D-01 | 3036| 6|19841207
 1423-M-01 | 2011| 10|19841207
 1433-M-01 | 2015| 18|19841207
 1523-K-01 | 1015| 16|19841207
 1623-TD-01 | 1095| 13|19841207
 1723-AD-01 | 6050| 25|19841207
 1733-AD-01 | 6055| 18|19841207
 1823-PT-01 | 7011| 10|19841207
 1833-PT-01 | 7035| 15|19841207
 1923-PA-01 | 7096| 7|19841207
 1933-FD-01 | 8016| 8|19841207
 1943-FD-01 | 9016| 23|19841207

Number of rows selected is 22
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>

select countcycle,adjustmentqty,reorderqty,reorderpoint from
purchdb.inventory;
 ----------+-------------+----------+------------
 COUNTCYCLE|ADJUSTMENTQTY|REORDERQTY|REORDERPOINT
 ----------+-------------+----------+------------
 90| 4| 10| 30
 60| 7| 12| 14
 30| 1| 12| 10
 60| 4| 16| 20
 60| 4| 30| 60
 60| 3| 30| 30
 90| 4| 25| 30
 60| 7| 20| 20
 90| 8| 10| 50
 60| 9| 5| 15
 60| 3| 24| 6
 60| 5| 10| 10
 30| 4| 6| 16
 90| 2| 4| 16
648 Appendix C

Sample DBEnvironment
PurchDB.Inventory Table
 60| 1| 10| 10
 60| 3| 10| 20
 30| -2| 10| 10
 60| -5| 12| 8
 30| -9| 10| 10
 90| -5| 16| 8
 90| -4| 6| 10
 60| 6| 10| 20

Number of rows selected is 22
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
Appendix C 649

Sample DBEnvironment
PurchDB.OrderItems Table
PurchDB.OrderItems Table
 select ordernumber,itemnumber,vendpartnumber from purchdb.orderitems;
 -----------+-----------+----------------
 ORDERNUMBER|ITEMNUMBER |VENDPARTNUMBER
 -----------+-----------+----------------
 30507| 1|2310
 30507| 2|7310
 30508| 1|1110
 30508| 2|1115
 30508| 3|1113
 30508| 4|8113
 30509| 1|1533
 30509| 2|8113
 30510| 1|1001
 30510| 2|1005
 30511| 1|10175
 30511| 2|10675
 30511| 3|10975
 30512| 1|750001
 30512| 2|750101
 30512| 3|790115
 30512| 4|790805
 30513| 1|1010
 30513| 2|1050
 30514| 1|2310
 30514| 2|7310
 30515| 1|71705
 30515| 2|70150
 30515| 3|70250
 30515| 4|70500
 30515| 5|71755
 30516| 1|9040
 30516| 2|9050
 30516| 3|9060
 30516| 4|9080
 30516| 5|9090
 30517| 1|90015
 30517| 2|90035
 30517| 3|90045
 30518| 1|29201
 30518| 2|39201
 30518| 3|49201
 30518| 4|99201
 30519| 1|1010
 30519| 2|1050
 30520| 1|9375
 30520| 2|9105
 30520| 3|9135
 30521| 1|750001
 30521| 2|770105
650 Appendix C

Sample DBEnvironment
PurchDB.OrderItems Table
 30521| 3|790805
 30522| 1|13350

Number of rows selected is 47
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>

select purchaseprice,orderqty,itemduedate,receivedqty from
purchdb.orderitems;
 --------------+--------+-----------+-----------
 PURCHASEPRICE |ORDERQTY|ITEMDUEDATE|RECEIVEDQTY
 --------------+--------+-----------+-----------
 2000.00| 5|19840621 | 3
 565.00| 10|19840621 | 10
 450.00| 5|19840701 | 5
 180.00| 5|19840701 | 2
 210.00| 5|19840701 | 5
 70.00| 10|19840616 | 8
 435.00| 3|19840705 | 2
 70.00| 5|19840701 | 5
 345.00| 3|19840701 | 3
 195.00| 5|19840701 | 5
 180.00| 5|19840715 | 5
 195.00| 5|19840701 | 4
 195.00| 5|19840701 | 4
 475.00| 3|19840715 | 2
 175.00| 3|19840715 | 3
 450.00| 5|19840701 | 4
 80.00| 10|19840705 | 10
 335.00| 3|19840710 | 3
 650.00| 5|19840710 | 5
 2000.00| 5|19840715 | 3
 565.00| 10|19840715 | 7
 525.00| 3|19840710 | 3
 200.00| 10|19840726 | 8
 205.00| 10|19840726 | 10
 1985.00| 3|19840715 | 3
 70.00| 10|19840715 | 9
 190.00| 15|19840710 | 14
 200.00| 10|19840715 | 10
 1310.00| 5|19840715 | 5
 1650.00| 3|19840726 | 3
 240.00| 5|19840715 | 5
 200.00| 10|19840711 | 9
 220.00| 5|19840711 | 4
 645.00| 5|19840711 | 3
 195.00| 10|19840716 | 10
 180.00| 10|19840716 | 10
 210.00| 5|19840716 | 4
 590.00| 5|19840711 | 5
 335.00| 5|19840711 | 5
 650.00| 5|19840711 | 5
 95.00| 10|19840716 | 9
 450.00| 3|19840711 | 3
Appendix C 651

Sample DBEnvironment
PurchDB.OrderItems Table
 1990.00| 3|19840711 | 3
 475.00| 5|19840727 | 4
 1295.00| 3|19840716 | 2
 80.00| 15|19840716 | 13
 200.00| 10|19840727 | 10

Number of rows selected is 47
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
652 Appendix C

Sample DBEnvironment
PurchDB.Orders Table
PurchDB.Orders Table
 isql=> select * from purchdb.orders;
 -----------+------------+---------
 ORDERNUMBER|VENDORNUMBER|ORDERDATE
 -----------+------------+---------
 30507| 9001|19840601
 30508| 9002|19840601
 30509| 9002|19840615
 30510| 9006|19840615
 30511| 9004|19840615
 30512| 9008|19840615
 30513| 9010|19840626
 30514| 9001|19840626
 30515| 9012|19840626
 30516| 9015|19840626
 30517| 9003|19840627
 30518| 9009|19840627
 30519| 9010|19840627
 30520| 9013|19840627
 30521| 9008|19840627
 30522| 9014|19840627
 30523| 9014|19840628

Number of rows selected is 17
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
Appendix C 653

Sample DBEnvironment
PurchDB.Parts Table
PurchDB.Parts Table
 select * from purchdb.parts;
 ----------------+------------------------------+--------------
 PARTNUMBER |PARTNAME |SALESPRICE
 ----------------+------------------------------+--------------
 1123-P-01 |Central Processor | 500.00
 1133-P-01 |Communication Processor | 200.00
 1143-P-01 |Video Processor | 180.00
 1153-P-01 |Graphics Processor | 220.00
 1223-MU-01 |Cache Memory Unit | 80.00
 1233-MU-01 |Main Memory Unit | 300.00
 1243-MU-01 |Extended Memory Unit | 100.00
 1323-D-01 |Floppy Diskette Drive | 200.00
 1333-D-01 |Slimline Diskette Drive | 200.00
 1343-D-01 |Winchester Drive | 2000.00
 1353-D-01 |Standard Drive | 1300.00
 1423-M-01 |Video Monitor | 340.00
 1433-M-01 |Graphics Monitor | 650.00
 1523-K-01 |Keyboard | 200.00
 1623-TD-01 |Tape Drive | 1800.00
 1723-AD-01 |Graphics Monitor Adapter | 240.00
 1733-AD-01 |Monochrome Displ/Prt Adapter | 250.00
 1823-PT-01 |Graphics Printer | 450.00
 1833-PT-01 |Color Printer | 1995.00
 1923-PA-01 |Printer Adapter | 75.00
 1933-FD-01 |Fixed Disc Adapter | 590.00
 1943-FD-01 |Plotter Adapter | 600.00

Number of rows selected is 22
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
654 Appendix C

Sample DBEnvironment
PurchDB.Reports Table
PurchDB.Reports Table
 select reportname, reportowner, filedata from purchdb.reports;
 -------------------+---------------+----------------
 REPORTNAME |REPORTOWNER |FILEDATA
 -------------------+---------------+----------------
 Report1 |FREE |>!Report1

Number of rows selected is 1
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
Appendix C 655

Sample DBEnvironment
PurchDB.SupplyPrice Table
PurchDB.SupplyPrice Table
isql=> select partnumber, vendornumber,vendpartnumber from purchdb.suppl
 ----------------+------------+----------------
 PARTNUMBER |VENDORNUMBER|VENDPARTNUMBER
 ----------------+------------+----------------
 1123-P-01 | 9002|1110
 1123-P-01 | 9003|90005
 1123-P-01 | 9007|35001
 1123-P-01 | 9008|750001
 1123-P-01 | 9009|19101
 1123-P-01 | 9012|71705
 1133-P-01 | 9002|1115
 1133-P-01 | 9003|90015
 1133-P-01 | 9007|35011
 1133-P-01 | 9009|29201
 1143-P-01 | 9004|10175
 1143-P-01 | 9007|35101
 1143-P-01 | 9008|750101
 1143-P-01 | 9009|39201
 1153-P-01 | 9002|1113
 1153-P-01 | 9003|90035
 1153-P-01 | 9007|35201
 1223-MU-01 | 9005|390121
 1223-MU-01 | 9013|9102
 1223-MU-01 | 9015|9010
 1233-MU-01 | 9005|390221
 1233-MU-01 | 9013|9115
 1233-MU-01 | 9015|9020
 1243-MU-01 | 9005|390321
 1243-MU-01 | 9013|9375
 1243-MU-01 | 9015|9030
 1323-D-01 | 9004|10675
 1323-D-01 | 9009|49201
 1323-D-01 | 9012|70150
 1323-D-01 | 9015|9040
 1333-D-01 | 9004|10975
 1333-D-01 | 9012|70250
 1333-D-01 | 9015|9050
 1343-D-01 | 9001|2310
 1343-D-01 | 9011|51050
 1353-D-01 | 9008|770105
 1353-D-01 | 9012|70350
 1353-D-01 | 9015|9060
 1423-M-01 | 9006|1001
 1423-M-01 | 9010|1010
 1433-M-01 | 9003|90045
 1433-M-01 | 9007|35801
 1433-M-01 | 9010|1050
 1523-K-01 | 9006|1005
 1523-K-01 | 9014|13350
656 Appendix C

Sample DBEnvironment
PurchDB.SupplyPrice Table
 1623-TD-01 | 9011|55050
 1623-TD-01 | 9015|9080
 1723-AD-01 | 9004|10875
 1723-AD-01 | 9011|59050
 1723-AD-01 | 9012|70100
 1723-AD-01 | 9015|9090
 1733-AD-01 | 9004|10775
 1733-AD-01 | 9011|57050
 1733-AD-01 | 9012|70450
 1823-PT-01 | 9002|1533
 1823-PT-01 | 9008|790115
 1823-PT-01 | 9013|9105
 1833-PT-01 | 9012|70500
 1833-PT-01 | 9013|9135
 1923-PA-01 | 9002|8113
 1923-PA-01 | 9008|790805
 1923-PA-01 | 9012|71755
 1923-PA-01 | 9014|15550
 1933-FD-01 | 9001|7310
 1933-FD-01 | 9003|93715
 1933-FD-01 | 9007|35701
 1933-FD-01 | 9009|99201
 1933-FD-01 | 9014|16530
 1943-FD-01 | 9007|37502

Number of rows selected is 69
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>

isql=> select unitprice,deliverydays,discountqty from purchdb.supplyp
 ------------------+------------+-----------
 UNITPRICE |DELIVERYDAYS|DISCOUNTQTY
 ------------------+------------+-----------
 450.00| 30| 1
 475.00| 15| 5
 550.00| 15| 3
 475.00| 30| 5
 500.00| 20| 5
 525.00| 15| 2
 180.00| 30| 6
 200.00| 15| 10
 220.00| 15| 12
 195.00| 20| 15
 180.00| 30| 15
 185.00| 15| 12
 175.00| 30| 9
 180.00| 20| 10
 210.00| 30| 10
 220.00| 15| 8
 200.00| 15| 5
 75.00| 15| 3
 85.00| 30| 5
 80.00| 15| 5
 285.00| 15| 4
Appendix C 657

Sample DBEnvironment
PurchDB.SupplyPrice Table
 295.00| 30| 3
 305.00| 15| 10
 100.00| 15| 8
 95.00| 20| 9
 105.00| 15| 15
 195.00| 15| 10
 210.00| 20| 25
 200.00| 30| 20
 190.00| 15| 25
 195.00| 15| 21
 205.00| 30| 18
 200.00| 20| 17
 2000.00| 20| 15
 1950.00| 30| 18
 1295.00| 20| 20
 1300.00| 20| 5
 1310.00| 20| 3
 345.00| 15| 1
 335.00| 15| 19
 645.00| 15| 22
 700.00| 20| 15
 650.00| 15| 16
 195.00| 15| 5
 200.00| 30| 3
 1800.00| 15| 50
 1650.00| 30| 35
 260.00| 15| 10
 230.00| 15| 13
 250.00| 20| 11
 240.00| 20| 12
 250.00| 15| 18
 225.00| 20| 14
 255.00| 15| 19
 435.00| 20| 0
 450.00| 15| 2
 450.00| 15| 1
 1985.00| 20| 1
 1990.00| 15| 1
 70.00| 15| 7
 80.00| 20| 7
 70.00| 20| 8
 75.00| 10| 6
 565.00| 20| 5
 585.00| 15| 5
 600.00| 10| 5
 590.00| 15| 5
 585.00| 20| 3
 575.00| | 3

