HP 3000 MPE/iX Computer Systems

ALLBASE/SQL
Reference Manual

HEWLETT
(AP] PACKARD
HP Part No. 36216-90001

Printed in U.S.A. 1997

Seventh Edition
E0897

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.
This document contains proprietary information which is protected
by copyright. All rights reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject

to restrictions as set forth in subparagraph (c) (1) (ii) of the

Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19 (¢) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Copyright © 1986—1994, 1997 by Hewlett-Packard Company

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the

document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version
First Edition December 1987 36216-02A.01.00
Second Edition October 1988 36216-02A.12.00
Third Edition October 1989 36216-02A.20.00
Fourth Edition December 1990 36216-02A.E1.00
Fifth Edition June 1992 36216-02A.F0.00
Sixth Edition April 1994 36216-02A.G0.00

Seventh Edition August 1997 36216-02A.G2.00

ALLBASE/SQL Manuals

Title

Customer

Order Number

ALLBASE/NET User’s Guide

ALLBASE/SQL Advanced Application Programming Guide
ALLBASE/SQL C Application Programming Guide
ALLBASE/SQL COBOL Application Programming Guide
ALLBASE/SQL Database Administration Guide
ALLBASE/SQL FORTRAN Application Programming Guide
ALLBASE/SQL Message Manual

ALLBASE Pascal Application Programming Guide
ALLBASE/SQL Performance and Monitoring Guidelines
ALLBASE/SQL Reference Manual

HP PC API User’s Guide for ALLBASE/SQL and IMAGE/SQL
ISQL Reference Manual for ALLBASE/SQL and IMAGE/SQL
Up and Running with ALLBASE/SQL

ODBCLINK/SE Reference Manual

36216-90031
36216-90100
36216-90023
36216-90006
36216-90005
36216-90030
36216-90009
36216-90007
36216-90102
36216-90001
36216-90104
36216-90096
36389-90011
36217-90403

Preface

This manual presents the syntax and semantics of SQL (Structured Query Language) on
HP 3000 computers running under the MPE/iX operating system. ALLBASE/SQL is
Hewlett-Packard’s proprietary relational database management product.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series

of forward-compatible operating systems for the HP 3000 line of computers. In HP
documentation and in talking with HP 3000 users, you will encounter references to MPFE XL,
the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written
for MPE XL will run without change under MPE/iX. You can continue to use MPE X1,
system documentation, although it may not refer to features added to the operating system to
support POSIX (for example, hierarchical directories).

This manual contains basic information about ALLBASE/SQL as well as in-depth information
about ALLBASE/SQL data types and statements. The first three chapters are for all readers,
including new users of ALLBASE/SQL. The remaining chapters are for experienced SQL users
and SQL application programmers. The titles of the chapters are as follows:

m Chapter 1, “Introduction,” presents the components of ALLBASE/SQL and introduces
fundamental ALLBASE/SQL concepts and terms.

m Chapter 2, “Using ALLBASE/SQL,” describes basic ALLBASE/SQL usage rules.

m Chapter 3, “SQL Queries,” presents a full treatment of queries, including the use of
subqueries, UNION, and special predicates.

m Chapter 4, “Constraints, Procedures and Rules,” presents data objects which provide a high
degree of data consistency and integrity inside the DBEnvironment.

m Chapter 5, “Concurrency Control through Locks and Isolation Levels,” describes ways of

managing concurrent database transactions.

Chapter 6, “Names,” presents general rules for names used in ALLBASE/SQL statements.

Chapter 7, “Data Types,” details the data types available in ALLBASE/SQL.

Chapter 8, “Expressions,” describes ALLBASE/SQL expressions.

Chapter 9, “Search Conditions,” presents the basic syntax of ALLBASE/SQL predicates.

Chapter 10, “SQL Statements,” contains an alphabetical reference of all the SQL statements

and other elements of syntax.

The appendixes contain additional reference information as follows:

m Appendix A, “SQL Syntax Summary,” contains an alphabetical summary of all
ALLBASE/SQL statements and other elements of syntax.

m Appendix B, “ISQL Syntax Summary,” contains an alphabetical summary of all

ALLBASE/ISQL commands.

m Appendix C, “Sample DBEnvironment,” describes the sample DBEnvironment, PartsDBE,
which is supplied with the product. An explanation is provided of how to install, and set up
a copy of PartsDBE for practice use.

m Appendix D, “Standards Flagging Support,” contains information about ALLBASE/SQL
FIPS 127.1 compliance.

Most of the examples in this manual are based on the tables, views, and other objects in
the sample DBEnvironment PartsDBE. For complete information about PartsDBE, refer to
appendix C.

What’s New in this Edition
G.1 and G.2 New Features

The following table highlights the new or changed functionality added in G.1 and G.2 releases,

and shows you where each feature is documented.

New Features in ALLBASE/SQL Releases G.1 and G.2

Feature (Category)

Description

Documented in . . .

New operand to
concatenate strings

(Standards)

Adds an operand to concatenate
character or binary strings in an
expression. New operand: ||

ALLBASE/SQL Reference Manual,

“Expressions.”

RENAME Column
or Table
(Usability)

Adds capability of defining a new
name for an existing table or
column in a DBEnvironment. You
cannot rename a table or column
that has check constraints or an
IMAGE/SQL table. New
commands: RENAME COLUMN|,
RENAME TABLE.

ALLBASE/SQL Reference Manual,
RENAME COLUMN and RENAME
TABLE in “SQL Statements.”

CAST function
added to
Expression syntax

(Usability)

Adds the CAST function to allow
explicitly converting from one data
type to another. It allows
conversion between compatible
data types and between normally
incompatible data types such as
CHAR and INTEGER. New
Expression function:

CastFunction.

ALLBASE/SQL Reference Manual, “Cast”

in “Expressions.”

Syntax added to
VALIDATE
(Usability,

Performance)

Automates execution of COMMIT
WORK after each module or
procedure is validated when WITH
AUTOCOMMIT 1s used. All
sections are revalidated whether
valid or invalid when FORCE is
used. This can reduce log space
and shared memory requirements
for the VALIDATE statement.
New syntax for VALIDATE:
FORCE, WITH AUTOCOMMIT.

ALLBASE/SQL Reference Manual,
VALIDATE in “SQL Statements.”

vi

New Features in ALLBASE/SQL Releases G.1 and G.2 (continued)

Feature (Category)

Description

Documented in . . .

Syntax added to
DELETE
(Usability,

Performance)

Automates execution of COMMIT
WORK at the beginning of the
DELETE and after each batch of
rows is deleted when WITH
AUTOCOMMIT 1s used. Reduces
log-space and shared-memory
requirements. WITH
AUTOCOMMIT cannot be used
in some cases (see the DELETE
statement). New syntax for
DELETE: WITH
AUTOCOMMIT.

ALLBASE/SQL Reference Manual,
DELETE in “SQL Statements.”

Decimal operations

(Usability)

Increases maximum precision from

18 to 27.

ALLBASE/SQL Reference Manual,

“Decimal Operations” in “Data Types.”

Terminate a query
(Usability,

Performance)

Allows termination of a query for
a connection or transaction. New
statement: TERMINATE
QUERY. New syntax for SET
SESSION, SET TRANSACTION.

ALLBASE/SQL Reference Manual,
TERMINATE QUERY, SET SESSION, SET
TRANSACTION in “SQL Statements.”

Terminate a
transaction
(Usability,

Performance)

Allows stopping of a given
transaction. New statement:
TERMINATE TRANSACTION.
New syntax for SET SESSION,
SET TRANSACTION.

ALLBASE/SQL Reference Manual,
TERMINATE TRANSACTION, SET
SESSION, SET TRANSACTION in “SQL

Statements.”

Timeout enhanced
to allow specifying
what is rolled back
or terminated
(Usability,

Performance)

Allows specifying the action when
a timeout expires. New attributes
for SET SESSION and SET
TRANSACTION:
TERMINATION AT LEVEL,
USER TIMEOUT, ON
TIMEOUT ROLLBACK.

ALLBASE/SQL Reference Manual, SET
SESSION in “SQL Statements.”

Allow or disallow
SQLMON for
users.

(Usability)

Grants or revokes the ability to
run SQLMON for specific users.
New attribute for GRANT and
REVOKE: MONITOR.

ALLBASE/SQL Reference Manual,
GRANT, REVOKE in “SQL Statements.”

vii

New Features in ALLBASE/SQL Releases G.1 and G.2 (continued)

Feature (Category)

Description

Documented in . . .

Allow or disallow
authority to create
modules.

(Usability)

Grants or revokes the ability to

create modules for specific users.
New attributes for GRANT and
REVOKE: INSTALL.