Number of rows selected is 69
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
658 Appendix C

Sample DBEnvironment
PurchDB.Vendors Table
PurchDB.Vendors Table
 select vendornumber,vendorname,contactname from purchdb.vendors;
 ------------+------------------------------+-------------------------
 VENDORNUMBER|VENDORNAME |CONTACTNAME
 ------------+------------------------------+-------------------------
 9001|Remington Disk Drives |Debra Thomason
 9002|Dove Computers |Peter B. Galvin
 9003|Space Management Systems |Stacey Wolf
 9004|Coupled Systems |Micki Sue Ding
 9005|Underwood Inc. |Diane Oliver
 9006|Pro-Litho Inc. |Karen Thomas
 9007|Eve Computers |Elisa Nissman
 9008|Jujitsu Microelectronics |Adam D. Gerston
 9009|Latin Technology |George Warrior
 9010|KellyCo Inc. |Celia Toledo
 9011|Morgan Electronics |Tom Peterson
 9012|Seminational Co. |Elizabeth Kramer
 9013|Seaside Microelectronics |Geoff Grigsby
 9014|Educated Boards Inc. |AJ White
 9015|Proulx Systems Inc. |Michael Goldberg
 9016|Covered Cable Co. |Phil Blank
 9017|SemiTech Systems |Melissa Benson
 9018|Chocolate Chips |Frederick Chung

Number of rows selected is 18
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>

 select phonenumber,vendorstreet from purchdb.vendors;
 ---------------+------------------------------
 PHONENUMBER |VENDORSTREET
 ---------------+------------------------------
 205 555 1234 |3006 Salvo St.
 303 234 5678 |123 Coyote Way
 408 456 7890 |3500 Scott Ave.
 206 677 2232 |1001 Island Way
 609 444 3579 |2001 Boardwalk
 408 765 2345 |17 Par Drive
 208 999 8642 |999 West 9th Street
 301 657 3579 |345 Black Boulevard
 408 555 9000 |280 Park Ave.
 617 333 0987 |555 Hillview Blvd.
 617 666 9182 |888 Industrial Parkway
 213 987 1423 |345 International Blvd.
 619 355 7565 |3210 Del Mar Blvd.
 602 987 0909 |4000 University Ave.
 408 290 5678 |404 Nosh Ave.
 |777 Twisted Trail
 |428 Tech Drive
 |3425 Swirl Lane

Appendix C 659

Sample DBEnvironment
PurchDB.Vendors Table
Number of rows selected is 18
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>

 select vendorcity,vendorstate,vendorzipcode from purchdb.vendors;
 --------------------+-----------+-------------
 VENDORCITY |VENDORSTATE|VENDORZIPCODE
 --------------------+-----------+-------------
 Concord |AL |35567
 Littleton |CO |80123
 Santa Clara |CA |95033
 Puget Sound |WA |96122
 Atlantic City |NJ |10807
 Pebble Beach |CA |95012
 Snake River |ID |74503
 Bethesda |MD |20068
 San Jose |CA |95110
 Crabtree |MA |02135
 Braintree |MA |02088
 City of Industry |CA |92108
 Oceanside |CA |92078
 Phoenix |AR |60987
 Cupertino |CA |95035
 Bakersfield |CA |93662
 San Jose |CA |95130
 Lac du Choc |MN |32134

Number of rows selected is 18
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>

 select vendorremarks from purchdb.vendors;
 --
 VENDORREMARKS
 --
 Slow shipping
 Discount rate 5%
 Slow shipping
 Discount rate 5.5%
 Discount rate 5%, slow shipping
 Poor service
 Discount rate 6%, purchase over $10,000
 No discount rate, fast shipping
 Often out of stock, fast shipping
 Discount rate 5.5%
 Fast shipping, 5% Discount
 Discount rate 6% for order over $15000
 Discount rate 10%, very slow shipping
 Discount rate 5%, fast shipping
 Discount 6%, fast shipping

Number of rows selected is 18
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
660 Appendix C

Sample DBEnvironment
RecDB.Clubs Table
RecDB.Clubs Table
 select * from recdb.clubs;
 ---------------+---------+------------------
 CLUBNAME |CLUBPHONE|ACTIVITY
 ---------------+---------+------------------
 Energetics | 1111|aerobics
 Windjammers | 2222|sailing
 Downhillers | 3333|skiing
 Poker Faces | 4444|cards
 Spikers | 5555|volleyball
 Stingers | 6666|soccer
 Green Thumbs | 7777|gardening
 Crescendos | 8888|music
 Keys 'n Strings| 9999|music

 Number of rows selected is 9
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
Appendix C 661

Sample DBEnvironment
RecDB.Events Table
RecDB.Events Table
 select * from recdb.events;
 ---------------+------------------------------+--------+------+------
SPONSORCLUB |EVENT |DATE |TIME |COORDINAT
 ---------------+------------------------------+--------+------+------
Energetics |beginning exercises |19861201| 1230|Martha Mi
Energetics |advanced stretching |19861204| 1530|Martha Mi
Windjammers |holiday regatta |19861226| 900|Bill Hale
Downhillers |slalom race |19861231| 600|Karen Man
Poker Faces |game |19861201| 2100|Al Krebbs
Poker Faces |game |19861205| 1800|Marty Tho
Spikers |winter play-offs |19861206| 700|Nancy Cun
Stingers |tournament round 1 |19861219| 1100|Jorge Pab
Stingers |tournament round 2 |19861220| 1000|Stacey Va
Green Thumbs |weed killing seminar |19861227| 900|Annie And
Green Thumbs |dwarf tree planting |19861207| 1200|Sue Peter
Crescendos |cantata rehearsal |19861220| 1400|Karen Llo
Crescendos |cantata |19861224| 2000|Mariann H
Keys 'n Strings|rehearsal for New Year's |19861213| 1300|Karen Wal
Keys 'n Strings|New Year's Eve concert |19861231| 1800|Wolfgang

 Number of rows selected is 15
 U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
662 Appendix C

Sample DBEnvironment
RecDB.Members Table
RecDB.Members Table
 select * from recdb.members;
 --------------------+---------------+-----------
 MEMBERNAME |CLUB |MEMBERPHONE
 --------------------+---------------+-----------
 George Smith |Poker Faces | 1476
 Darab Jones |Stingers | 2605
 Annie Anderson |Green Thumbs | 1105
 Annie Anderson |Stingers | 1105
 Sue Peters |Green Thumbs | 7505
 Al Krebbs |Poker Faces | 9615
 John Ewing |Crescendos | 6925
 John Ewing |Energetics | 6925
 Wolfgang Ross |Keys 'n Strings| 6255
 MJ Kipper |Keys 'n Strings| 3305
 Jim Johnson |Spikers | 8625
 Becky Gardner |Spikers | 5605
 John Brown |Downhillers | 3605
 Doug Griffith |Downhillers | 5915
 Jorge Pablo |Stingers | 7655
 Marguerite Harris |Crescendos | 1605
 Bill Haley |Windjammers | 5505
 Ragaa Morrow |Keys 'n Strings| 4405
 Ragaa Morrow |Energetics | 4405
 Miranda Wong |Windjammers | 2105
 Glen Stevens |Windjammers | 8005
 Peter Crane |Stingers | 1205
 David Loomis |Windjammers | 9505
 Sharon Means |Keys 'n Strings| 2305
 Karen Manor |Downhillers | 7005
 Marty Thomas |Poker Faces | 6305
 Mariann Humphrey |Crescendos | 9105
 Renee Ball |Crescendos | 3105
 Diane Rizzo |Green Thumbs | 1715
 Martha Mitchell |Energetics | 1605
 Robert Klein |Energetics | 9005
 Nancy Cunning |Spikers | 4605
 May-Inn Kong |Energetics | 8505
 Karen Walters |Keys 'n Strings| 1665
 Karen Lloyd |Crescendos | 1715
 Tom Thumb |Poker Faces | 2715
 Stacey Valley |Stingers | 3405

Number of rows selected is 37
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd]>
Appendix C 663

Sample DBEnvironment
Sample Program Files
Sample Program Files
The following table contains a list of sample program files located in the
/usr/lib/allbase/hpsql/programs directory.

All programs except those marked with an asterisk (*) are fully discussed in the
ALLBASE/SQL application programming guides.

Table C-1. Sample Programs in /usr/lib/allbase/hpsql/programs

C COBOL FORTRAN Pascal Description

cex2 cobex2 forex2 pasex2 Single-row SELECT into host
variables from PurchDB.Parts

cex5 cobex5 forex5 pasex5 Single-row SELECT into host
variables from PurchDB.Parts with
implicit and explicit error handling,
including recovery from deadlock

cex7 cobex7 forex7 pasex7 Single-row SELECT, INSERT,
UPDATE, and DELETE operations on
the PurchDB.Vendors table

cex8 cobex8 forex8 pasex8 Cursor manipulations on the
PurchDB.OrderItems table

cex8a* cobex8a* forex8a* pasex8a* DATE/TIME data types and join
operations on the TestData and
SupplyBatches tables.

cex9 cobex9 pasex9 BULK operations on the
PurchDB.Orders and
PurchDB.OrderItems tables

cobex10a forex9a Dynamic non-query commands
using EXECUTE IMMEDIATE

cobex10b forex9b Dynamic non-query commands
using PREPARE and EXECUTE

cex10a pasex10a Dynamic query commands with
unknown Format

cex10b pasex10b Dynamic query commands with
known Format

cex12* cobex12* forex12* pasex12* Using long fields in the
PurchDB.Reports table
664 Appendix C

Standards Flagging Support
Introduction
D Standards Flagging Support

Introduction
The United States government has adopted ANSI X3.135-1989, Database Language SQL,
as the database language to be used by all federal departments and agencies. This SQL
standard, known as Federal Information Processing Standard 127.1 (FIPSPUB 127.1),
requires that an option be provided which flags all features or extensions that do not
conform to the SQL language or are processed in a nonconforming manner. FIPS 127.1 also
has added an optional integrity enhancement feature, addendum 1, to X3.135-1989.
Addendum 1 includes referential integrity constraints, a check clause, and a default
clause. A feature does not have to be flagged if it conforms to addendum 1.

The SQL standard does not contain functionality for many common categories, such as
storage management and index creation. While many of these non-standard features are
useful, they can reduce the portability of programs that use them. Most SQL
implementations (including ALLBASE/SQL) support implementation-defined features
that do not conform to FIPS 127.1. These non-standard implementation features are of
concern to users who want to port programs and who need to identify features that do not
conform to FIPS 127.1. In order to recognize features and extensions that do not conform
to the SQL standard, FIPS 127.1 requires that a flagger capability be implemented that
identifies any non-standard features. This flag can be implemented through software or in
documentation. In addition to this appendix, ALLBASE/SQL provides flagger options for
preprocessing and a SET FLAGGER command in ISQL. Refer to the ALLBASE/SQL
Advanced Application Programming Guide and the ALLBASE/ISQL Refernece Manual
respectively for related documentation.
Appendix D 665

Standards Flagging Support
Non-standard Statements and Extensions
Non-standard Statements and Extensions
The following tables contain ALLBASE/SQL statements and extensions and indicate
whether they are compliant with FIPS 127.1. If the ALLBASE/SQL statement is not
compliant, the extensions to that statement are not compliant and are therefore not
included in the table. A compliant statement may also have non-compliant extensions.
These extensions are shown as non-compliant in the table.

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?