ALLBASE/SQL Reference Manual,
GRANT, REVOKE in “SQL Statements.”

Script for
migration to a new
release (Usability,
Tools)

Provides SQLINSTL script for
migration to a new release of
ALLBASE/SQL. Read the
SQLINSTL file on your system for
more information.

SQLINSTL file; Communicator 3000
MPE/iX Release 5.5 (Non-Platform Software
Release C.55.00), “ALLBASE/SQL
Enhancements”; ALLBASE/SQL Database
Administration Guide in “SQLINSTL”
section of the “DBA Tasks and Tools”
chapter.

GENPLAN on a
section (Usability)

Obtains an access plan of a stored
static query by specifying the
module and section number.

Changed syntax: GENPLAN.

ALLBASE/SQL Reference Manual,
GENPLAN in “SQL Statements.”

POSIX support
(Tools)

Starting with G.1, the
ALLBASE/SQL preprocessor
(PSQLCOB) supports
preprocessing and generation of
Microfocus COBOL source code
under POSIX (Portable Operating
System Interface).

Commaunicator 3000 MPE/iX Release 5.5
(Non-Platform Software Release C.55.00),
“ALLBASE/SQL Enhancements.”

Terminate a user’s
connections
(Connectivity)

Terminates one or more
connections for a user. New

syntax for TERMINATE USER:
CID ConnectionlD.

ALLBASE/SQL Reference Manual,
TERMINATE USER in “SQL Statements.”

Run Queue
Control for
ALLBASE/NET
(Connectivity)

Allows running HPDADVR in D
queue for an MPE/iX session or
HP-UX connection or C queue for
an MPE/iX job connection. New
environment variable:

HPSQLJOBTYPE.

Commaunicator 3000 MPE/iX Release 5.5
(Non-Platform Software Release C.55.00),
“ALLBASE/SQL Enhancements.”

PC ODBC 16-bit
and 32-bit support
(Connectivity,
Client/server)

ODBCLINK/SE allows
connectivity to ALLBASE and
IMAGE/SQL servers from a PC

running MS Windows using

ODBC.

ODBCLINK/SE Reference Manual

Year 2000 solution
(Standards)

Provides the JCW
HPSQLSPLITCENTURY to use
in setting a value between 0 and
99. This value is used to change
the century part of the DATE and
DATETIME functions to override
the default of 19.

“Date/Time Functions” in the “Expressions”
chapter of the ALLBASE/SQL Reference
Manual

viii

G.0 New Features

The following table highlights the new or changed functionality in release G.0, and shows you
where each feature is documented.

New Features in ALLBASE/SQL Release G.0

Feature (Category)

Description

Documented in . . .

Stored procedures

(Usability)

Provides additional stored
procedure functionality for
application programs. Allows
declaration of a procedure cursor
and fetching of multiple rows
within a procedure to applications.
New statement: ADVANCE.
Changed syntax: CLOSE,
CREATE PROCEDURE,
DECLARE CURSOR,
DESCRIBE, EXECUTE,
EXECUTE PROCEDURE,
FETCH, OPEN.

ALLBASE/SQL Reference Manual, “SQL
Statements” and “Using Procedures” in
“Constraints, Procedures and Rules;”
ALLBASE/SQL Advanced Application
Programmaing Guide, “Using Procedures in
Application Programs.”

Case insensitivity

(Usability)

Adds an optional attribute to the
character and varchar type column
attributes of tables. Allows search
and compare of these columns in a
case insensitive manner. Four new
SQLCore data types are added.
Changed syntax: ALTER TABLE,
CREATE TABLE.

ALLBASE/SQL Reference Manual,
“Comparison Predicate” in “Search
Conditions,” CREATE TABLE in “SQL

Statements.”

Support for 1023
columns

Increases the maximum number of
columns per table or view to 1023.

ALLBASE/SQL Reference Manual,
CREATE TABLE and CREATE VIEW in

(Usability) Increases maximum sort columns | “SQL Statements;” ALLBASE/SQL

and parameters in a procedure to | Database Administration Guide,

1023. “ALLBASE/SQL Limits” appendix.
ISQL HELP Gives help for entire command ISQL Reference Manual for ALLBASE/SQL
improvements instead of only the verb. and IMAGE/SQL, HELP in “ISQL
(Usability) Commands.”
EXTRACT Extracts modules from the ISQL Reference Manual for ALLBASE/SQL
command database and stores them in a and IMAGE/SQL, “Using Modules” in
(Usability) module file. Allows for creation of | “Using ISQL for Database Tasks,”

a module file at any time based on
the current DBEnvironment
without preprocessing. New
command: EXTRACT. Changed
syntax: INSTALL.

EXTRACT, INSTALL in “ISQL

Commands.”

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category)

Description

Documented in . . .

New SQLGEN
GENERATE
parameters

(Usability)

Generates SQL statements
necessary to recreate modified
access plans for module sections.
New syntax for GENERATE:
DEFAULTSPACE,
MODOPTINFO, PARTITION,
PROCOPTINFO, SPACEAUTH.

ALLBASE/SQL Database Administration
Guide, “SQLGEN Commands” appendix.

Row level locking

(Usability)

Permits multiple transactions to
read and update a table
concurrently because locking is
done at row level. Since the
transaction will obtain more locks,
the benefits must be weighed
against the costs. (Previously
documented in an addendum after
F.0 release.)

ALLBASE/SQL Reference Manual,
“Concurrency Control through Locks and
Isolation Levels;” ALLBASE/SQL Database
Admainistration Guide, “Effects of Page and
Row Level Locking” in “Physical Design.”

Increased number
of users

(Usability)

Removes the limitation of 240
users supported by pseudotables.
(Maximum is system session
limits: 2000 on HP-UX; 1700 on
MPE/iX.)

ALLBASE/SQL Database Administration
Guide, “ALLBASE/SQL Limits” appendix.

POSIX support
(Usability)

Improves application portability
across MPE/iX and HP-UX.
Enhances the ALLBASE/SQL
preprocessors to run under POSIX
(Portable Operating System
Interface) on MPE/iX.

ALLBASE/SQL Advanced Application
Programmaing Guide, “POSIX Preprocessor
Invocation” in “Using the Preprocessor.”

Application thread
support
(Performance,

Usability)

Provides the use of threads in an
application. Allows
ALLBASE/SQL to be used in an
application threaded environment
on MPE/iX. Application threads
are light weight processes that
share some resources and last for
the duration of a transaction.
Threaded applications reduce the
overhead of context switching and
improve the performance of
OpenTP applications.

ALLBASE/SQL Advanced Application
Programmaing Guide, “Using the
Preprocessor.”

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category)

Description

Documented in . . .

High Availability

Provides a collection of features to
keep systems available nonstop
including: Partial STORE and
RESTORE, Partial rollforward
recovery, DBEFiles in different
groups (MPE/iX), detaching and
attaching database objects,
CHECKPOINT host variable,
changing log files, console
messages logged to a file,
generating fewer log records by
using TRUNCATE TABLE to
delete rows, and new system
catalog information. See the
following features for new and
changed syntax.

ALLBASE/SQL Reference Manual, “SQL
Statements;” ALLBASE/SQL Database
Admainistration Guide, “Maintaining a
Nonstop Production System” in
“Maintenance” chapter and “SQLU#til”
appendix.

Partial rollforward
recovery

(High Availability)

Supports partial rollforward
recovery through PARTTAL option
on SETUPRECOVERY. Used to
recover specific DBEFiles while
allowing access to other DBEFiles.

ALLBASE/SQL Database Administration
Guide, “Backup and Recovery” chapter and
SETUPRECOVERY PARTIAL in
“SQLUtI” appendix.

Partial STORE
and RESTORE
(High Availability)

Gives more flexibility in backup
and recovery strategies by allowing
partial store and restore of
DBEFiles, DBEFileSets or
combinations of both. See “New
and changed SQLUtil commands
for increased availability” later in
this table.

ALLBASE/SQL Database Administration
Guide, “Backup and Recovery” chapter and
“SQLUtI” appendix.

DBEFile group
change on MPE/iX
(High Availability)

Manages DBEFiles so they can be
placed in a particular group or on
a particular volume (MPE/iX).
Use either CREATE DBEFILE or
MOVEFILE.

ALLBASE/SQL Reference Manual,
CREATE DBEFile in “SQL Statements;”
ALLBASE/SQL Database Administration
Guide, “Maintaining a Nonstop Production
System” in “Maintenance” chapter and

MOVEFILE in “SQLUt1” appendix.

Detaching and
attaching database
objects

(High Availability)

Detaches or attaches a DBEFile or
DBEFileSet from the
DBEnvironment. This is useful for
data that is accessed infrequently
such as tables containing historical
data only. New SQLUtil
commands: DETACHFILE,
ATTACHFILE.