ADD DBEFILE NO

ADD TO GROUP NO

ADVANCE NO

ALTER DBEFILE NO

ALTER TABLE NO

BEGIN NO

BEGIN ARCHIVE NO

BEGIN DECLARE
SECTION

YES

BEGIN WORK NO

CHECKPOINT NO

CLOSE YES Using NO

COMMIT ARCHIVE NO

COMMIT WORK YES RELEASE NO

CONNECT NO

CREATE DBEFILE NO

CREATE DBEFILESET NO

CREATE GROUP NO

CREATE INDEX NO

CREATE PARTITION NO

CREATE PROCEDURE NO

CREATE RULE NO

CREATE SCHEMA YES TableDefinition YES
666 Appendix D

Standards Flagging Support
Non-standard Statements and Extensions
ViewDefinition YES

IndexDefinition NO

ProcedureDefinition NO

RuleDefinition NO

CreateGroup NO

AddToGroup NO

GrantStatement YES

CREATE TABLE Only when used
in CREATE
SCHEMA

PUBLIC NO

PUBLICREAD NO

PRIVATE NO

PUBLICROW NO

LANG=TableLangName NO

UNIQUE HASH ON NO

HASH ON CONSTRAINT NO

ConstraintID NO

CLUSTERING ON
CONSTRAINT

NO

IN DBEFileSetName1 NO

ColumnDefinition NO

UniqueConstraint NO

ReferentialConstraint NO

CheckConstraint NO

CREATE TABLE Only when used
in CREATE
SCHEMA

UniqueConstraint NO

ReferentialConstraint NO

CheckConstraint NO

ColumnDataType YES

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
Appendix D 667

Standards Flagging Support
Non-standard Statements and Extensions
LongColumnType NO

LANG=ColLangName NO

DEFAULT YES

Constant YES

NULL YES

CurrentFunction NO

NOT NULL YES

UNIQUE YES

PRIMARY KEY
REFERENCES

YES

RefTableName YES

CONSTRAINT
ConstraintID

NO

CHECK YES

Case Sensitive NO

IN DBEFileSetName3 NO

CREATE TEMPSPACE NO

CREATE VIEW Only when used
in CREATE
SCHEMA

ColumnName YES

WITH CHECK OPTION YES

CONSTRAINT
ConstraintID

NO

IN DBEFileSetName YES

DECLARE CURSOR YES IN DBEFileSetName NO

FOR UPDATE OF
ColumnName

NO

FOR READ ONLY NO

QueryExpression YES

ExecuteProcedureName NO

ExecuteStatementName NO

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
668 Appendix D

Standards Flagging Support
Non-standard Statements and Extensions
SelectStatementName

DELETE YES WITH AUTOCOMMIT NO

DELETE WHERE
CURRENT

YES

DESCRIBE NO

DISABLE RULES NO

DISCONNECT NO

DROP DBEFILE NO

DROP DBEFILESET NO

DROP GROUP NO

DROP INDEX NO

DROP MODULE NO

DROP PARTITION NO

DROP PROCEDURE NO

DROP RULE NO

DROP TABLE NO

DROP TEMPSPACE NO

DROP VIEW NO

ENABLE AUDIT
LOGGING

NO

ENABLE RULES NO

END DECLARE SECTION YES

EXECUTE NO

EXECUTE IMMEDIATE NO

EXECUTE PROCEDURE NO

EXTRACT NO

FETCH YES BULK NO

INTO HostVariableSpec YES

USING clause YES

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
Appendix D 669

Standards Flagging Support
Non-standard Statements and Extensions
[SQL]DESCRIPTOR YES

HostVariableSpec NO

INDICATOR YES

GENPLAN NO

GRANT Only when used
in CREATE
SCHEMA

ALL (without the
PRIVILEGE QUALIFIER)

NO

SELECT YES

INSERT YES

DELETE YES

ALTER NO

INDEX NO

UPDATE ColumnName YES

REFERENCES
ColumnName

YES

TableName YES

TableView YES

DBEUserID YES

GroupName NO

ClassName NO

PUBLIC WITH GRANT
OPTION

YES

BY NO

RUN ON NO

EXECUTE ON
PROCEDURE

NO

CONNECT NO

DBA NO

RESOURCE NO

MONITOR NO

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
670 Appendix D

Standards Flagging Support
Non-standard Statements and Extensions
INSTALL NO

DBEFileSet NO

INCLUDE NO

INSERT YES BULK NO

SingleRowValues YES

BulkValues NO

INSERT SingleRowValues YES NULL YES

USER NO

HostVariable YES

INDICATOR YES

? NO

:LocalVariable NO

:ProcedureParameter NO

::Built-inVariable NO

ConversionFunction NO

CurrentFunction NO

+ YES

- YES

Integer YES

Float YES

Decimal YES

'CharacterString' YES

0xHexadecimalString NO

LongColumnString NO

LOCK TABLE NO

LOG COMMENT NO

OPEN YES KEEP CURSOR NO

WITH LOCKS, NO

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
Appendix D 671

Standards Flagging Support
Non-standard Statements and Extensions
WITH NOLOCKS NO

USING clause NO

PREPARE NO

RAISE ERROR NO

REFETCH NO

RELEASE NO

REMOVE DBEFILE NO

REMOVE FROM GROUP NO

RENAME NO

RESET NO

REVOKE NO

ROLLBACK WORK YES TO NO

RELEASE NO

SAVEPOINT NO

SELECT YES BULK NO

ORDER BY YES

ColumnID YES

ASC | DESC YES

QueryBlock YES

(QueryExpression) YES

UNION YES

ALL YES

DISTINCT YES

INTO YES

WHERE
SearchCondition1

YES

GROUP BY
GroupColumnList

YES

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
672 Appendix D

Standards Flagging Support
Non-standard Statements and Extensions
HAVING
SearchCondition2

YES

NATURAL JOIN NO

INNER JOIN NO

LEFT JOIN NO

RIGHT JOIN NO

OUTER JOIN NO

SET CONNECTION NO

SET CONSTRAINTS NO

SET DEFAULT NO

SET DML ATOMICITY NO

SET
MULTITRANSACTION

NO

SET PRINTRULES NO

SET SESSION NO

SET TRANSACTION NO

SET USER TIMEOUT NO

SETOPT NO

SQLEXPLAIN NO

START DBE NO

START DBE NEW NO

START DBE NEWLOG NO

STOP DBE NO

STOREINFO NO

TERMINATE USER NO

TRANSFER OWNERSHIP NO

TRUNCATE TABLE NO

UPDATE YES 'LongColumnIOString' NO

UPDATE STATISTICS NO

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
Appendix D 673

Standards Flagging Support
Non-standard Statements and Extensions
UPDATE WHERE
CURRENT

YES 'LongColumnIOString' NO

NULL YES

WHENEVER YES SQLERROR YES

SQLWARNING NO

NOT FOUND YES

STOP NO

CONTINUE YES

GOTO Label YES

: (colon; not required) NO

Table D-1. ALLBASE/SQL FIPS 127.1 Compliance

ALLBASE/SQL Statement FIPS 127.1
Compliant
Statement?

Extension to Statement FIPS 127.1
Compliant
Extension?
674 Appendix D

Standards Flagging Support
Non-Standard Data Types
Non-Standard Data Types
The following data types are not FIPS compliant. They are used in CREATE TABLE and
ALTER TABLE column definitions.

VARCHAR

DATE

TIME

DATETIME

INTERVAL

BINARY

VARBINARY

LONG BINARY

LONG VARBINARY
Appendix D 675

Standards Flagging Support
Non-Standard Expression Extensions
Non-Standard Expression Extensions
The following use of extensions in an expression is not FIPS compliant:

TID

DynamicParameters

OUTER JOIN

NATURAL JOIN

STRING_LENGTH

SUBSTRING

OUTPUT_DEVICE

OUTPUT_NAME

CURRENT_DATE

CURRENT_TIME

CURRENT_DATETIME

TO_CHAR

TO_DATE

TO_TIME

TO_DATETIME

TO_INTERVAL

ADD_MONTHS

TO_INTEGER

CAST

Concatenation (||)
676 Appendix D

Standards Flagging Support
Non-Standard Syntax Rules
Non-Standard Syntax Rules
ALLBASE/SQL supports certain non-FIPS compliant extensions to the standard FIPS
syntax rules listed in the ANSI SQL/89 document. The section number, the status rule
number, and the FIPS SQL syntax rule for each non-FIPS compliant extension are listed
below.

Note that in some cases no flagger warning is generated for these exceptions.

Table D-2. FIPS Syntax Rules and ALLBASE/SQL Exceptions

Section #
Status Rule #

FIPS SQL Syntax Rule ALLBASE SQL Extension

5.3 SR 3 All identifiers must be no longer than
18 characters.

20 characters are allowed.

5.3 SR 4 No identifier may be the same as a
keyword, noting that all keywords are
specified in upper case.

Keywords are not case sensitive;
keywords can be identifiers.

5.24 SR 8 There may only be one DISTINCT per
subquery, not including any nested
subqueries.

SELECT DISTINCT MAX
(DISTINCT C1) FROM T1 is valid.

5.25 SR 5 There may only be one DISTINCT per
query, not including any subqueries in
that query.

SELECT DISTINCT MAX
(DISTINCT C1) FROM T1 is valid.

5.25 SR 11b Every <value expression> in the
<select list> consists of a <column
specification>, and no <column
specification> appears more than once
- updatability of a table/view.

It is possible to update a regular
column in a view that contains a
virtual column. (No flagger warning is
generated).

6.1 DDL commands must be used in the
CREATE SCHEMA statement.

DDL commands can be issued outside
of a CREATE SCHEMA statement.

8.6 SR 3b In a FETCH, only an exact numeric
column or expression may be
FETCHed into an exact numeric host
variable.

Compatible data and truncation are
allowed. (No flagger warning is
generated).

8.6 SR 6a An INSERT into a character column
must be a character string of length
less than or equal to the column.

Compatible data and truncation are
allowed. (No flagger warning is
generated).

8.7 SR 6b An INSERT into an exact numeric
column must be an exact numeric
value.

Compatible data and truncation are
allowed. (No flagger warning is
generated).

8.10 SR 4b In a SELECT ... INTO, only an exact
numeric column or expression may be
selected into an exact numeric host
variable.

Compatible data and truncation are
allowed. (No flagger warning is
generated).
Appendix D 677

Standards Flagging Support
Non-Standard Syntax Rules
NOTE There is one more exception to the syntax rules listed above:

No flagger warning is generated for a second reference to a non-standard
extension within the first non-standard reference.

8.11 SR 8b An UPDATE ... WHERE CURRENT
of a character column must be a
character string of length less than or
equal to the column.

Compatible data and truncation are
allowed. (No flagger warning is
generated).

8.11 SR 8c In an UPDATE ... WHERE
CURRENT, only an exact numeric
value or NULL may be put in an exact
numeric column.

Compatible data and truncation are
allowed. (No flagger warning is
generated).

8.12 SR 6b A searched UPDATE of a character
column must be a character string of
length less than or equal to the
column.

Compatible data and truncation are
allowed. (No flagger warning is
generated).

8.12 SR 6c In a searched UPDATE, only an exact
numeric value (or NULL) may be put
in an exact numeric column.

Compatible data and truncation are
allowed. (No flagger warning is
generated).

9.2 SR 1bc COLON has to precede the host
identifier in WHENEVER.

The absence of COLON in the front of
the label is allowed.

Table D-2. FIPS Syntax Rules and ALLBASE/SQL Exceptions

Section #
Status Rule #

FIPS SQL Syntax Rule ALLBASE SQL Extension
678 Appendix D

Index
A
access plan

defined, 429
modifying with SETOPT, 531

access to databases
multiple connections, 95
types, 42

active connection
defined, 103

active set
in DECLARE CURSOR, 372
in FETCH, 424
in OPEN, 464
in REFETCH, 476

actual parameter
using in procedures, 149

ADD DBEFILE
syntax, 293

ADD TO GROUP
syntax, 295

ADD_MONTHS
in an expression, 228

adding
ADD TO GROUP, 295
column to table, 301
constraint to table, 301
DBEFiles, 293
members to authorization

group, 295
rows, 81, 445

ADVANCE
syntax, 297

aggregate functions
in an expression, 228
in NULL predicates, 275

ALL
in quantified predicate, 278
in SELECT, 505

all audit element
in START DBE NEW, 555
in START DBE NEWLOG, 563

ALLBASE/SQL
components, 42
data types, 207
definition, 41
message catalog, 550
names, 201
users, 51

allocating file space
in CREATE DBEFILESET, 330

ALTER DBEFile
syntax, 299

ALTER TABLE
syntax, 301
to change table locking, 301
to set audit partition, 301

altering

DBEFile type, 299
tables, 301

ANY
in quantified predicate, 278

application programming
and SQL statements, 93

archive logging
wrapperDBE, 92

archive mode
definition, 560
use of BEGIN ARCHIVE, 310
use of COMMIT ARCHIVE, 322

archive record
use of COMMIT ARCHIVE, 322

arithmetic operators
in an expression, 228

asymmetric outer join
defined, 127

atomicity
setting in SET TRANSACTION,

542
audit

DBE understanding, 91
disabling logging, 389
elements default, 91
elements understanding, 91
functionality definition, 91
information wrapperDBE, 92
log record, 91
partition with ALTER TABLE,

301
tool, 92
transactions with SQLAudit, 92

audit logging
enabling, 411

AUDIT NAME
in START DBE NEW, 555
in START DBE NEWLOG, 563

authorities
and program development, 94
and program use, 94
defined, 45
granting, 76, 436
granting on DBEFileSET, 439
how to obtain, 75
OWNER, 75
REFERENCES, 75
revoking, 76, 489
RUN, 75
summary of types, 75
table and view, 75

authorization
audit element in START DBE

NEWLOG, 563
DBEFileSet in CREATE

PROCEDURE, 344, 354,
373

DBEFileSet in CREATE VIEW,
369

DBEFileSet in PREPARE, 468
DBEFileSet in REVOKE, 493
for a select cursor, 373
in START DBE NEW, 555
long column in ALTER TABLE,

306, 307
long column in CREATE

TABLE, 362
name, 204
section in PREPARE, 468
SECTIONSPACE in CREATE

RULE, 349
authorization groups

adding members to, 295
advantages of, 79
creating, 332
dropping, 397
removing members from, 482
use of, 79

AUTOCOMMIT
DELETE parameter, 378
VALIDATE parameter, 592

automatic locking modes
in CREATE TABLE, 64

autostart
and CONNECT, 325
mode, 560

B
base table

defined, 67
basic names

objects having, 201
rules governing, 201

BEGIN
syntax, 309

BEGIN ARCHIVE
syntax, 310

BEGIN DECLARE SECTION
syntax, 311

BEGIN WORK
and MULTITRANSACTION,

529
in a procedure, 147
read committed isolation level,

312
read uncommitted isolation

level, 312
repeatable read isolation level,

312
syntax, 312

BETWEEN predicate
in search condition, 262
syntax, 264

BINARY
Index 679

Index
conversions rules, 504
long data type defined, 208
storage requirements, 210

built-in variable
differences from local variables,

151
similar to SQLCA elements, 151
using in procedures, 151

BULK operations
FETCH, 424
INSERT, 445
SELECT, 499
use of, 95

C
C preprocessor

defined, 42
caller of a procedure

recommended practices for, 156
Cartesian product

defined, 114
CASCADE

explained, 77
case sensitive

comparison predicate, 266
comparisons, 211

CATALOG
owner of catalog views, 206

catalog views
explained, 105

chain
of grants, 76
of rules, 159, 164

changing
connections, 529
data, 82
DBEFile type, 299
table locking, 301

CHAR
conversions rules, 504
defined, 208
native language data, 226
storage requirements, 210

check constraint
defined, 68, 139
in a view, 141
in ALTER TABLE, 301
in CREATE TABLE, 354, 359
search condition, 140

CHECKPOINT
record, 316
syntax, 316
use of, 316

checkpoint for STOP DBE, 571
class names

in REVOKE, 489, 491
rules for, 201

classes
creating, 80
use of, 80

clause
defined, 52

CLOSE
syntax, 319

closing cursors, 319
clustered indexes, 334
COBOL preprocessor

defined, 42
MICROFOCUS, 42

coding practices
for procedures, 156

column names
in ALTER TABLE, 301
in an expression, 228
in CREATE INDEX, 334
in CREATE TABLE, 357
in CREATE VIEW, 367
in INSERT, 445
in null predicates, 275
rules for, 201

columns
adding to tables, 301
and Cartesian product, 513
common columns in join, 512
defined, 44
defining, 355
definition, 65
maximum allowed in tables, 357
maximum allowed in views, 367
order of display, 512

comment audit element
in START DBE NEW, 555
in START DBE NEWLOG, 563

comment initiator
within SQL statements, 53

comment partition
in START DBE NEW, 555
in START DBE NEWLOG, 563

COMMIT ARCHIVE
syntax, 322

COMMIT WORK
in a procedure, 147
syntax, 323

common columns
in SELECT, 512

COMPARISON predicate
character collation sequence,

266
in search condition, 262
operators, 265
syntax, 265

complex queries
defined, 116
range of types, 116

compound identifiers
in names, 203

concatenate
data types, 231
strings, 230

concurrency
and table size, 178
control, 167

configuring a DBEnvironment
in START DBE NEW, 555
summarized, 60

CONNECT
syntax, 325

connection
and SET CONNECTION, 519
changing, 529
disconnecting, 391
initiating, 325
terminating, 103
to DBEnvironments, 96
use with timeouts, 95

connection name
in CONNECT, 325
in SET CONNECTION, 519
in START DBE, 552
in START DBE NEWLOG, 563

constant
in an expression, 228
in NULL predicates, 275

constraint
check constraint, 68, 137
defined, 137
defining, 354
error checking and SET

statement, 521
error checking in SET

TRANSACTION, 542
example, 141

constraint checking
setting in SET TRANSACTION,

542
control block

in START DBE, 552
in START DBE NEW, 555
in START DBE NEWLOG, 563

control flow statements
in procedures, 149
RETURN, 487

control language
in procedures, 442, 597

controlling
error checking level, 526

conversion rules
data in query expressions, 504

copying rows
to tables and views, 82

correlated subquery
680 Index

Index
explained, 126
CREATE DBEFILE

syntax, 327
CREATE DBEFILESET

syntax, 330
CREATE GROUP

syntax, 332
CREATE INDEX

syntax, 334
CREATE PARTITION

syntax, 337
CREATE PROCEDURE

explained, 146
syntax, 339

CREATE RULE
invoking a procedure through,

147
syntax, 346
using, 158

CREATE SCHEMA
syntax, 351

CREATE TABLE
LANG = clause, 67
syntax, 354

CREATE TEMPSPACE
syntax, 365

CREATE VIEW
syntax, 367

creating
audit DBE, 91
authorization groups, 332
constraints, 354
databases, 60
DBEFile, 327
DBEFileSets, 330
DBEnvironments, 60, 555
indexes, 334
partition, 91, 337
tables, 354
TempSpace, 365
views, 367

CS isolation level
explained, 175
in SET SESSION, 537
in SET TRANSACTION, 543

current
function in an expression, 228
language defined, 57
row in FETCH, 424
row in REFETCH, 476
timeout value in

multi-transaction, 99
current connection

in CONNECT, 325
none after DISCONNECT

CURRENT, 104
setting, 96

cursor names
in CLOSE, 319
in DECLARE CURSOR, 371
in DELETE WHERE

CURRENT, 381
in FETCH, 424
in OPEN, 464
in UPDATE WHERE

CURRENT statement, 587
rules for, 201

cursor stability (CS)
explained, 175

cursor stability isolation level
in SET SESSION, 536
in SET TRANSACTION, 542

cursors
active set, 424, 476
advancing, 297
closed, 571
closing, 319, 479, 495
current row, 424, 476
declaring, 371
deleting rows with, 372, 381
in procedures, 153
opening, 464
procedure cursor parameters in,

149
retrieving rows with, 372, 424,

476
updatability of, 372
updating data with, 371, 372
use of, 95, 371
using in procedures, 160
using multiple, 464

cycle
in chain of grants, 76

D
data

access, 48, 75
in native languages, 226
manipulation, 109

data audit element
in START DBE NEW, 555
in START DBE NEWLOG, 563

data buffer pages
in START DBE, 552
in START DBE NEW, 555
in START DBE NEWLOG, 563

data definition statements
in procedures, 164

data types
comparisons between, 211
conversion, 213
effect of, 207
of column added to existing

table, 301

of columns in joins, 512
rules governing, 207
table of, 208
valid combinations, 213

database
administration activities, 105
administrator defined, 51
control of access to, 75
creation, 60
creation (CREATE SCHEMA),

351
logical definition, 44
physical definition, 45
statistics, 106

DATE
conversions rules, 504
defined, 209
operations with values, 217
storage requirements, 210
values in arithmetic expression,

218
date/time conversion functions

in an expression, 228
DATETIME

conversions rules, 504
defined, 209
operations with values, 217
storage requirements, 210
values in arithmetic

expressions, 218
DBA

automatic grant of authority, 76
defined, 51
statements authorized to use,

76
DBE sessions

and autostart mode, 62
defined, 48
multiuser, 62
setting the current connection,

519
single-user, 62
starting, 62, 325, 552
terminating, 62, 479, 572, 574

DBECon file
creation, 555
defined, 47
naming conventions, 205
overriding parameters, 552
parameters, 560

DBECreator
authorization, 76
defined, 61
statements authorized to use,

76
DBEFile names

in ADD DBEFile, 293
Index 681

Index
in ALTER DBEFile, 299
in CREATE DBEFILE, 327
in DROP DBEFILE, 393
in REMOVE DBEFile, 480
rules for, 201

DBEFile type
in ALTER DBEFile, 299
in CREATE DBEFILE, 327

DBEFile0
defined, 47
naming, 559

DBEFiles
adding, 293
altering type of, 299
creating, 327
defined, 45
dropping, 393, 480
for data, 45
for indexes, 45
incrementing size, 327
purging, 393
relation to DBEFileset, 45
removing from DBEFileSet,

393, 395, 480
size range, 327
type, 327
using, 327

DBEFileSet
authorization in CREATE

PROCEDURE, 344, 354,
373

authorization in CREATE
VIEW, 369

authorization in PREPARE, 468
authorization in REVOKE, 493
creating, 330
defined, 45
dropping, 395
dropping default, 395
dynamic section, 468
dynamic statement, 468
for a check constraint, 354
for a long column, 354
for a table, 354
in DECLARE CURSOR, 371
relation to DBEFiles, 45
setting a default, 524
specifying for a cursor, 371
specifying for a view, 367

DBEFileSet names
in ADD DBEFile, 293
in CREATE TABLE, 360
in REMOVE DBEFile, 480
rules for, 201

DBELog1
defined, 47

DBELog2

defined, 47
DBEnvironment

components, 47
configuration, 60, 555
connecting to, 96
creating, 60
creating audit, 91
defined, 47
disconnecting from, 103
initial privileges, 61
naming conventions, 205
obtaining information on, 106
startup parameters, 60
statistics, 106

DBEnvironment name
in CONNECT, 325, 519
in DISCONNECT, 391
in START DBE, 552
in START DBE NEW, 555
in START DBE NEWLOG, 563

DBEUserID
defined, 203
in ADD TO GROUP, 295
in GRANT, 437
in REMOVE FROM GROUP,

482
in RESET, 486
in REVOKE, 489, 491
in TERMINATE QUERY, 572
in TERMINATE USER, 574
rules governing, 203

DDL Enabled flag
defined, 561

deadlock
avoidance of, 197
definition, 195
detection/resolution, 195
example, 195
in multi-transaction mode, 97

DECIMAL
conversions rules, 504
defined, 208
in operations, 216
storage requirements, 210

DECLARE
and local variables in a

procedure, 150
DECLARE %%Variable%%

syntax, 376
DECLARE CURSOR

syntax, 371
declaring

cursors, 371
host variables, 311, 414
local variables in a procedure,

376
default

columns in tables, 301
ownership discussed, 78

default DBEFileSet
dropping, 395
setting, 524

default partition
in START DBE NEW, 555
in START DBE NEWLOG, 563

deferred error checking
constraint (SET

CONSTRAINTS), 521
explained, 144
referential constraint, 144

defining objects
authorization groups, 332
DBEFile, 327
DBEFileSets, 330
DBEnvironments, 555
default columns in tables, 301
tables, 354
TempSpace, 365
views, 367

definition
of a column, 355
of audit functionality, 91
procedure cursor, 151
select cursor, 151
wrapperDBE, 92

definition audit element
in START DBE NEW, 555
in START DBE NEWLOG, 563

DELETE
displaying access plan, 133, 429
statement type in rules, 379,

382
syntax, 378

DELETE WHERE CURRENT
syntax, 381

deleting
all rows from tables, 578
authorization groups, 397
data, 82
DBEFiles, 393
DBEFileSets, 395
indexes, 399, 406
modules, 401
rows, 82, 378
rows using a cursor, 381
tables, 406
TempSpaces, 408
views, 406, 409

DESCRIBE
syntax, 384

describing
dynamic statements, 384

DISABLE AUDIT LOGGING
syntax, 389
682 Index

Index
DISABLE RULES
syntax, 390
using, 163

disabling
audit logging, 389

DISCONNECT
syntax, 391

DISCONNECT CURRENT
no current connection following,

104
disconnecting

from DBEnvironments, 103
displaying

access plan, 133, 429
DISTINCT

in SELECT, 499, 505
DML ATOMICITY

setting in SET TRANSACTION,
542

DML atomicity
setting, 526

DO
in procedures, 597

DROP DBEFILE
syntax, 393

DROP DBEFILESET
syntax, 395

DROP GROUP
syntax, 397

DROP INDEX
syntax, 399

DROP MODULE
syntax, 401

DROP PARTITION
syntax, 403

DROP PROCEDURE
syntax, 404

DROP RULE
syntax, 405

DROP TABLE
syntax, 406

DROP TEMPSPACE
syntax, 408

DROP VIEW
syntax, 409

dropping
authorization groups, 397
constraint, 301
DBEFiles, 393, 480
DBEFileSets, 395
indexes, 399, 406
modules, 401
partition, 403
procedures, 404
rules, 405
tables, 406
TempSpaces, 408

views, 406, 409
dual logging, 555
dynamic parameters

example of usage, 232
example with INSERT, 456
in DECLARE CURSOR

specifying, 373
in EXECUTE PROCEDURE,

421
syntax, 452

dynamic preprocessing
defined, 93
DESCRIBE, 384
EXECUTE, 415
EXECUTE IMMEDIATE, 420
EXECUTE PROCEDURE, 421
PREPARE, 466

E
ELSE

in procedures, 442
ELSEIF

in procedures, 442
embedding SQL statements

explained, 93
ENABLE AUDIT LOGGING

syntax, 411
ENABLE RULES

syntax, 413
using, 163

enabling
audit logging, 411

END DECLARE SECTION
syntax, 414

ENDIF
in procedures, 442

ENDWHILE
in procedures, 597

error checking
explained, 56
setting atomicity, 526
transaction and statement level

constraints, 521
using constraints, 144

error handling
4008, 4009, or -14024 or greater,

527
built-in variables, 471
error number and text, 474
in procedures invoked by rules,

161
in procedures not invoked by

rules, 154
RAISE ERROR, 474

exclusive lock
defined, 179

EXCLUSIVE mode

in LOCK TABLE, 460
EXECUTE

syntax, 415
EXECUTE authority

granting, 437
EXECUTE IMMEDIATE

statements that cannot be used
with, 420

syntax, 420
EXECUTE PROCEDURE

in ISQL, 153
syntax, 421
using, 147

executing
a procedure, 421
dynamic statements, 415, 420

EXISTS predicate
explained, 124
syntax, 267

explicit locking, 460
expression

and null values, 232
defined, 227
in BETWEEN predicate, 264
in COMPARISON predicate,