ALLBASE/SQL Database Administration
Guide, “Maintaining a Nonstop Production
System” in “Maintenance” chapter and
DETACHFILE, ATTACHFILE in
“SQLUtI” appendix.

xi

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category)

Description

Documented in . . .

New and changed
SQLUtil
commands for
increased
availability

(High Availability)

Adds support for high availability
and System Management
Intrinsics. Intended for non-stop,
continuously available operations.
New SQLUtil commands:
ATTACHFILE, CHANGELOG,
DETACHFILE, RESTORE
PARTIAL, STORE PARTIAL,
STOREINFO, STOREONLINE
PARTTAL, WRAPDBE.
Modified SQLUtil commands:
MOVEFILE, RESTORE,
RESTORELOG, SHOWDBE,
SETUPRECOVERY, STORE,
STORELOG, STOREONLINE.

ALLBASE/SQL Database Administration
Guide, “SQLUti” appendix.

List files on backup
device

(High Availability)

Lists physical names of files stored
on backup device with new

SQLUtil command: STOREINFO.

ALLBASE/SQL Database Administration
Guide, “Backup and Recovery” chapter and
STOREINFO in “SQLUt1” appendix.

Log file
improvements

(High Availability)

Allows changing log files,
switching of console messages to a
file, and gives advance warning for
log full. Increased maximum size
of a single DBE log file to 4
gigabytes. A DBEnvironment can
have up to 34 log files configured.
Changed syntax: CHECKPOINT.
New SQLUtil command:
CHANGELOG.

ALLBASE/SQL Reference Manual,
CHECKPOINT in “SQL Statements;”
ALLBASE/SQL Database Administration
Guide, “Maintaining a Nonstop Production
System” in “Maintenance” chapter,
CHANGELOG in “SQLUt]” appendix, and
“ALLBASE/SQL Limits” appendix.

New SET
SESSION and SET
TRANSACTION
statements
(Standards,

Performance)

Provides additional flexibility and
improved performance. Allows
setting and changing transaction
and session attributes.

ALLBASE/SQL Reference Manual, SET
SESSION and SET TRANSACTION in
“SQL Statements.”

FIPS flagger
(Standards)

Meets Federal Information
Processing Standard (FIPS) 127.1
flagger support. Flags
non-standard statement or
extension. Invoked with a flagger
option in the preprocessor
command line or the SET
FLAGGER command in ISQL.
Updatability rules are different
when flagger is invoked. New
syntax: DECLARE CURSOR,
WHENEVER. Changes to C and
COBOL host variable declaration.

ALLBASE/SQL Reference Manual,
DECLARE CURSOR in “SQL Commands”
and “Standards Flagging Support”
appendix; ALLBASE/SQL Advanced
Application Programming Guide, “Flagging
Non-Standard SQL with the FIPS Flagger;”
ISQL Reference Manual for ALLBASE/SQL
and IMAGE/SQL, SET in “ISQL

Commands.”

xii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category)

Description

Documented in . . .

Optimizer
enhancement
(Performance)

Uses a more efficient algorithm
that significantly reduces the time
to generate the access plan.

ALLBASE/SQL Performance and
Monitoring Guidelines, “Optimization” in
“Basic Concepts in ALLBASE/SQL

Performance.”

Access plan
modification
(Performance)

Allows modification of access plans
for stored section to optimize
performance. View the plan with
SYSTEM.SETOPTINFO. New
statement: SETOPT.

ALLBASE/SQL Reference Manual,
SETOPT in “SQL Statements;”
ALLBASE/SQL Database Administration
Guide, SYSTEM.SETOPINFO in “System
Catalog.”

Syntax added to
disable access plan

Specifies that the optimization
information in the module file 1s

ALLBASE/SQL Reference Manual,
VALIDATE in “SQL Statements; ISQL

optimization not to be used. Changed syntax: | Reference Manual for ALLBASE/SQL and
(Performance, EXTRACT, INSTALL, IMAGE/SQL,” EXTRACT, INSTALL in
Usability) VALIDATE. “ISQL Commands.”

Application Provides enhancements to improve | ALLBASE/SQL Reference Manual,
Development preprocessing performance when “Names” and “SQL Statements;”
Concurrency simultaneously accessed by ALLBASE/SQL Advanced Application
(Performance, multiple users. Page or row level | Programming Guide, “Using the

Usability) locking on any system base table | Preprocessor;” ISQL Reference Manual for

and processing without storing
sections. See the related features
in this table.

New SQL parameter: SET
DEFAULT DBEFileSet. SQL
changed syntax: ALTER TABLE,
GRANT, REVOKE, UPDATE
STATISTICS. ISQL changed
syntax: INSTALL. Changed
SYSTEM and CATALOG view.
New STOREDSECT tables.
Special owners HPRDBSS and
STOREDSECT. Changed syntax
for Full Preprocessing Mode.

ALLBASE/SQL and IMAGE/SQL, “ISQL
Commands;” ALLBASE/SQL Database
Administration Guide, “Database Creation
and Security” and “System Catalog.”

System Catalog
tables

Provides greater concurrency by
allowing users to specify table,

ALLBASE/SQL Reference Manual,
“Names;” ALLBASE/SQL Datlabase

(Performance) page, or row level locking of any Administration Guide, “System Catalog.”
system table owned by
STOREDSECT through the
ALTER TABLE statement.
Preprocessors Allows optional specification of a | ALLBASE/SQL Advanced Application
(Performance) DBEFileSet for storage of sections. | Programming Guide, “Using the

Allows preprocessing without
storing sections in
DBEnvironment.

Preprocessor.”

xiii

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category)

Description

Documented in . . .

I/O performance
improvement
(Performance)

Optimizes I/0 for initial load,
index build, serial scans, internal
data restructuring, file activity,
pseudo mapped files and
temporary files. See the following
features for new and changed
syntax.

ALLBASE/SQL Reference Manual, “SQL

Statements.”

TRUNCATE
TABLE statement
(Performance)

Deletes all rows in a specified table
leaving its structure intact.
Indexes, views, default values,
constraints, rules defined on the
table, and all authorizations are
retained. TRUNCATE TABLE 1s
faster than the DELETE
statement and generates fewer
logs. New statement:

TRUNCATE TABLE.

ALLBASE/SQL Reference Manual,
TRUNCATE TABLE in “SQL Statements.”

New scans
(Performance)

Reads tables with a new parallel
sequential scan. The tables are
partitioned and files are read in a
round robin fashion to allow OS
prefetch to be more effective.
Allows the T/0 for a serial scan to
spread across multiple disc drives.

ALLBASE/SQL Performance and
Monitoring Guidelines, “Using Parallel Seria
Scans” in “Guidelines on Query Design.”

|

Load performance
improvement
(Performance)

Improves performance with new
SET and SET SESSION
attributes, a new binary search
algorithm, and deferred allocation
of HASH pages. New attributes
for SET SESSION statement:
FILL, PARALLEL FILL.

ALLBASE/SQL Reference Manual, SET
SESSION in “SQL Statements.”

ISQL enhanced to
improve the
performance of
LOADs

(Performance)

Uses new parameters of the ISQL
SET command to set load buffer
size and message reporting.
Improves load performance.
Choose a procedure, command file,
or new ISQL command to set
constraints deferred, lock table
exclusively, and set row level DML
atomicity. Changed syntax: SET
(see the following feature).

ISQL Reference Manual for ALLBASE/SQL
and IMAGE/SQL, SET in “ISQL

Commands.”

xiv

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category)

Description

Documented in . . .

Modified SET
options
(Performance)

Provides better performance for
LOADs and UNLOADs. Specify
buffer size, status reporting for
LOAD/UNLOAD or exclusive lock
for data table. AUTOSAVE row
limit increased to 2147483647.
New and changed SET options:
LOAD_BUFFER, LOAD_ECHO,
AUTOLOCK, AUTOSAVE.

ISQL Reference Manual for ALLBASE/SQL
and IMAGE/SQL, SET in “ISQL
Commands;” ALLBASE/SQL Performance
and Monitoring Guidelines, “Initial Table
Loads” in “Guidelines on Logical and
Physical Design.”

SQLMON
(Tools)

Monitors the activity of
ALLBASE/SQL DBEnvironment.
Provides information on file
capacity, locking, 1/0O, logging,
tables, and indexes. Summarizes
activity for entire DBEnvironment
or focuses on individual sessions,
programs, or database
components. Provides read-only
information.

ALLBASE/SQL Performance and
Monitoring Guidelines, chapters 6-9.