265
in EXISTS predicate, 267
in IN predicate, 268
in LIKE predicate, 272
in NULL predicates, 275
order of evaluation of elements

in, 232
overflow, 232
syntax, 228
truncation, 232
type conversion, 232
underflow, 232
use, 227
use of parentheses, 232
USER expression value, 269

extended characters
comparison prediate, 266

F
FETCH

syntax, 424
fetching rows, 424
file names

explained, 205
file space management

for tables and indexes, 63
FILL option

setting in BEGIN WORK, 312
fixed-length strings

defined, 208
FLOAT

conversions rules, 504
Index 683

Index
defined, 208
storage requirements, 210

FORCE
VALIDATE parameter, 592

FOREIGN KEY
in CREATE TABLE, 354

formal parameter
using in procedures, 149

Fortran preprocessor
defined, 42

free log space
checkpoint host variable, 316

FROM
in simple queries, 111

fully qualified name, 204

G
generating

log comment, 462
GENPLAN

explained, 133
syntax, 429
with SYSTEM and CATALOG

views, 433, 435
GRANT

MONITOR authority, 199
syntax, 436
WITH GRANT OPTION

explained, 76
GRANT ON DBEFILESET

syntax, 439
grantable privileges

explained, 76
revoking, 77

grants
automatic, 354
explicit (GRANT), 437
grantable privileges, 76
implicit (CREATE TABLE), 354
issuing, 436
issuing for DBEFileSet, 439
revoking, 489
which authorities can be

granted, 76
who can issue them, 76

granularity
of locking, 179

GROUP BY
in simple queries, 111

group names
in ADD TO GROUP, 295
in CREATE GROUP, 332
in REMOVE FROM GROUP,

482
in REVOKE, 489, 491
in TRANSFER OWNERSHIP,

576

rules for, 201
grouping rows

in SELECT, 511
groups

adding members to, 295
creating, 332
dropping, 397
in query result, 511
removing members from, 482

H
hash

in CREATE TABLE, 354
specifying with SETOPT, 531

HAVING
in SELECT, 507
in simple queries, 111

host variables
declaration of, 311, 414
differences from local variables,

150
free log space, 316
in an expression, 228
in CONNECT, 325
in EXECUTE IMMEDIATE,

420
in FETCH, 424
in INSERT, 446, 456
in LIKE predicates, 272
in PREPARE, 468
in ROLLBACK WORK, 495
in SAVEPOINT, 497
in SET CONNECTION, 519
in SQLEXPLAIN, 550
in UPDATE, 580
in UPDATE WHERE

CURRENT, 587
input, 94
naming rules, 205
output, 94
procedure parameter, 316
procedure value, 316
use of, 94

HPODBSS
reserved owner name, 206

HPRDBSS
owner of system tables, 206

hyphen
as comment initiator, 53

I
IF

in procedures, 442
syntax, 442

IN predicate
explained, 123
syntax, 268

USER expression value, 269
INCLUDE

syntax, 444
incrementing

DBEFile size, 327
index

allocating storage for, 360
creating, 71, 334
defined, 71
dropping, 393, 399, 406
duplicate keys, 335
locking explained, 181
name in CREATE INDEX, 334
name in DROP INDEX, 399
name rules for, 201
null values in, 335
number of keys in, 334
order of entries, 335
restrictions in using, 71
specifying with SETOPT, 531
uses for, 71

INDEX DBEFiles, 327
indicator variables

example in predicates, 270
in expressions, 228, 232
use of, 94

INNER
in SELECT, 510

inner join
defined, 116, 126
syntax, 509

INSERT
statement type in rules, 451,

454, 455
syntax, 445, 453
use of, 81

inserting
rows in a table, 81
rows in INSERT, 445
values in constraint columns,

143
instance of partition, 91
INTEGER

conversions rules, 504
defined, 208
storage requirements, 210

integrity constraint
defined, 68, 137
example, 141

intention
exclusive lock, 179
share lock, 179

interactive database access
defined, 42

INTERVAL
conversions rules, 504
defined, 209
684 Index

Index
operations with values, 217
storage requirements, 210
values in arithmetic

expressions, 218
IS lock

explained, 179
isolation level

defined, 185
setting in BEGIN WORK, 312
setting in SET TRANSACTION,

542
ISQL

defined, 42
EXECUTE PROCEDURE in,

153
using to issue statements, 87

IX lock
explained, 179

J
join

algorithm specified by SETOPT,
531

asymmetric, 127
in complex queries, 116
inner and outer, 509
natural, 512
nested loop, 531
not using explicit join syntax,

514
outer join, 130
sort merge, 531
symmetric, 127
three or more tables, 513

JOIN ON
in SELECT, 510

JOIN USING
in SELECT, 511, 513

joining tables
in SELECT, 511
in simple queries, 112

K
keys

index, 335

L
Labeled Statement, 458
LANG = clause

for columns and tables, 67
in ALTER TABLE, 301
in CREATE TABLE, 67, 354
in START DBE NEW, 60, 555,

556
LANG variable

setting and resetting, 58

language
current language, 58
DBEnvironment and current,

60
native language support, 57
setting and resetting, 58

LEFT JOIN
in SELECT, 513

LEFT OUTER JOIN
in SELECT, 510

left outer join
defined, 127

LIKE predicate
in search condition, 262
syntax, 272

local variable
and DECLARE %%Variable%%,

376
differences from host variables,

150
naming rules, 205
using in procedures, 150

LOCK TABLE
syntax, 460

locking
automatic, 181, 354
concurrency control, 167
deadlocks, 195
exclusive mode, 182, 460
explicit, 181, 460
granularity, 179
implicit, 181
in COMMIT WORK, 323
in LOCK TABLE, 460
isolation levels, 185
levels of, 181
mode, 64, 181, 182
mode associated authorities, 64
mode types of, 65
objects locked, 181
overriding automatic locking,

460
page and table compared, 177
PUBLIC, 183
PUBLICREAD, 183
release, 188
released in deadlock, 195
released in STOP DBE, 571
releasing in ROLLBACK

WORK, 495
row and page compared, 177
SET USER TIMEOUT, 548
share, 179, 182, 460
share update mode, 460

locks
exclusive (X), 179
in RELEASE, 479

intention exclusive (IX), 179
intention share (IS), 179
share (S), 179
share intention exclusive (SIX),

179
waits and timeout, 194

log buffer pages
in START DBE, 552
in START DBE NEW, 555
in START DBE NEWLOG, 563

log buffers
flushing, 316

LOG COMMENT
syntax, 462

log comment
generating, 462

log file
creating new, 563
defined, 47
increasing or decreasing space,

567
orphaned, in wrapperDBE, 92

log file names
assigning, 560
in START DBE NEWLOG, 563
rules for, 201

logging
audit, 91, 555, 563
dual, 555, 563
rollback, 495
row level DML atomicity, 144

logical operators, 262
LONG

I/O string syntax, 222
LONG BINARY

defined, 208
storage requirements, 210

long column
authorization in ALTER

TABLE, 306, 307
authorization in CREATE

TABLE, 362
LONG data type

restricted from search condition,
263

syntax, defining column, 221
LONG VARBINARY

defined, 208
storage requirements, 210

M
maximum

columns, 357
columns for a view, 367
columns in a query, 512
concurrent transactions, 553,

556, 564
Index 685

Index
hash key size, 361
host variable names, 416
host variables, 465
items for DISTINCT option, 505
length of index key, 361
log file size, 567
number of partitions, 555, 557,

565
PrimaryPages, 356
tables per query, 506
TempSpace, 365
timeout, 553, 564, 568

maxpartitions
in START DBE NEW, 555
in START DBE NEWLOG, 563

MaxTransactions, 553
message

buffer in procedures, 155
catalog, 550
error number, 474
for PRINT statements, 472
number 5000, 472

MICROFOCUS
COBOL preprocessor, 42

minimum
PrimaryPages, 356

mixed DBEFiles, 327
module names

in DROP MODULE, 401
in PREPARE, 466
rules for, 201

modules
access plan for validation, 532
created by preprocessor, 93
dropping, 401
effect of DBEnvironment

changes on, 94
extracting, 532
owner of, 468
validating, 592

MONITOR
authority, 199

multiple
connections example, 97
connections using, 95
DBEnvironments, 95

multitable operations
SELECT, 499
using, 112

multi-transaction mode
explained, 100
undetectable deadlocks, 97
use with one DBE, 101

multitransaction mode
in SET MULTITRANSACTION,

529
multiuser mode

defined, 48
in a DBE session, 62

N
names

basic, 201
used in ALLBASE/SQL, 201

naming
database objects, 201
DBEConfile, 205
DBEnvironment, 205
DBEUserID, 203
host variables, 205
owners, 203
system files, 205
with native language objects,

203
NATIVE CHAR

conversions rules, 504
native language

ALLBASE/SQL object names,
203

character data, 226
current language, 57
defaults, 57
in columns and tables, 67
in creating a DBEnvironment,

60
setting and resetting, 58
support overview, 58
tables in ALTER TABLE, 301
tables in CREATE TABLE, 354

NATIVE VARCHAR
conversions rules, 504

NATURAL
in SELECT, 510

natural inner join
defined, 116, 126

NATURAL JOIN
in SELECT, 512, 513

n-computer
and double quotes, 67
defined, 57

NOT NULL
in CREATE TABLE, 360
in defining a column, 66

NULL predicate
in search condition, 262
syntax, 275

null values
and altering tables, 301
and FETCH, 424
and INSERT, 446
and UPDATE, 580
and UPDATE WHERE

CURRENT, 587
as index keys, 335

behavior in Cartesian product,
514

behavior in joins, 514
defined, 215
in an expression, 232
in Cartesian product, 114
in joins, 114
in search conditions, 263

O
objects

defined, 48
native language names in, 203
owner of, 77

OPEN
syntax, 464

operators
arithmetic, 228
comparison, 265
logical, 262

optimizer
displaying access plan, 133, 429
modifying plan with SETOPT,

531
ORDER BY

in simple queries, 111
specifying result columns, 512

order of evaluation
of elements in an expression,

232
orphaned log files

wrapperDBE, 92
outer join

defined, 126
syntax, 509
using UNION operator, 130

overflow
in expression, 232
of data, 212

owner
authorization group, 44
changing, 576
class, 44
how to become one, 77
individuals, 44
of modules, 468
of system section tables, 206
of system tables, 206
privileges, 79
use of name, 77
who can be one, 77

owner names
origin of, 77
rules governing, 203
specification of, 45
use of, 77

ownership
686 Index

Index
and dropping authorization
groups, 397

creating objects, 77
how it is assigned, 77
of objects, 77
transferring, 77, 576

P
page buffers

flushing, 316
page level locking, 177
pages

deadlocks, 195
in DBEFiles, 327
in TempSpaces, 365

PARALLEL FILL option
setting in BEGIN WORK, 312

parameter
in procedures, 149
naming rules, 205
using in procedures, 146

partition
creating, 91, 337
dropping, 403
instance, 91
setting with ALTER TABLE,

301
understanding, 91

Pascal preprocessor
defined, 42

pattern matching
in LIKE predicate, 272

performance
in procedures and rules, 165

precision
defined, 208
in DECIMAL operations, 216

predicates
BETWEEN, 264
COMPARISON, 265
compatible data types in, 263
definition of, 262
EXISTS predicate, 124, 267
IN predicate, 123, 268
in search condition, 262
LIKE predicate, 272
NULL predicates, 275
null values in, 263
order of evaluation of, 263
quantified predicate, 120, 278

PREPARE
statements that cannot be

prepared, 468
syntax, 466

preparing statements
interactively and

programmatically, 466

preprocessor
defined, 42
tasks, 93

preserving authorization
and DROP MODULE, 401

primary
in an expression, 228
pages, 356

PRIMARY KEY
in ALTER TABLE, 301
in CREATE TABLE, 354

PRINT
in procedures, 471

priority
setting in SET TRANSACTION,

542
private

locking, 183
PRIVATE tables

in CREATE TABLE, 354
locking mode, 64

privilege
defined, 45
grantable, 76

procedure
and transaction management,

147
BEGIN, 309
built-in variables in, 151
caller recommended practices,

156
checkpoint host variable, 316
coding practices, 156
comments within, 156
control flow statements in, 149
control language, 442, 597
creating, 146, 339
defined, 137
executing, 147
explained, 145
local variables in, 150
parameters in, 149
PRINT statement, 155, 471
queries in, 151
RAISE ERROR, 474
recommended practices, 156
result set, 342
RETURN, 487
rule and non-rule invocation,

163
runtime errors, 155
SELECT in, 152
specifying in DECLARE

CURSOR, 373
using DECLARE

%%Variable%% in, 376
using with rules, 159

validating, 592
with single format multiple row

sets, 342
procedure cursor

defined, 151, 342, 372
in ISQL, 153
parameters in, 149
query types, 151

procedure names
in GRANT, 437

procedures and rules
chains of, 159
using, 145, 157

programmatic database access
defined, 42

programs
effect of DBEnvironment

changes on, 94
PUBLIC

special name, 206
PUBLIC tables

in CREATE TABLE, 354
in GRANT, 437
locking mode, 64

PUBLICREAD tables
in CREATE TABLE, 354
locking mode, 64

PUBLICROW tables
in CREATE TABLE, 354
locking mode, 65

purging DBEFiles
using DROP DBEFILE, 393

Q
quantified predicate

explained, 120
syntax, 278

queries
available with a procedure

cursor, 151
defined, 49
displaying access plan, 133, 429
in procedures, 151
range of complex types, 116
simple types, 112
updatable, 136

query
block in SELECT, 499
blocks in expression, 116
complex, 116
expression, 116
expression in SELECT, 499
file space used, 511
modifying access plan, 531
processor defined, 42
result defined, 110
results, 499
Index 687

Index
syntax (SELECT), 499

R
RAISE ERROR

in procedures, 155
in procedures invoked by rules,

162
syntax, 474

RC isolation level
explained, 175
in SET SESSION, 537
in SET TRANSACTION, 543

read committed (RC)
explained, 175

read committed isolation level
in BEGIN WORK, 312
in SET SESSION, 537
in SET TRANSACTION, 542

read uncommitted (RU)
explained, 176

read uncommitted isolation level
in BEGIN WORK, 312
in SET SESSION, 537
in SET TRANSACTION, 543

REAL
conversions rules, 504
data type defined, 208
storage requirements, 210

recovery
rollback, 495

referenced table
defined, 138

referencing table
defined, 139

referential constraint
deferred error checking, 144
defined, 138
in ALTER TABLE, 301
in CREATE TABLE, 354
revoking, 489
slowing TRUNCATE TABLE,

578
referential integrity

using constraints, 68, 137
REFETCH

syntax, 476
relation

defined, 44
relational database

defined, 44
RELEASE

syntax, 479
release

DBE session, 479
in COMMIT WORK, 323

remote connections
establishment of, 95

REMOVE DBEFile
syntax, 480

REMOVE FROM GROUP
syntax, 482

removing DBEFiles, 480
RENAME COLUMN

syntax, 484
RENAME TABLE

syntax, 485
renaming

columns, 484
tables, 485

repeatable read (RR)
explained, 174

repeatable read isolation level
in BEGIN WORK, 312
in SET SESSION, 536
in SET TRANSACTION, 542

RESET
syntax, 486

resetting ALLBASE/SQL system
data, 486

result
table defined, 49

result columns
in SELECT, 512

retrieving
data, 109
rows, 109, 499

RETURN
syntax, 487

return status
in DECLARE CURSOR

specifying, 373
revalidating rows, 476
REVOKE

and CASCADE, 77
and grantable privilege, 77
syntax, 489

revoking
authorities using REVOKE, 489
grants using CASCADE, 77

RIGHT OUTER JOIN
in SELECT, 513

right outer join
defined, 127

roll forward
wrapperDBE, 92

rollback
recovery, 495
ROLLBACK WORK, 495

ROLLBACK WORK
in a procedure, 147
syntax, 495

row level
DML atomicity, 526
DML atomicity logging, 144

locking, 177
rows

defined, 44
fetching, 424
inserting, 445
joining, 511
selecting, 499

RR isolation level
explained, 174
in SET TRANSACTION, 543

RU isolation level
explained, 176
in SET SESSION, 537
in SET TRANSACTION, 543

rule
and transaction management,

163
creating, 158, 346
defined, 137
differences from integrity

constraints, 166
enabling and disabling, 163
explained, 157
techniques for using procedures

with, 159
rules and procedures

chains of, 159
CREATE PROCEDURE

statement, 339
CREATE RULE statement, 346
DISABLE RULES statement,

390
DROP PROCEDURE

statement, 404
DROP RULE statement, 405
ENABLE RULES statement,

413
TRUNCATE TABLE statement,

578
using, 145, 157

RUN authority
granting, 437
purpose, 94

run block
in START DBE, 552
in START DBE NEWLOG, 563

runtime control block pages
in START DBE, 552
in START DBE NEW, 555
in START DBE NEWLOG, 563

runtime errors
in a procedure, 155

S
S (SHARE) locks, 460
S lock

explained, 179
688 Index

Index
SAVEPOINT
in a procedure, 147
setting, 497
syntax, 497
using, 495

scale
defined, 208
in DECIMAL operations, 216

scoping
transaction and session

attributes, 87
search condition

compatible predicates, 263
defined, 111
definition, 261
in complex queries, 116
in DELETE, 378
subquery in, 120
syntax, 262
type conversion in, 263
use for, 261
value extensions in, 263

SearchCondition
in CREATE TABLE, 359

section
authorization in PREPARE, 468
defined, 93
invalidation by TRUNCATE

TABLE, 578
invalidation through

procedures, 164
semi-permanent, 466
validating, 592

section audit element
in START DBE NEW, 555
in START DBE NEWLOG, 563

SECTIONSPACE
authorization in CREATE

RULE, 349
security

of database, 75
SELECT

displaying access plan, 133, 429
in CREATE VIEW, 367
in DECLARE CURSOR, 371
in procedures, 152
syntax, 499, 505
use of, 109
with cursor in procedures, 153

select cursor
authorization in CREATE

PROCEDURE, 373
defined, 151, 342, 372
within a procedure, 151

select list
defined, 110, 506

selecting data

discussed, 109
grouping rows, 511
maximum columns, 507
SELECT, 499
unique rows, 505

semi-permanent section
creating with PREPARE, 466
owner, 206

SEMIPREM owner, 206
serializable isolation level

in SET SESSION, 537
in SET TRANSACTION, 543

session
DBE, 62

SET CONNECTION
syntax, 519

set constraint type statement
explained, 144

SET CONSTRAINTS
syntax, 521

SET DEFAULT DBEFILESET
syntax, 524

SET DML ATOMICITY
syntax, 526

SET MULTITRANSACTION
explained, 99
syntax, 529

SET PRINTRULES
syntax, 534, 536

SET PRINTRULES ON
to trace rule chaining, 164

SET SESSION
CS isolation level, 537
cursor stability isolation level,

536
RC isolation level, 537
read committed isolation level,

537
read uncommitted isolation

level, 537
repeatable read isolation level,

536
RU isolation level, 537
serializable isolation level, 537

SET TRANSACTION
CS isolation level, 543
cursor stability isolation level,

542
RC isolation level, 543
read committed isolation level,

542
read uncommitted isolation

level, 543
repeatable read isolation level,

542
RR isolation level, 543
RU isolation level, 543

serializable isolation level, 543
syntax, 542

SET USER TIMEOUT
syntax, 548

SETOPT
syntax, 531
validating modules, 592

setting
constraint checking with SET

TRANSACTION, 542
constraints to deferred, 521
current connection, 96
default DBEFileSet, 524
DML atomicity, 526
multiple-transaction mode, 100
options with BEGIN WORK,

312
savepoints, 497
the current connection, 519
timeout values, 97
transaction mode, 99

setting DML ATOMICITY
with SET TRANSACTION, 542

setting DML atomicity, 144
setting transaction attributes

with SET TRANSACTION, 542
share

intention exclusive lock, 179
lock defined, 179

SHARE mode
in LOCK TABLE, 460

share mode
locking, 182

SHARE UPDATE mode
in LOCK TABLE, 460

simple names
defined, 203

simultaneous transactions
with BEGIN WORK, 313

single-transaction mode
explained, 99
in SET MULTITRANSACTION,

529
single-user mode

defined, 48
in a DBE session, 62

SIX (SHARE INTENT
EXCLUSIVE) locks, 460

SIX lock
explained, 179

SMALLINT
conversions rules, 504
defined, 208
storage requirements, 210

SOME
in quantified predicate, 278

sorting
Index 689

Index
using TempSpace, 63
space management

for tables and indexes, 63
in CREATE DBEFILESET, 330

special
authorities revoking, 491
names, 206

special predicates
EXISTS predicate, 267
IN predicate, 268
quantified predicate, 278

SQL
defined, 41
language structure, 52
naming rules, 201
usage, 41, 60

SQL statement
ADD DBEFile, 293
ADD TO GROUP, 295
ADVANCE, 297
ALTER DBEFILE, 299
ALTER TABLE, 301
BEGIN, 309
BEGIN ARCHIVE, 310
BEGIN DECLARE SECTION,

311
BEGIN WORK, 312
BULK FETCH, 424
BULK INSERT, 445
BULK SELECT, 499
CHECKPOINT, 316
CLOSE, 319
COMMIT ARCHIVE, 322
COMMIT WORK, 323
CONNECT, 325
CREATE DBEFILE, 327
CREATE DBEFILESET, 330
CREATE GROUP, 332
CREATE INDEX, 334
CREATE PARTITION, 337
CREATE PROCEDURE, 339
CREATE RULE, 346
CREATE SCHEMA, 351
CREATE TABLE, 354
CREATE TEMPSPACE, 365
CREATE VIEW, 367
DECLARE %%Variable%%, 376
DECLARE CURSOR, 371
DELETE, 378
DELETE WHERE CURRENT,

381
DESCRIBE, 384
DISABLE AUDIT LOGGING,

389
DISABLE RULES, 390
DISCONNECT, 391
DROP DBEFILE, 393

DROP DBEFILESET, 395
DROP GROUP, 397
DROP INDEX, 399
DROP MODULE, 401
DROP PARTITION, 403
DROP PROCEDURE, 404
DROP RULE, 405
DROP TABLE, 406
DROP TEMPSPACE, 408
DROP VIEW, 409
ENABLE AUDIT LOGGING,

411
ENABLE RULES, 413
END DECLARE SECTION, 414
EXECUTE, 415
EXECUTE IMMEDIATE, 420
EXECUTE PROCEDURE, 421
FETCH, 424
GENPLAN, 429
GRANT, 436
GRANT ON DBEFILESET, 439
IF, 442
INCLUDE, 444
INSERT, 445
Labeled Statement, 458
length, 283
LOCK TABLE, 460
LOG COMMENT, 462
OPEN, 464
PREPARE, 466
PRINT, 471
RAISE ERROR, 474
REFETCH, 476
RELEASE, 479
REMOVE DBEFILE, 480
REMOVE FROM GROUP, 482
RENAME COLUMN, 484
RENAME TABLE, 485
RESET, 486
RETURN, 487
REVOKE, 489
ROLLBACK WORK, 495
SAVEPOINT, 497
SELECT, 499, 505
SET CONNECTION, 519
SET CONSTRAINTS, 521
SET DEFAULT DBEFILESET,

524
SET DML ATOMICITY, 526
SET MULTITRANSACTION,

529
SET PRINTRULES, 534, 536
SET TRANSACTION, 542
SET USER TIMEOUT, 548
SETOPT, 531
SQLEXPLAIN, 550
START DBE, 552

START DBE NEW, 555
START DBE NEWLOG, 563
STOP DBE, 571
summary table, 283
TERMINATE QUERY, 572
TERMINATE TRANSACTION,

573
TERMINATE USER, 574
TRANSFER OWNERSHIP, 576
TRUNCATE TABLE, 578
UPDATE, 580
UPDATE STATISTICS, 585
UPDATE WHERE CURRENT,

587
VALIDATE, 592
WHENEVER, 595
WHILE, 597

SQL statements
categories, 54
within procedures, 148

SQLAudit
auditing transactions, 92
defined, 43

SQLCA
INCLUDE SQLCA, 444
used with SQLEXPLAIN, 550
used with WHENEVER, 595

SQLCheck
defined, 43

SQLDA
INCLUDE SQLDA, 444
used with FETCH, 424

SQLEXPLAIN
on returning from procedures,

156
syntax, 550

SQLGEN
defined, 43

SQLMigrate
defined, 43

SQLMON
authority, 199
defined, 43
grant authority to run, 438
monitoring locking, 199
monitoring transactions, 90

SQLUtil
defined, 43
setting transaction limits, 89
wrapdbe command, 92

SQLVer
defined, 43

START DBE
syntax, 552

START DBE NEW
syntax, 555

START DBE NEWLOG
690 Index

Index
syntax, 563
starting a DBE session

using CONNECT, 325
using START DBE, 552

startup parameters
defined in START DBE NEW,

560
in START DBE NEW, 60

statement level
constraint error checking, 521
DML atomicity, 526
error enforcement explained,

144
STOP DBE

syntax, 571
stopping

ALLBASE/SQL using STOP
DBE, 571

session using DISCONNECT,
391

storage allocation
defined, 45

storage audit element
in START DBE NEW, 555
in START DBE NEWLOG, 563

Storage Manager
defined, 42

storage requirements
for specific data types, 210

stored modules
and DROP MODULE, 401

STOREDSECT
owner of system section tables,

206
Structured Query Language

defined, 41
subquery

as part of a predicate, 116
correlated, 126
defined, 120
in a quantified predicate, 122
in an EXISTS predicate, 124
in an IN predicate, 124

switching transactions
and MULTITRANSACTION,

529
symmetric outer join

and UNION, 130
defined, 127
using UNION operator, 131

SYSTEM
as owner, 77
owner of system views, 206
table locking, 181
view names in UPDATE