Audit
(Tools)

Provides a series of features to set
up an audit DBEnvironment
which generates audit log records
that you can analyze with the new
SQLAudit utility for security or
administration. Includes the
ability to set up partitions. See
ALLBASE/SQL Database
Administration Guide for
SQLAudit commands. Modified
statements: ALTER TABLE,
CREATE TABLE, START DBE
NEW, START DBE NEWLOG.
New statements: CREATE
PARTITION, DROP
PARTITION, DISABLE AUDIT
LOGGING, ENABLE AUDIT
LOGGING, LOG COMMENT.

ALLBASE/SQL Reference Manual, “SQL
Statements;” ALLBASE/SQL Database
Administration Guide, “DBEnvironment

Configuration and Security” chapter and
“SQLAudit” appendix.

Wrapper
DBEnvironments

(Tools)

Creates a DBEnvironment to wrap
around the log files orphaned after
a hard crash of DBEnvironment.
New SQLUtil command:
WRAPDBE.

ALLBASE/SQL Reference Manual,
“Wrapper DBEnvironments” in “Using
ALLBASE/SQL;” ALLBASE/SQL Database
Administration Guide, WRAPDBE in
“SQLUtl.”

HP PC API is now
bundled with
ALLBASE/SQL.

PC API is an application
programming interface that allows
tools written with either the
GUPTA or the ODBC interface to
access ALLBASE/SQL and
IMAGE/SQL from a PC.

HP PC API User’s Guide for
ALLBASE/SQL and IMAGE/SQL.

XV

New Features in ALLBASE/SQL Release G.0 (continued)

Feature (Category) Description Documented in . . .

Increased memory |Increases memory up to 50,000 ALLBASE/SQL Reference Manual,

for MPE/iX data buffer pages and 2,000 run STARTDBE, STARTDBE NEW, and
(HP-UX shared time control block pages. Increases | START DBE NEWLOG in “SQL
memory allocation |the limits significantly allowing Statements;” ALLBASE/SQL Database
is unchanged) allocation of enough data buffer Administration Guide, “ALLBASE/SQL
(Performance) pages to keep the entire Limits” appendix.

DBEnvironment in memory if
desired for performance.

ALLBASE/NET Improves performance of ALLBASE/NET User’s Guide, “Setting up
enhancements ALLBASE/NET, allows more ALLBASE/NET.”

(Connectivity, client connections on server

Performance) system, and reduces number of

programs on MPE/iX.

ALLBASE/NET | Adds option ARPA. Adds option | ALLBASE/NET User’s Guide, “Setting up
commands and NUMSERVERS to check status of | ALLBASE/NET” and “NETUtil Reference.”

options for listeners and number of network
MPE/iX connections. Changed syntax:
(Connectivity, ANSTART, ANSTAT, ANSTOP.
Usability) Changed NETUtil commands:
ADD ALIAS, CHANGE ALIAS.
ALLBASE/NET | ALLBASE/NET listener for ALLBASE/NET User’s Guide, “Setting up
and NetWare NetWare now works with the 3.11 | ALLBASE/NET.”
(Connectivity) version of Novell’s NetWare for

UNIX (HP NetWare/iX).

Changed Adds SM or AM (in the specified | ALLBASE/NET User’s Guide, “Setting up
restrictions for account) to MANAGER.SYS for | ALLBASE/NET.”

executing NETUtil | adding, changing, or deleting users

commands for for MPE/iX.

MPE/iX

(Connectivity,

Usability)

ARPA is only Remote database access ALLBASE/NET User’s Guide, “Setting up
TCP/IP interface |applications that specify NS will | ALLBASE/NET” and “NETUtil Reference.”
for data not work if the client and/or

communication server machine is an HP 9000

through Series 700/800 running HP-UX

ALLBASE/NET 10.0 or greater. Server Node Name

beginning with entry must be changed from NS

HP-UX 10.0 node name to ARPA host name.

(Connectivity) For the NETUsers file, the “Client

Node Name” must be changed
from the NS node name to the
ARPA host name. New NETUtil
commands: MIGRATE USER,
MIGRATE ALIAS.

XVi

Conventions

UPPERCASE

walics

punctuation

underlining

In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND
can be entered as any of the following:
command Command COMMAND
It cannot, however, be entered as:

comm com_mand comamnd

In a syntax statement or an example, a word in 1talics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace filename with the name

of the file:

COMMAND filename

In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(filename) : (filename)

Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user’s response to the prompt:

Do you want to continue? >> yes

In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

on
COMMAND
{ OFF }

In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND filename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

OPTION
COMMAND filename
parameter

xvii

Conventions (continued)

xviii

)

In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

L, parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the first occurrence
of parameter:

Cparameter][,...]

In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select 4, AB, BA, or B. The elements cannot be
repeated.

(4

In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

In a syntax statement, the space symbol A shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter) A(parameter)

The symbol) indicates a key on the keyboard. For example,

represents the carriage return key or (Shift) represents the
shift key.

CTRL)character (CTRL)character indicates a control character. For example, (CTRL)Y

means that you press the control key and the Y key simultaneously.

Contents

1.

Introduction
ALLBASE/SQL Components .
Utility Programs .
ALLBASE/SQL Databases .
Logical Concepts
Physical Concepts
ALLBASE/SQL Data Access .
Using Queries . .
ALLBASE/SQL ObJects .
ALLBASE/SQL Users .
SQL Language Structure .
Using Comments within SQL Statements
SQL Statement Categories . .
Error Conditions in ALLBASE/SQL
Severity of Errors . ..
Atomicity of Error Checklng .
Setting the Atomicity to the Row Level .
Deferring Error Checking beyond the Statement Level .
Additional Information about Errors
Native Language Support

Using ALLBASE/SQL

Creating DBEnvironments . . .o
Specifying a Native Language Parameter .
Initial Privileges .

Starting and Terminating a DBE Sesslon .
Sessions with Autostart
Sessions without Autostart .
Terminating DBE Sessions .

Creating Physical Storage

Defining How Data is Stored and Retrleved
Creating a Table

Choosing the Locking Mode and Defanlt Access Anthorltles

Naming the Table and Columns
Defining the Columns
Specifying Data Types .
Specifying Column Options
Specifying a DBEFileSet . .
Specifying Native Language Tables and Colnmns
Creating a View Coe e
Creating Indexes .
Specifying Integrity Constralnts .

1-1
1-3
1-3
1-3
1-5
1-7
1-7
1-8
1-8
1-9
1-10
1-11
1-13
1-13
1-13
1-13
1-13
1-14
1-14

2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9

Contents-1

Creating Procedures o0 o L 2-9
Creating Rules . . . e e e e 2-10
Understanding Data Access Paths e e e e 2-10
Serial Access L L L L L L Lo L s 2-11
Indexed Access L L L oL 2-11
Hashed Access . . . e e e e e e 2-13
Differences between Hashed and Indexed Access C e e e 2-14
When to Use a Hash Structureo . 2-14
TID Access . . . e e e e e e 2-14
Controlling Database Access e e e e e 2-15
Authorities e e e e e e e 2-15
Obtaining Anthonzatlon e e e e e 2-15
DBA Authority Lo oL L 2-15
Grants e e e e e e e e e 2-16
Grantable Prlvﬂeges e e e e e 2-16
Ownership . . . e e e e e e e e e 2-17
Default Owner Rules e e e e e e e e e 2-18
Ownership Privileges00 Lo 2-18
Authorization Groupso oL Lo oL Lo 2-19
Classes . . . e e e e e e 2-19
Differences between Groups and Classes e e e e e e 2-20
Manipulating Data oL oo o L 2-20
Inserting Datao oL Lo 2-20
Updating Datao 2-21
Deleting Data L0000 oL 2-22
Managing Transactions L. ..o oo 2-22
Objectives of Transaction Management 2-22
Ensuring Logical Data Integrity 2-23
Maximizing Concurrency« . . . o .o oo 2-23
Facilitating Recovery oo 2-23
Starting Transactions oL o Lo o L 2-24
Ending Transactions . . . e e e e e e 2-24
Using COMMIT WORK e e e e e e 2-24
Using ROLLBACK WORK 2-24
Using SAVEPOINT e e e 2-25
Scoping of Transaction and Sesslon Attrlbutes C e e e 2-26
Transaction Limits and Timeouts 2-28
Monitoring Transactions . . . e e e 2-28
Tips on Transaction Management e e e 2-29
Auditing DBEnvironments e e e e e 2-29
Partitions in Audit DBEnVlronments e e e e 2-30
Using Wrapper DBEnvironments 2-30
Using SQLAudito 2-31
Application Programming Lo oL 0oL 2-31
Preprocessor L. oo Lo oL 2-31
Authorization . . . e e e e e e e 2-32
DBEnvironment Changes e e e e e 2-32
Host Variables e e e e e e 2-32
Multiple-Row Manlpulatlons .o C e e e 2-33
Using Multiple Connections and Transactlons Wlth Tlmeouts e 2-33
Connecting to DBEnvironments 2-34

Contents-2

Setting the Current Connection .