STATISTICS, 585
system catalog

contents, 61, 105
defined, 47
system tables, 61
system views, 61
table of system views, 106
updating statistics, 585

system DBEFileset
defined, 47

system views
summary of, 106

SYSTEM.ACCOUNT
resetting, 486

SYSTEM.COLUMN
updating statistics for, 585

SYSTEM.COUNTER
resetting, 486

SYSTEM.DBEFILE
updating statistics for, 585

SYSTEM.DBEFILESET
updating statistics for, 585

SYSTEM.INDEX
updating statistics for, 585

SYSTEM.SECTION
validating modules, 594

SYSTEM.TABLE
monitoring for table size, 178
updating statistics for, 585

T
table

adding constraint to, 301
allocating storage for, 360
and check constraints, 139
changing locking, 301
creating, 354
defined, 44, 64
defining default columns in,

301, 357
deleting all rows from, 578
dropping, 393, 406
dropping constraint from, 301
explicit locking, 460
granting authorities, 436
implicit locking, 354
inserting rows into, 445
locking, 183
locking explained, 177
referenced, 138
referencing, 139
revoking authorities, 489
updating statistics, 585

TABLE DBEFiles, 327
table names

in ALTER TABLE, 301
in CREATE INDEX, 334
in CREATE TABLE, 354
in DELETE, 378

in DELETE WHERE
CURRENT, 381

in DROP INDEX, 399
in DROP TABLE, 406
in GRANT, 437
in INSERT, 445
in LOCK TABLE, 460
in REVOKE, 489
in TRANSFER OWNERSHIP,

576
in TRUNCATE TABLE, 578
in UPDATE statements, 580
in UPDATE STATISTICS, 585
in UPDATE WHERE

CURRENT, 587
rules for, 201

TableSpec
in SELECT, 500

TEMP
and modules not stored, 468
owner of modules, 206

temporary section
validating, 592

TempSpace
defined, 63
dropping, 408
names in CREATE

TEMPSPACE, 365
names in DROP TEMPSPACE,

408
using, 365

TERMINATE QUERY
syntax, 572

TERMINATE TRANSACTION
syntax, 573

TERMINATE USER
syntax, 574

terminating
a DBE session, 62, 391, 479,

572, 574
transactions, 495, 573

TERMINATION LEVEL
setting with SET

TRANSACTION, 542
THEN

in procedures, 442
TIME

conversions rules, 504
defined, 209
operations with values, 217
storage requirements, 210
values in arithmetic expression,

218
timeout

and BEGIN WORK, 314
and lock waits, 194
Index 691

Index
SET TRANSACTION
statement, 542

SET USER TIMEOUT
statement, 548

START DBE NEWLOG, 568
value setting, 97
values in DBECon file, 552

transaction attributes
setting in BEGIN WORK, 312
setting in SET TRANSACTION,

542
transaction level constraint

checking
errors, 521

transactions
aborted, 571
and data consistency, 48
and multiple connections, 95
and recovery, 48
and timeouts, 95
automatic rollback of, 495
committing, 82
defined, 48, 82
effect of terminating, 323
implicit vs. explicit, 313
in a procedure, 147
in a procedure invoked by a rule,

163
in START DBE NEW, 556
locks released, 313
management, 82
maximum in START DBE, 552
maximum in START DBE

NEWLOG, 564
mode setting, 99
priority, 195
SET USER TIMEOUT, 548
simultaneous with BEGIN

WORK, 313
statements that must be in the

same, 313
terminating, 313, 323, 495

TRANSFER OWNERSHIP
syntax, 576

transferring ownership, 576
when dropping authorization

group, 397
TRUNCATE TABLE

syntax, 578
truncation

and native language data, 226
in expressions, 232
of data, 212

tuple
defined, 44

type conversion
and overflow, 212

and truncation, 212
defined, 213
in expressions, 232
in search conditions, 263

U
underflow

defined, 212
in expression, 232

undetectable deadlock
in multi-transaction mode, 97

UNION
and outer join, 130
character constants with, 119
in outer joins, 130
in queries, 117
in SELECT, 503
UNION ALL form, 117

unique
indexes, 334
rows, 505

unique constraint
defined, 138
in ALTER TABLE, 301
in CREATE TABLE, 354

updatability
of cursors, 372
rules, 136

UPDATE
displaying access plan, 133, 429
statement type in rules, 581,

588
syntax, 580

UPDATE STATISTICS
syntax, 585

UPDATE WHERE CURRENT
syntax, 587

updating
data, 82
system catalog statistics, 585

USER expression value
expressions, 269
IN predicate, 269

user mode
defined, 48
in CONNECT, 325

user table locking
explained, 181

user timeout value
in SET TRANSACTION, 542
in START DBE, 552
in START DBE NEW, 555
in START DBE NEWLOG, 563

using ALLBASE/SQL
ad hoc queries, 51
application programming, 51
database administration, 51

using SQL
summarized, 60

V
VALIDATE

syntax, 592
validity checking

of data, 68
of databases, 137

value
comparisons, 211
extensions in search conditions,

263
VARBINARY

conversions rules, 504
long data type defined, 208
storage requirements, 210

VARCHAR
conversions rules, 504
defined, 208
storage requirements, 210

variable-length strings
defined, 208

variables
BEGIN DECLARE SECTION,

311
END DECLARE SECTION, 414
indicator, 94
input, 94
output, 94

verb
defined, 52

view names
in CREATE VIEW, 367
in DELETE, 378
in DELETE WHERE

CURRENT, 381
in DROP TABLE, 406
in DROP VIEW, 409
in INSERT, 445
in REVOKE, 489
in TRANSFER OWNERSHIP,

576
in UPDATE, 580
in UPDATE WHERE

CURRENT, 587
rules for, 201

views
and check constraints, 141
base tables, 67
creating, 67, 367
defined, 44, 67
dropping, 406, 409
granting authorities, 436
inserting data, 446
restrictions in using, 67, 368
revoking authorities, 489
692 Index

Index
updatable, 136
uses for, 67
WITH CHECK OPTION, 141

W
WHENEVER

in procedures, 154
syntax, 595

WHERE
and joins, 514
in SELECT, 506
in simple queries, 111

WHILE
syntax, 597

WITH CHECK OPTION
in CREATE VIEW, 368
view, 141

WITH GRANT OPTION
explained, 76
syntax in GRANT, 436

wrapdbe command
wrapperDBE, 92

wrapperDBE
archive logging, 92
audit information, 92
definition, 92
roll forward, 92
wrapdbe command, 92

writer of a procedure
recommended practices, 156

X
X (EXCLUSIVE) locks, 460

explained, 179
Index 693

Index
694 Index

	1� Introduction
	ALLBASE/SQL Components
	Utility Programs

	ALLBASE/SQL Databases
	Logical Concepts
	Physical Concepts

	ALLBASE/SQL Data Access
	Using Queries
	ALLBASE/SQL Objects
	ALLBASE/SQL Users
	SQL Language Structure
	Using Comments within SQL Statements
	SQL Statement Categories
	Error Conditions in ALLBASE/SQL
	Severity of Errors
	Atomicity of Error Checking
	Additional Information about Errors

	Native Language Support

	2� Using ALLBASE/SQL
	Creating DBEnvironments
	Specifying a Native Language Parameter
	Initial Privileges

	Starting and Terminating a DBE Session
	Sessions with Autostart
	Sessions without Autostart
	Terminating DBE Sessions

	Creating Physical Storage
	Defining How Data is Stored and Retrieved
	Creating a Table
	Specifying a DBEFileSet
	Specifying Native Language Tables and Columns
	Creating a View
	Creating Indexes
	Specifying Integrity Constraints
	Creating Procedures
	Creating Rules

	Understanding Data Access Paths
	Serial Access
	Indexed Access
	Hashed Access
	Differences between Hashed and Indexed Access
	When to Use a Hash Structure
	TID Access

	Controlling Database Access
	Authorities
	Obtaining Authorization
	DBA Authority
	Grants
	Grantable Privileges
	Ownership
	Default Owner Rules
	Ownership Privileges
	Authorization Groups
	Classes
	Differences between Groups and Classes

	Manipulating Data
	Inserting Data
	Updating Data
	Deleting Data

	Managing Transactions
	Objectives of Transaction Management
	Starting Transactions
	Ending Transactions
	Using SAVEPOINT
	Scoping of Transaction and Session Attributes
	Transaction Limits and Timeouts
	Monitoring Transactions
	Tips on Transaction Management

	Auditing DBEnvironments
	Partitions in Audit DBEnvironments

	Using Wrapper DBEnvironments
	Using SQLAudit
	Application Programming
	Preprocessor
	Authorization
	DBEnvironment Changes
	Host Variables
	Multiple-Row Manipulations

	Using Multiple Connections and Transactions with Timeouts
	Connecting to DBEnvironments
	Setting the Current Connection
	Setting Timeout Values
	Setting the Transaction Mode
	Disconnecting from DBEnvironments

	Administering a Database
	Understanding the System Catalog

	3� SQL Queries
	Using the SELECT Statement
	Simple Queries
	Complex Queries
	UNION Queries
	Using Character Constants with UNION
	Subqueries
	Special Predicates
	Quantified Predicate
	IN Predicate
	EXISTS Predicate
	Correlated Versus Noncorrelated Subqueries
	Outer Joins

	Using GENPLAN to Display the Access Plan
	Generating a Plan
	Displaying a Query Access Plan
	Interpreting a Display

	Updatability of Queries

	4� Constraints, Procedures, and Rules
	Using Integrity Constraints
	Unique Constraints
	Referential Constraints
	Check Constraints
	Examples of Integrity Constraints
	Inserting Rows in Tables Having Constraints
	How Constraints are Enforced

	Using Procedures
	Understanding Procedures
	Creating Procedures
	Executing Procedures
	Procedures and Transaction Management
	Using SQL Statements in Procedures
	Queries inside Procedures
	Using a Procedure Cursor in ISQL
	Error Handling in Procedures Not Invoked by Rules
	Using RAISE ERROR in Procedures
	Recommended Coding Practices for Procedures

	Using Rules
	Understanding Rules
	Creating Rules
	Techniques for Using Procedures with Rules
	Error Handling in Procedures Invoked by Rules
	Using RAISE ERROR in Procedures Invoked by Rules
	Enabling and Disabling Rules
	Special Considerations for Procedures Invoked by Rules
	Differences between Rules and Integrity Constraints

	5�
	Defining Transactions
	Understanding ALLBASE/SQL Data Access
	Use of Locking by Transactions
	Basics of Locking
	Locks and Queries
	Costs of Locking

	Defining Isolation Levels between Transactions
	Repeatable Read (RR)
	Cursor Stability (CS)
	Read Committed (RC)
	Read Uncommitted (RU)

	Details of Locking
	Lock Granularities
	Types of Locks
	Lock Compatibility
	Weak Locks

	What Determines Lock Types
	Type of SQL Statement
	Locking Structure Implicit at CREATE TABLE Time
	Use of the LOCK TABLE Statement
	Choice of a Scan Type
	Choice of Isolation Level
	Updatability of Cursors or Views
	Use of Sorting

	Scope and Duration of Locks
	Examples of Obtaining and Releasing Locks
	Simple Example of Concurrency Control through Locking
	Sample Transactions Using Isolation Levels

	Resolving Conflicts among Concurrent Transactions
	Lock Waits
	Deadlocks
	Table Type and Deadlock
	Table Size and Deadlock
	Avoiding Deadlock
	Undetectable Deadlock

	Monitoring Locking with SQLMON
	MONITOR Authority
	Monitoring Tasks

	6� Names
	Basic Names
	Native Language Object Names
	DBEUserIDs
	Owner Names
	Authorization Names
	Compound Identifiers
	Host Variable Names
	Local Variable Names
	Parameter Names
	DBEnvironment and DBECon File Names
	DBEFile and Log File Identifiers
	TempSpace Names
	Special Names

	7� Data Types
	Type Specifications
	Value Comparisons
	Overflow and Truncation
	Underflow
	Type Conversion
	Null Values
	Decimal Operations
	Date/Time Operations
	Examples
	Use of Date/Time Data Types in Arithmetic Expressions
	Use of Date/Time Data Types in Predicates

	Binary Operations
	Long Operations
	Defining LONG Column Data with CREATE TABLE or ALTER TABLE
	Defining Input and Output with the LONG Column I/O String
	Using INSERT with LONG Column Data
	Using SELECT with LONG Column Data
	Using UPDATE with LONG Column Data

	Native Language Data

	8� Expressions
	Expression
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	Add Months Function
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	Aggregate Functions
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	CAST Function
	Scope
	SQL Syntax
	Parameters
	Description
	Examples

	Constant
	Scope
	SQL Syntax
	Parameters

	Current Functions
	Scope
	SQL Syntax
	Description
	Examples

	Date/Time Functions
	Scope
	SQL Syntax—Conversion Functions
	Parameters—Conversion Functions
	SQL Syntax—FormatSpecification
	Parameters—FormatSpecification
	Description
	Examples

	Long Column Functions
	Scope
	SQL Syntax
	Parameters
	Description
	Examples

	String Functions
	Function Specification
	Examples:
	Scope
	SQL Syntax
	Parameters
	Description
	Examples

	TID Function
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	9� Search Conditions
	Search Condition
	Scope
	SQL Syntax
	Parameters
	Description