Setting Timeout Values

Setting the Transaction Mode
Using Single-Transaction Mode .

Using Multi-Transaction Mode with Multlple DBEnVlronments .

Using Multi-Transaction Mode with One DBEnvironment
Disconnecting from DBEnvironments
Administering a Database .
Understanding the System Catalog

SQL Queries
Using the SELECT Statement
Simple Queries ..
Complex Queries
UNION Queries
Using Character Constants Wlth UNION
Subqueries .
Special Predicates .
Quantified Predicate
Using the ANY or SOME Quantlﬁer Wlth a Value Llst
Using ANY or SOME with a Subquery
Using the ALL Quantifier .
IN Predicate
Using the IN Predlcate Wlth a Value Llst
Using the IN Predicate with a Subquery .
EXISTS Predicate .
Correlated Versus Noncorrelated Subquerles
Outer Joins . .
Outer Joins Using EXphClt JOIN syntax .
Outer Joins Using the UNION Operator . .
Symmetric Outer Join Using the UNION Operator
Using GENPLAN to Display the Access Plan .
Generating a Plan R
Displaying a Query Access Plan
Interpreting a Display .
Updatability of Queries

Constraints, Procedures, and Rules
Using Integrity Constraints .
Unique Constraints
Referential Constraints
The Referenced Table
The Referencing Table .
Check Constraints .
Examples of Integrity Constralnts .
Inserting Rows in Tables Having Constramts .
How Constraints are Enforced
Using Procedures . .
Understanding Procedures
Creating Procedures .
Executing Procedures

2-34
2-35
2-36
2-36
2-37
2-38
2-40
2-41
2-41

3-1

3-3

3-6

3-8

3-9
3-10
3-11
3-11
3-11
3-12
3-13
3-13
3-14
3-14
3-14
3-15
3-16
3-16
3-19
3-21
3-22
3-22
3-23
3-23
3-24

4-1
4-1
4-2
4-2
4-3
4-3
4-5
4-7
4-8
4-9
4-9
4-10
4-10

Contents-3

Procedures and Transaction Management
Using SQL Statements in Procedures
Specifying Parameters . .
Using Local Variables in Procedures .
Using Built-in Variables in Procedures .
Queries inside Procedures
Using a Simple SELECT .
Using a Select Cursor
Using a Procedure Cursor in ISQL . .
Error Handling in Procedures Not Invoked by Rules .
Using RAISE ERROR in Procedures .
Recommended Codrng Practices for Procedures .
Using Rules
Understanding Rules
Creating Rules
Techniques for Using Procedures Wrth Rules
Using a Chained Set of Procedures and Rules .

Executing the Chained Set of Procedures and Rules .

Using a Single Procedure with Cursors . .
Error Handling in Procedures Invoked by Rules .

Using RAISE ERROR in Procedures Invoked by Rules

Enabling and Disabling Rules

Special Considerations for Procedures Invoked by Rules

Transaction Handling in Rules

Effects of Rule Chaining .

Invalidation of Sections

Changing Session Attributes

Performance Considerations ..
Differences between Rules and Integrrty Constramts .

5. Concurrency Control through Locks and Tsolation Levels

Defining Transactions . . .
Understanding ALLBASE/SQL Data Access
Use of Locking by Transactions . Coe

Basics of Locking .

Locks and Queries .

Locks on System Catalog Pages .
Locks on Index Pages

Costs of Locking . .
Defining Isolation Levels between Transactrons

Repeatable Read (RR)

Cursor Stability (CS)

Read Committed (RC)

Read Uncommitted (RU)
Details of Locking .

Lock Granularities

Types of Locks

Lock Compatibility

Weak Locks .
What Determines Lock Types

Type of SQL Statement

Contents-4

4-11
4-11
4-13
4-13
4-14
4-15
4-15
4-16
4-16
4-18
4-19
4-19
4-20
4-21
4-21
4-22
4-22
4-22
4-23
4-24
4-24
4-25
4-26
4-26
4-26
4-27
4-27
4-28
4-28

5-2
5-3
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-8
5-9
5-9
5-9
5-11
5-13
5-13
5-14
5-14

Locking Structure Implicit at CREATE TABLE Time .

Use of the LOCK TABLE Statement
Choice of a Scan Type .
Choice of Isolation Level .
Neighbor Locking .
Updatability of Cursors or Vlews
Use of Sorting .
Scope and Duration of Locks .
Examples of Obtaining and Releasmg Locks

Simple Example of Concurrency Control through Lockmg

Sample Transactions Using Isolation Levels .
Example of Repeatable Read .
Example of Cursor Stability
Example of Read Committed .
Example of Read Uncommitted . .o
Resolving Conflicts among Concurrent Transactions .
Lock Waits .
Deadlocks
Table Type and Deadlock
Table Size and Deadlock .
Avoiding Deadlock

Avoiding Deadlock by Usmg the Same Order of Executlon

Avoiding Deadlock by Reading for Update .

Avoiding Deadlock by Using the LOCK TABLE Statement
Avoiding Deadlock on Single Tables by Using PUBLICREAD and

PRIVATE

Avoiding Deadlock by Usmg the KEEP CURSOR Optlon

Undetectable Deadlock

Monitoring Locking with SQLMON
MONITOR Authority .
Monitoring Tasks .

Names

Basic Names .
Native Language ObJect Names .
DBEUserIDs .

Owner Names

Authorization Names

Compound Identifiers

Host Variable Names

Local Variable Names

Parameter Names .
DBEnvironment and DBECon Flle Names
DBEFile and Log File Identifiers
TempSpace Names .
Special Names

5-15
5-15
5-16
5-17
5-18
5-19
5-19
5-19
5-20
5-20
5-23
5-23
5-23
5-24
5-24
5-25
5-25
5-26
5-26
5-27
5-28
5-28
5-28
5-28

5-28
5-28
5-29
5-29
5-29
5-30

6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-5

Contents-5

7. Data Types

Type Specificationso oo L L0 L Lo 7-1
Value Comparisonso 0 7-4
Overflow and Truncation 7-5
Underflow 0oL 7-6
Type Conversiono 0o 7-6
Null Values o 7-8
Decimal Operations o0 7-8
Date/Time Operations 7-9
Examples . . . C e e e 7-10
Use of Date/Time Data Types in Arlthmetlc EXpressmns C e e e 7-10
Use of Date/Time Data Types in Predicates 7-12
Date/Time Data Types and Aggregate Functions 7-12
Binary Operations o ..o 0L Lo 7-12
Long Operations 7-13
Defining LONG Column Data Wlth CREATE TABLE or ALTER TABLE . 7-13
Defining Input and Output with the LONG Column I/O String 7-14
Using INSERT with LONG Column Data 7-14
Using INSERT with No Specified File Options 7-14
Using INSERT with the Overwrite Option 7-15
Using INSERT with the Append Option 7-15
Using INSERT with the Wildcard Option . . . e e e 7-15
Using INSERT with Heap Space Input and Output e e e e 7-15
Using SELECT with LONG Column Data 7-16
Using UPDATE with LONG Column Data 7-16
Examples o 0000000 7-16
Native Language Datao L. 7-18
8. Expressions
Expression . . . e e e e e e e e e e e 8-2
Add Months Functlon e e e e e e e e e 8-8
Aggregate Functions oo 0oL Lo Lo 8-10
CAST Function o o . o .00 8-12
Constant L L Lo Lo oL 8-16
Current Functions 8-17
Date/Time Functionso 8-18
Long Column Functions 8-24
String Functions oL L0 oL 0oL 8-26
TID Function Lo e 8-29
9. Search Conditions

Search Conditiono 9-2
BETWEEN Predicate00 9-4
Comparison Predicate oo oL 9-5
EXISTS Predicateo L Lo 9-7
IN Predicate L. Lo 9-8
LIKE Predicate oo oo 9-12
NULL Predicateo Lo 9-15
Quantified Predicateo Lo oL 9-17

Contents-6

10. SQL Statements
SQL Statement Summary L L Lo 10-1
ADD DBEFILEo .o 1011
ADD TO GROUP 1013
ADVANCEo s s s 1015
ALTER DBEFILE o 1017
ALTER TABLE o o 1019
Assignment (=)o 1025
BEGIN P L A2
BEGIN ARCHIVE Coe P 0550/
BEGIN DECLARE SECTION e N R0
BEGINWORK 1031
CHECKPOINT 1035
CLOSE o O B ¥
COMMIT ARCHIVE O | R0
COMMIT WORK o o o o ... 1042
CONNECT o o s 1044
CREATE DBEFILE 1046
CREATE DBEFILESET 1049
CREATE GROUP 1051
CREATE INDEX 1053
CREATE PARTITION 1056
CREATE PROCEDURE 1058
CREATE RULE 1lo6s
CREATE SCHEMA 1070
CREATE TABLE 1073
CREATE TEMPSPACE 10#4
CREATE VIEW 1086
DECLARE CURSOR 109
DECLARE Variableo oo 10-95
DELETE . . . e 5
DELETE WHERE CURRENT e 1 0
DESCRIBE . . . e e e e e oo 10-103
DISABLE AUDIT LOGGING e e e e e oo 10108
DISABLE RULES 10109
DISCONNECT 10110
DROP DBEFILE oo ... 10112
DROP DBEFILESET 10114
DROP GROUP 10116
DROPINDEX o .. L0017
DROP MODULE 10119
DROP PARTITION 10121
DROP PROCEDURE 10122
DROP RULE o . o00 10123
DROP TABLE 10124
DROP TEMPSPACE 10126
DROP VIEW . . . T 1 0
ENABLE AUDIT LOGGING e 1 5 12
ENABLE RULES e e e e e s s 10129
END DECLARE SECTION e e e e e s oo 10-130
EXECUTE 10131

Contents-7

EXECUTE IMMEDIATE 10136
EXECUTE PROCEDURE 10137
FETCH 10140
GENPLAN 10-145
GOTO s s s s s 10101
GRANT 10-1k2
IF . oo s oo 10-159
INCLUDE 10161
INSERTo oo 10-162
Labeled Statement 10174
LOCK TABLE 10176
LOG COMMENT 10178
OPENo ..o ..o 10179
PREPARE oo oo 101k%
PRINTo .. 10-185
RAISE ERROR 10187
REFETCH 10189
RELEASE 1019
REMOVE DBEFILE 10192
REMOVE FROM GROUP 10194
RENAME COLUMN 10196
RENAME TABLE 10197
RESET 10-198
RETURNo 10-199
REVOKE 10201
ROLLBACK WORK 10208
SAVEPOINT 10210
SELECT oo s, 10-212
SET CONNECTION 10-232
SET CONSTRAINTS 10234
SET DEFAULT DBEFILESET . 10-237
SET DML ATOMICITY 10-239
SET MULTITRANSACTION 10241
SETOPT 10-243
SET PRINTRULES 10246
SET SESSION 10-248
SET TRANSACTION 10254
SET USER TIMEOUT 10-2060
SQLEXPLAINo 10-262
START DBE 10204
START DBENEW 102067
START DBE NEWLOG 10-27
STOP DBE 10284
TERMINATE QUERY 10285
TERMINATE TRANSACTION 102806
TERMINATE USER 10287
TRANSFER OWNERSHIP 10289
TRUNCATE TABLE 10291
UPDATEo s 10-292
UPDATE STATISTICS 10297
UPDATE WHERE CURRENT 10299

Contents-8

A.

VALIDATE
WHENEVER
WHILE

SQL Syntax Summary
ISQL Syntax Summary

Sample DBEnvironment

Setting Up PartsDBE
Using SQLSetup
Creating PartsDBLE . . .
Using CREASQL

Listings of ISQL Command Files
STARTDBE Command File
CREATABS Command File
LOADTABS Command File
CREAINDEX Command File
CREASEC Command File .

Data in the Sample DBEnvironment
ManufDB.SupplyBatches Table .
ManufDB.TestData Table
PurchDB.Inventory Table
PurchDB.Orderltems Table
PurchDB.Orders Table
PurchDB.Parts Table
PurchDB.Reports Table
PurchDB.SupplyPrice Table
PurchDB.Vendors Table
RecDB.Clubs Table .
RecDB.Events Table
RecDB.Members Table

Sample Program Files .

Standards Flagging Support
Introduction C e e
Non-standard Statements and Extensions
Non-Standard Data Types .
Non-Standard Expression Extensions
Non-Standard Syntax Rules

Index

10-304
10-307
10-309

C-1
C-1
C-2
C-3
C-3
C-4
C-5
C-9
C-12
C-13
C-19
C-20
C-21
C-22
C-23
C-25
C-26
C-27
C-28
C-31
C-33
C-34
C-35
C-36

D-1
D-1
D-9
D-9
D-10

Contents-9

Figures

1-1. Components of ALLBASE/SQL . .
1-2. How Tables, DBEFiles, and DBEFileSets Are Related .
1-3. Databases and DBEFlleSets .

1-4. Flements of an ALLBASE/SQL DBEnVlronment

3-1. Range of Complex Query Types ..

4-1. Referential Constraints in a Set of Tables

5-1. Transactions over Time

5-2. Multiuser DBEnvironment . .

5-3. Page Versus Table Level Locking

5-4. Row Versus Page Level Locking .

5-5. Locks at Different Granularities .

5-6. Scope and Duration of Share Locks for leferent Isolatlon Levels

5-7. Lock Requests 1: Waiting for Exclusive Lock .
5-8. Lock Requests 2: Waiting for Share Locks
5-9. Lock Requests 3: Share Locks Granted
5-10. Deadlock .
9-1. Logical Operatlons on Predlcates Contammg NULL Values .
C-1. SQLSetup Menu

Contents-10

1-2
1-5
1-6
1-6
3-7
4-6
5-2
5-3
5-10
5-10
5-12
5-20
5-21
5-22
5-22
5-27
9-3
C-2

Tables

1-1.
2-1.
2-2.
4-1.
5-1.
5-2.
5-3.
5-4.
5-5.
7-1.
7-2.
7-3.
7-4.
7-5.
8-1.
8-2.
10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
C-1.
D-1.

D-2.

SQL Statement Categories .

Transaction Attribute Scope

System Views .

Built-in Variables in Procedures

Lock Compatibility Matrix .

Locking Behavior Determined by CREATE TABLE Statement
Locks Obtained on PUBLIC Tables with Different Isolation Levels
Locks Obtained on PUBLICROW Tables with Different Isolation Levels
SQLMON Monitoring Tasks

ALLBASE/SQL Data Types

Data Type Storage Requirements

Valid Type Combinations .
Conversions from Combining leferent Numerlc Data Types
Arithmetic Operations on Date/Time Data Types .

Data Types for CAST Function . Coe e

SQLTID Data Internal Format

SQL Statement Summary . .

Changes to Table Authority in ALTER TABLE

GENPLAN WITH Clause Data Types—COBOL

GENPLAN WITH Clause Data Types—Pascal . . .
GENPLAN WITH Clause Data Types—FORTRAN .
GENPLAN WITH Clause Data Types—C

Conversion Rules for Data in Query Expressions

Sample Programs in SAMPLEDB.SYS

ALLBASE/SQL FIPS 127.1 Compliance

FIPS Syntax Rules and ALLBASE/SQL Exceptlons .

1-11
2-27
2-42
4-14
5-13
5-15
5-17
5-18
5-30
7-2
7-4
7-6
-7
7-11
8-13
8-29
10-1
10-23
10-146
10-147
10-147
10-148
10-218
C-36
D-2
D-10

Contents-11

Introduction

This manual describes ALLBASE/SQL, which you use to create, maintain, and access
relational database environments. SQL stands for Structured Query Language, a language
for accessing a relational database. In order to define terms and provide an overview of the
subject, this chapter includes the following sections:

ALLBASE/SQL Components
ALLBASE/SQL Databases
ALLBASE/SQL Data Access

Using Queries

ALLBASE/SQL Objects
ALLBASE/SQL Users

Using Comments within SQL Statements
SQL Language Structure

SQL Statement Categories

Error Conditions in ALLBASE/SQL
Native Language Support

ALLBASE/SQL Components

ALLBASE/SQL consists of several distinct components, which are shown in Figure 1-1.

Introduction

1-1

Application [] C Preprocessor |
Programs COBOL Preprocessor |

FORTRAN Preprocessor |

Pascal Preprocessor

ISQL

Query
Processor

SQLMigrate
SQLGEN
Storage
SQLUtIl Manager
(DBCore) Database
LG200199_015

Figure 1-1. Components of ALLBASE/SQL

To access data with ALLBASE/SQL, you use ALLBASE/SQL statements, which conform to
industry standards for SQL statements for relational databases.

You can submit SQL statements interactively or in application programs as described here:

m Interactively, you use ISQL (Interactive SQL) to key in statements at a terminal. ISQL is
the interactive interface to ALLBASE/SQL.

m Programmatically, you embed statements in a C, COBOL, FORTRAN, or Pascal
application program. Then, before compiling the program, you use an ALLBASE/SQL
preprocessor to prepare the program for run-time database access. The preprocessor

converts an embedded SQL program into a source file for input to a C, COBOL,
FORTRAN, or Pascal compiler.