	BETWEEN Predicate
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	Comparison Predicate
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	EXISTS Predicate
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	IN Predicate
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	LIKE Predicate
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	NULL Predicate
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	Quantified Predicate
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	10� SQL Statements A - D
	SQL Statement Summary
	ADD DBEFILE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	ADD TO GROUP
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	ADVANCE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	ALTER DBEFILE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	ALTER TABLE
	Scope
	SQL Syntax
	Parameters—ALTER TABLE
	SQL Syntax—AddColumnSpecification
	Parameters—AddColumnSpecification
	SQL Syntax—AddConstraintSpecification
	Parameters—AddConstraintSpecification
	SQL Syntax—DropConstraintSpecification
	Parameters—DropConstraintSpecification
	SQL Syntax—SetTypeSpecification
	Parameters—SetTypeSpecification
	SQL Syntax—SetPartitionSpecification
	Parameters—SetPartitionSpecification
	Description
	Authorization
	Examples

	Assignment (=)
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	BEGIN
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	BEGIN ARCHIVE
	Scope
	SQL Syntax
	Description
	Authorization

	BEGIN DECLARE SECTION
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	BEGIN WORK
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	CHECKPOINT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CLOSE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	COMMIT ARCHIVE
	Scope
	SQL Syntax
	Description
	Authorization

	COMMIT WORK
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CONNECT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE DBEFILE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE DBEFILESET
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE GROUP
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE INDEX
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE PARTITION
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE PROCEDURE
	Scope
	SQL Syntax
	Parameters
	SQL Syntax—ParameterDeclaration
	Parameters—ParameterDeclaration
	SQL Syntax—ResultDeclaration
	Parameters—ResultDeclaration
	Description
	Authorization
	Examples

	CREATE RULE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE SCHEMA
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE TABLE
	Scope
	SQL Syntax—CREATE TABLE
	Parameters—CREATE TABLE
	SQL Syntax—Column Definition
	Parameters—Column Definition
	SQL Syntax—Unique Constraint (Table Level)
	Parameters—Unique Constraint (Table Level)
	SQL Syntax—Referential Constraint (Table Level)
	Parameters—Referential Constraint (Table Level)
	SQL Syntax—Check Constraint (Table Level)
	Parameters—Check Constraint (Table Level)
	Description
	Authorization
	Examples

	CREATE TEMPSPACE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	CREATE VIEW
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	DECLARE CURSOR
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	DECLARE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DELETE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DELETE WHERE CURRENT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DESCRIBE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	DISABLE AUDIT LOGGING
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	DISABLE RULES
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	DISCONNECT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP DBEFILE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP DBEFILESET
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP GROUP
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP INDEX
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP MODULE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	DROP PARTITION
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP PROCEDURE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP RULE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP TABLE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP TEMPSPACE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	DROP VIEW
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	11� SQL Statements E - R
	ENABLE AUDIT LOGGING
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	ENABLE RULES
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	END DECLARE SECTION
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	EXECUTE
	Scope
	SQL Syntax
	Parameters
	SQL Syntax — HostVariableSpecification
	Parameters — HostVariableSpecification
	Description
	Authorization
	Examples

	EXECUTE IMMEDIATE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	EXECUTE PROCEDURE
	Scope
	Syntax
	Parameters
	SQL Syntax—ActualParameter
	Parameters—ParameterDeclaration
	Description
	Authorization
	Examples

	FETCH
	Scope
	SQL Syntax
	Parameters
	SQL Syntax — BULK HostVariableSpecification
	Parameters — BULK HostVariableSpecification
	SQL Syntax — non-BULK HostVariableSpecification
	Parameters — non-BULK HostVariableSpecification
	Description
	Authorization
	Examples

	GENPLAN
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	GOTO
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	GRANT
	Scope
	SQL Syntax — Grant Table or View Authority
	Parameters — Grant Table or View Authority
	Authorization — Grant Table or View Authority
	SQL Syntax — Grant RUN or EXECUTE Authority
	Parameters — Grant RUN or EXECUTE Authority
	Authorization — Grant RUN or EXECUTE Authority
	SQL Syntax — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	Parameters — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	Description — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	Authorization — Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	SQL Syntax — Grant DBEFileSet Authority
	Parameters — Grant DBEFileSet Authority
	Description
	Authorization — Grant DBEFilesSet Authority
	Examples

	IF
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	INCLUDE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	INSERT
	Scope
	SQL Syntax - Insert Rows with Defined Values
	Parameters - Insert Rows with Defined Values
	SQL Syntax — SingleRowValues
	Parameters — SingleRowValues
	SQL Syntax — LongColumnIOString
	Parameters — LongColumnIOString
	Description — LongColumnIOString
	SQL Syntax — BulkValues
	Parameters — BulkValues
	Description — Insert Rows with SingleRowValues and BulkValues
	SQL Syntax — DynamicParameterValues
	Parameters — DynamicParameterValues
	Description — Insert Rows with DynamicParameterValues
	Authorization — Insert Rows with SingleRowValues and Bulk Values
	SQL Syntax — INSERT Rows Defined by a SELECT Command (Type 2 Insert)
	Parameters — INSERT Rows Defined by a SELECT Command (Type 2 Insert)
	Description — INSERT Rows Defined by a SELECT Command (Type 2 Insert)
	Authorization — INSERT Rows Defined by a SELECT Command (Type 2 Insert)
	Examples

	Labeled Statement
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	LOCK TABLE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	LOG COMMENT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	OPEN
	Scope
	SQL Syntax
	Parameters
	Description

	PREPARE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	PRINT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	RAISE ERROR
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	REFETCH
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	RELEASE
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	REMOVE DBEFILE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	REMOVE FROM GROUP
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	RENAME COLUMN
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	RENAME TABLE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	RESET
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	RETURN
	Scope
	SQL Syntax
	Parameters
	Description
	Example

	REVOKE
	Scope
	SQL Syntax — Revoke Table or View Authority
	Parameters — Revoke Table or View Authority
	Description — Revoke Table or View Authority
	Authorization — Revoke Table or View Authority
	SQL Syntax — Revoke RUN or EXECUTE or Authority
	Parameters--Revoke RUN or EXECUTE Authority
	SQL Syntax — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	Parameters — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	Description — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	Authorization — Revoke CONNECT, DBA, INSTALL, MONITOR, or RESOURCE Authority
	SQL Syntax — Revoke DBEFileSet Authority
	Parameters — Revoke DBEFileSet Authority
	Description — Revoke DBEFileSet Authority
	Authorization — Revoke DBEFileSet Authority
	Examples

	ROLLBACK WORK
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	12� SQL Statements S - Z
	SAVEPOINT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SELECT
	Scope
	SQL Syntax — Select Statement Level
	SQL Syntax — Subquery Level
	SQL Syntax — Query Expression Level
	SQL Syntax — Query Block Level
	SelectList
	HostVariableSpecification — With BULK Option
	HostVariableSpecification — Without BULK Option
	FromSpec
	TableSpec
	SQL Syntax — Select Statement Level
	Parameters — Select Statement Level
	Description — Select Statement Level
	SQL Syntax — Subquery Level
	Parameters — Subquery Level
	Description — Subquery Level
	SQL Syntax — Query Expression Level
	Parameters — Query Expression Level
	Description — Query Expression Level
	SQL Syntax — Query Block Level
	Parameters — Query Block Level
	SQL Syntax — SelectList
	Parameters — SelectList
	SQL Syntax — BULK HostVariableSpecification
	Parameters — BULK HostVariableSpecification
	SQL Syntax — non-BULK HostVariableSpecification
	Parameters — non-BULK HostVariableSpecification
	SQL Syntax — FromSpec
	Parameters — FromSpec
	Description — Query Block Level
	Authorization
	Examples

	SET CONNECTION
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SET CONSTRAINTS
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SET DEFAULT DBEFILESET
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SET DML ATOMICITY
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SET MULTITRANSACTION
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SETOPT
	Scope
	Syntax — SETOPT
	Syntax — Scan Access
	Syntax — Join Algorithm
	Parameters
	Description
	Authorization
	Examples

	SET PRINTRULES
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SET SESSION
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SET TRANSACTION
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SET USER TIMEOUT
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	SQLEXPLAIN
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	START DBE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	START DBE NEW
	Scope
	SQL Syntax — START DBE NEW
	Parameters — START DBE NEW
	SQL Syntax — DBEFile0Definition
	Parameters — DBEFile0Definition
	SQL Syntax — DBELogDefinition
	Parameters — DBELogDefinition
	Description
	Authorization
	Example

	START DBE NEWLOG
	Scope
	SQL Syntax — START DBE NEWLOG
	Parameters — START DBE NEWLOG
	SQL Syntax — NewLogDefinition
	Parameters — NewLogDefinition
	Description
	Authorization
	Example

	STOP DBE
	Scope
	SQL Syntax
	Description
	Authorization
	Example

	TERMINATE QUERY
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	TERMINATE TRANSACTION
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	TERMINATE USER
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	TRANSFER OWNERSHIP
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	TRUNCATE TABLE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	UPDATE
	Scope
	SQL Syntax
	Parameters
	Description
	SQL Syntax — LongColumnIOString
	Parameters — LongColumnIOString
	Description — LongColumnIOString
	Authorization
	Example

	UPDATE STATISTICS
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	UPDATE WHERE CURRENT
	Scope
	SQL Syntax
	Parameters
	Description
	SQL Syntax — LongColumnIOString
	Parameters — LongColumnIOString
	Description — LongColumnIOString
	Authorization
	Example

	VALIDATE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Examples

	WHENEVER
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	WHILE
	Scope
	SQL Syntax
	Parameters
	Description
	Authorization
	Example

	A� SQL Syntax Summary
	ADD DBEFILE
	ADD TO GROUP
	ADVANCE
	ALTER DBEFILE
	ALTER TABLE
	Assignment (=)
	BEGIN
	BEGIN ARCHIVE
	BEGIN DECLARE SECTION
	BEGIN WORK
	CHECKPOINT
	CLOSE
	COMMIT ARCHIVE
	COMMIT WORK
	CONNECT
	CREATE DBEFILE
	CREATE DBEFILESET
	CREATE GROUP
	CREATE INDEX
	CREATE PARTITION
	CREATE PROCEDURE
	CREATE RULE
	CREATE SCHEMA
	CREATE TABLE
	CREATE TEMPSPACE
	CREATE VIEW
	DECLARE CURSOR
	DECLARE
	DELETE
	DELETE WHERE CURRENT
	DESCRIBE
	DISABLE AUDIT LOGGING
	DISABLE RULES
	DISCONNECT
	DROP DBEFILE
	DROP DBEFILESET
	DROP GROUP
	DROP INDEX
	DROP MODULE
	DROP PARTITION
	DROP PROCEDURE
	DROP RULE
	DROP TABLE
	DROP TEMPSPACE
	DROP VIEW
	ENABLE AUDIT LOGGING
	ENABLE RULES
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	EXECUTE PROCEDURE
	FETCH
	GENPLAN
	GOTO
	GRANT
	IF
	INCLUDE
	INSERT - 1
	INSERT - 2
	Labeled Statement
	LOCK TABLE
	LOG COMMENT
	OPEN
	PREPARE
	PRINT
	RAISE ERROR
	REFETCH
	RELEASE
	REMOVE DBEFILE
	REMOVE FROM GROUP
	RENAME COLUMN
	RENAME TABLE
	RESET
	RETURN
	REVOKE
	ROLLBACK WORK
	SAVEPOINT
	SELECT
	SET CONNECTION
	SET CONSTRAINTS
	SET DEFAULT DBEFILESET
	SET DML ATOMICITY
	SET MULTITRANSACTION
	SETOPT
	SET PRINTRULES
	SET SESSION
	SET TRANSACTION
	SET USER TIMEOUT
	SQLEXPLAIN
	START DBE
	START DBE NEW
	START DBE NEWLOG
	STOP DBE
	TERMINATE QUERY
	TERMINATE TRANSACTION
	TERMINATE USER
	TRANSFER OWNERSHIP
	TRUNCATE TABLE
	UPDATE
	UPDATE STATISTICS
	UPDATE WHERE CURRENT
	VALIDATE
	WHENEVER
	WHILE

	B� ISQL Syntax Summary
	CHANGE
	DO
	EDIT
	END
	ERASE
	EXIT
	EXTRACT
	HELP
	HOLD
	INFO
	INPUT
	INSTALL
	LIST FILE
	LIST HISTORY
	LIST INSTALL
	LIST SET
	LOAD
	RECALL
	REDO
	RENAME
	SELECTSTATEMENT
	SET
	SQLGEN
	SQLUTIL
	START
	STORE
	SYSTEM
	UNLOAD

	C� Sample DBEnvironment
	Installing the Files for PartsDBE
	Setting Up PartsDBE
	Using SQLSetup
	Creating PartsDBE
	Using Setup

	Listings of ISQL Command Files
	STARTDBE Command File
	CREATABS Command File
	LOADTABS Command File
	CREAINDEX Command File
	CREASEC Command File
	Data in the Sample DBEnvironment
	ManufDB.SupplyBatches Table
	ManufDB.TestData Table
	PurchDB.Inventory Table
	PurchDB.OrderItems Table
	PurchDB.Orders Table
	PurchDB.Parts Table
	PurchDB.Reports Table
	PurchDB.SupplyPrice Table
	PurchDB.Vendors Table
	RecDB.Clubs Table
	RecDB.Events Table
	RecDB.Members Table
	Sample Program Files

	D� Standards Flagging Support
	Introduction
	Non-standard Statements and Extensions
	Non-Standard Data Types
	Non-Standard Expression Extensions
	Non-Standard Syntax Rules