TurboIMAGE/XL database management system is now integrated with the ALLBASE/SQL
interface enabling access to TurboIMAGLE data through standard SQL.

As SQL statements come from ISQL or from the preprocessors, they are passed along to the
two following subsystems:

m Query Processor checks the syntax of each statement, verifies that the user has the
appropriate authorization for it, and processes queries.

m Storage Manager performs physical file management, and transaction and logging tasks.
The Storage Manager is also referred to as DBCore.

1-2 Introduction

Utility Programs

In addition, these utility programs help you perform the necessary maintenance tasks:
m SQLUtil assists with file maintenance, backup, and recovery.

m SQLGEN generates statements for re-creating a given DBEnvironment.

m SQLMigrate lets you move DBEnvironments between releases of ALLBASE/SQL.
m SQLCheck checks the integrity of a DBEnvironment.

m SQLMON helps you monitor DBEnvironment performance.

m SQLVer checks the version strings of the ALLBASE/SQL files.

m SQLAudit organizes audit log records for analysis of operations such as UPDATE, INSERT,
or DELETE, perhaps for security reasons.

The utility programs listed that are not included in Figure 1-1 all interact with the Storage
Manager (DBCore).

ISQL is described in the ISQL Reference Manual for ALLBASE/SQL and IMAGE/SQL. The
preprocessors are documented in separate ALLBASE/SQL application programming guides
for each language and the release specific ALLBASE/SQL Advanced Application Programming
Guide.

SQLUtil, SQLGEN, SQLMigrate, SQLCheck, SQLVer, and SQLAudit are documented

in the ALLBASE/SQL Database Administration Guide. SQLMON is documented in the
ALLBASE/SQL Performance and Monitoring Guidelines. The rest of this manual describes
SQL, pointing out differences between interactive and programmatic usage when they exist.
Most of the SQL statements can be executed through either interface.

ALLBASE/SQL Databases

The largest unit in ALLBASE/SQL is the DBEnvironment, which can be seen logically
as a collection of database objects or physically as a group of files. Objects are database
structures.

Logical Concepts

Logically, the DBEnvironment is a structure which contains one or more relational databases.
In ALLBASE/SQL, a database is a set of tables, views, and other objects that have the same
owner.

Introduction 1-3

The data in a relational database is organized in tables. A table is a two-dimensional
structure of columns and rows:

The Parts Table

________________ e e e
PARTNUMBER | PARTNAME | SALESPRICE
———————————————— B
1123-P-01 |Central Processor | 500.00 |
1133-P-01 |Communication Processor | 200.00 |- rows
1143-P-01 |Video Processor | 180.00 _|

| | |

e B e T T +

|
columns

Often a table is referred to as a relation, and a row as a tuple. You can also think of a row as
a record, and a column as a field in a file, or table.

A view is a table derived by placing a “window” over one or more tables to let users or
programs view only certain data. A view derived from the Parts table shown above might

look like this:

The PartsID View
________________ o

PARTNUMBER | PARTNAME

________________ e e e
1123-P-01 |Central Processor

1133-P-01 |Communication Processor
1143-P-01 |Video Processor

The owner of a table or view can be one of the three following entities:

1. Individual as identified by the DBEUserID, which is the logon name. An individual
who logs on as WOLFGANG.ACCOUNTNAME is known to ALLBASE/SQL as
WOLFGANGQACCOUNTNAME.

2. Authorization group, a named collection of individuals or other groups. Wolfgang might
be part of a group named Managers. A group must be created explicitly by using the
CREATE GROUP statement.

3. Class, a name that identifies a user-defined abstraction, such as a department or a function.
Wolfgang might use tables owned by a class called Marketing. A class is created implicitly
when you create objects that have a class name as owner name.

Refer to the chapter “Using ALLBASE/SQL” in this manual and to the chapter “Logical
Design” in the ALLBASE/SQL Database Administration Guide for additional information
about authorization groups and classes.

To use data in a database, you need to specify the names of the tables and views you need.
You must also specify the owner name associated with the table or view unless you own it
(or you have used the ISQL SET OWNER command). When accessing the Composers table,
Wolfgang needs to specify only Composers. However, when accessing the quotas table, he
needs to specify Marketing.Quotas because Marketing owns the Quotas table.

You also need the proper authority to access data. An authority is a privilege given to a

user to perform a specific database operation, such as accessing certain tables and views and
creating groups or tables. ALLBASE/SQL uses authorities to safeguard databases from access
by unauthorized users. In the example above, before Wolfgang can access the Quotas table, he
must be granted the authority to do so by the owner of the table.

1-4 Introduction

If you have been granted the proper authorization, you access databases by first connecting to
the DBEnvironment in which they reside:

CONNECT TO ’ DBEnvironmentName’

Physical Concepts
Physically, the DBEnvironment is a collection of files for one or more logical databases.

A DBEFile is an MPE XL file. Most files in a DBEnvironment are DBEFiles. Data in the
tables of logical databases is stored in one or more DBEFiles. Indexes are also stored in
DBEFiles; an index is a structure that ALLBASE/SQL can use to quickly find data in a
table.

A DBEFileSet is a collection of DBEFiles. You associate physical storage with a DBEFileSet
by adding DBEFiles to the DBEFileSet. Each DBEFileSet can have more than one DBEFile,
but a single DBEFile cannot contain data for more than one DBEFileSet.

When you create a table, you can specify the DBEFileSet with which the table and its indexes
will be associated. This causes physical storage space for the table and indexes to be allocated
from the DBEFiles associated with the specified DBEFileSet. Figure 1-2 illustrates the
relationships among tables, DBEFiles, and DBEFileSets.

Table 2
Table 1 Table 2 Index
|- ——————————————————————————— I
| \ l
I |
| DBEFile1 DBEFile2 I
| |
| DBEFileSet :

LG200199_020
Figure 1-2. How Tables, DBEFiles, and DBEFileSets Are Related

A DBEFileSet specifies the files that contain data for one or more tables associated with the
DBEFileSet. These tables do not have to be in the same database. Figure 1-3 illustrates that,
while a DBEFileSet can contain data for all the tables in a database, a DBEFileSet can also
contain data for some of the tables in a database, or for tables in more than one database.
Thus DBEFileSets offer a way to allocate data storage independently of how users think about
the data.

Introduction 1-5

Database2

Database3

y

DBEFileSet1

DBEFileSet2

DBEFileSet3

LG200199_022

Figure 1-3. Databases and DBEFileSets

A DBEnvironment, illustrated in Figure 1-3, houses the DBEFiles for one or more

ALLBASE/SQL databases, plus the following, which contain information for all databases in

the DBEnvironment:

m A DBECon file. This file contains information about the DBEnvironment configuration,
such as the size of various buffers and other startup parameters. The name of the DBECon

file is the same as the name of the DBEnvironment.

m A system catalog. The system catalog is a collection of tables and views that contain

data describing DBEnvironment structure and activity. The parts of the system catalog
necessary for DBEnvironment startup reside in a DBEFile known by default as DBEFile0.

All system catalog DBEFiles are associated with a DBEFileSet called SYSTEM.

m One or two log files. A log file contains a log of DBEnvironment changes. ALLBASE/SQL

uses log files to undo (roll back) or redo (roll forward) changes made in the
DBEnvironment. The log files are known by default as DBELogl and DBELog?2.

DBEnvironment

P

DBECon

System
Catalog

Database3

Database4

Log
File(s) |

LG200199_021

Figure 1-4. Elements of an ALLBASE/SQL DBEnvironment

1-6 Introduction

Most database users need not be concerned with the physical aspects of ALLBASE/SQL
databases beyond knowing which DBEnvironment contains the databases they want to access.

ALLBASE/SQL Data Access

The DBEnvironment determines both what data can be accessed in a transaction and what
data can be recovered. Following a failure, a transaction can be recovered, or all data can be
recovered, as follows:

m A transaction is one or more SQL statements that together perform a unit of work on one
or more databases in a DBEnvironment. Work done within a transaction can be made
permanent (committed) or undone (rolled back).

m After a system or hardware failure, all data within a DBEnvironment is recovered to a
consistent state. Changes performed by any transactions incomplete at failure time are
rolled back. Changes performed by transactions completed before failure time are made
permanent.

You can have more than one DBEnvironment on your system. When you connect to a
DBEnvironment, ALLBASE/SQL establishes a DBE session for you. The query processor can
process statements only when you are in a DBE session. You can access any DBEnvironment
in either of the two following modes:

m Single-user mode—only one user or program can use a DBEnvironment.

m Multiuser mode—more than one user and/or program can use a DBEnvironment at the
same time.

Using Queries

After connecting to a DBEnvironment, you use queries to retrieve data from database
tables. A query is a statement in which you describe the data you want to retrieve. In
ALLBASE/SQL, a query is performed by using the SELECT statement. For example:

SELECT PartName, SalesPrice
FROM PurchDB.Parts
WHERE PartNumber = ’1123-P-01’
OR Partllumber = 21133-P-01’

The result of a query is called a query result. In the case of the query above, which retrieves
the name and selling price of two parts from the table named PurchDB.Parts, the result is a
table made up of two columns and two rows:

PARTNAME | SALESPRICE
______________________________ P
Central Processor | 500.00
Communication Processor | 200.00

A detailed presentation of queries and other forms of data manipulation appears in the “SQL
Queries” chapter.

Introduction 1-7

ALLBASE/SQL Objects

The following structures play a significant role in the use of an ALLBASE/SQL database and
are known as database objects:

Tables

Views

Columns (in tables and views)
Authorization groups
Indexes (on tables)

Hash structures (for tables)
Constraints

Rules (on tables)
Procedures

DBEFiles

DBEFileSets

TempSpaces

Modules

Many of the SQL statements let you create and then create and manipulate objects as
described below:

Data in tables and views

Columns within tables and views

Grant authorities to authorization groups

Indexes for specific tables

Hash structures for specific tables

Constraints on specific tables, views, or columns

Rules on specific tables

Procedures containing SQL and control flow statements
DBEFiles and associate them with DBEFileSets
TempSpaces that are used for sorting

Modules when you preprocess an application program containing SQL statements

ALLBASE/SQL Users

ALLBASE/SQL users fall into the three categories as described here. One person may do all
the tasks within these categories.

m Application programmers. These users write application programs that access
ALLBASE/SQL databases. They embed SQL statements in source code to manipulate
data. Programmers then use the preprocessor that supports their programming language.
The preprocessor prepares the application program for compilation and stores database
access information in a module in the DBEnvironment; the stored module contains
optimized data access paths that are used at run time. Once the program is compiled,
authorized users can execute it.

Application programmers also use ISQL throughout program development.
DBEnvironments for testing and running applications can be created via ISQL. You can
determine the effect of many SQL statements by using ISQL.

1-8 Introduction

m Database administrators. These individuals, referred to as DBAs, are responsible for the
creation and maintenance of ALLBASE/SQL DBEnvironments. They use SQL statements,
usually via ISQL, to perform the following tasks:

0 Define DBEnvironments, grant and revoke authorities, add and drop DBEFiles, alter
tables, define indexes, and define views using SQL, ISQL, or preprocessed programs.

o1 Alter the configuration of a DBEnvironment, move or purge DBEFiles, and back up
DBEnvironments using SQLU{il.

01 Access information in the system catalog to monitor DBEnvironment usage and help
ensure efficient access to data.

0 Re-create all or part of a DBEnvironment on a different system by using SQLGEN.

m End users. These users run application programs that access ALLBASE/SQL databases.
They do not need to be aware of the components of ALLBASE/SQL in many cases. These
users may occasionally use ISQL to issue simple SQL statements that retrieve or change
data. Relational databases are particularly well-suited for data access of this nature,
because you can access data without specifying specific access paths. End users only need to
know table and column names.

SQL Language Structure

SQL statements begin with a verb and can include clauses or names. For example:

SELECT PartNumber FROM PurchDB.Parts
| | | | |

| owner |

|
| | |
| | | name | |
| | | [
statement | | table |
verb | | name |
| | |
column Fomm e +
name
|
FROM
clause

Statements always contain a verb, one or more words that describe the action of the
statement. A statement can also contain one or more clauses. A clause is a group of names
and keywords describing what the verb should operate on. A verb can operate on a named
object, such as a table or a column. Some statements can contain expressions or search
conditions. Expressions specify a value. Search conditions screen data against specific criteria:

SELECT * FROM PurchDB.Parts WHERE SalesPrice > 200.00
| | | | |

all | expression |
columns

clause

Introduction 1-9

The syntax of SQL is fully described in chapters 7-10 of this manual.

Using Comments within SQL Statements

You can initiate comments within any SQL statement or ISQL prompt either by prefixing
each line of the comment with two hyphens or with the combination of slashes and asterisks at
the beginning and end of the comments:

SELECT *
FROM PurchDB.SupplyPrice
WHERE PartNumber = 21723-AD-01°
AND DeliveryDays < 30

--This statement selects values from the SupplyPrice table based on
--part number and delivery days.

SELECT *
FROM PurchDB.SupplyPrice
WHERE PartNumber = 21723-AD-01°
AND DeliveryDays < 30

/*This statement selects values from the SupplyPrice table based on*/
/*part number and delivery days.*/

1-10 Introduction

SQL Statement Categories

Writing queries is the basis of data manipulation in ALLBASE/SQL. All users employ the
SELECT statement for this purpose. SQL has several other general-purpose statements,
and also has statements specifically for use by application programmers or database
administrators. The SQL statements are functionally summarized in Table 1-1. For the
commands in each category, refer to Table 10-1, “SQL Statement Summary.”

Table 1-1. SQL Statement Categories

Group

Category

Purpose

General-purpose statements

DBEnvironment session
management

Data definition

Data manipulation

Transaction management

Concurrency

Module Maintenance

Statements for obtaining and
terminating database access.

Statements for defining tables,
views, indexes, DBEFiles,
DBEFileSets, TempSpace, and
other SQL objects.

Statements for selecting, inserting,
and changing rows.

Statements for committing or
rolling back work done within a
single transaction. A transaction
is a unit of work and may consist
of one or multiple SQL statements.

Statements for managing data
contention in multiuser mode.

Statements for managing modules
and procedures.

Application programming
statements

Single row data manipulation

Bulk data manipulation

Cursor management

Preprocessor directives

Dynamically preprocessed queries

Status messages

Statements for manipulating a
single row with each statement
execution.

Statements for manipulating
multiple rows with a single
statement execution.

Statements for manipulating
individual rows in a set of rows
that satisfy a SELECT statement.

Statements for declarations in
application programming.

Statements for handling
statements preprocessed at run
time.

A statement for retrieving an
ALLBASE/SQL message
describing the status of an SQL
statement execution.

Introduction 1-11

Table 1-1. SQL Statement Categories (continued)

Group

Category

Purpose

Database administration
statements

Authorization

DBEnvironment configuration and
use

Space management

Logging

DBEnvironment statistics
management

Procedure control flow statements

Statements for controlling
DBEnvironment access.

Statements for controlling
DBEnvironments.

Statements for managing
DBEFiles used for tables and
indexes; statements for managing
temporary space for sorting.

Statements for managing log files.

Statements related to the system
catalog.

Statements used only inside
procedures.

Procedure statements

General and Control Flow
Statements

Statements used only inside
procedures.

If you are embedding SQL statements in an application program, refer to the ALLBASE/SQL
application programming guide for the language you are using. Bulk data manipulation is

not available for FORTRAN. COBOL and FORTRAN do not provide the full set of dynamic

preprocessing statements.

1-12 Introduction

Error Conditions in ALLBASE/SQL

When you issue an SQL statement, error messages are returned if the statement cannot be
carried out as intended. In an interactive session with ISQL, the messages are displayed on
your terminal. In application programs, you access the message buffer directly by using the
SQLEXPLAIN statement. The effect of an error on your session depends on three factors:

m Severity of the error
m Atomicity level set within the transaction
m Constraint checking mode set within the transaction

Severity of Errors

In general, errors result in partially or completely undoing the effects of an SQL statement.
If the error is very severe, the transaction is rolled back. When a transaction is rolled back,
ALLBASE/SQL displays a message like the following along with other messages:

Your current transaction was rolled back by DBCore. (DBERR 14029)

If an error is less severe, the statement is undone, but the transaction is allowed to continue.

Atomicity of Error Checking

By default, error checking is done at the statement level. In other words, the entire statement
either succeeds or fails. This means that for set operations, the statement succeeds for all
members of the set or fails for all members of the set. For example, if there is an error on the
fifteenth row of a twenty-row BULK INSERT statement, the entire statement has no effect,
and no rows are inserted. Or if an UPDATE statement that affects twenty rows creates a
uniqueness violation for one row, the statement will fail for all rows. This approach guarantees
data integrity for the entire statement. Under special circumstances, you can choose a
different atomicity level for error checking;:

m Row level
m Beyond the statement level

Setting the Atomicity to the Row Level

Sometimes statement level atomicity has drawbacks which you can correct. For example,
data manipulation statements involving large amounts of data require considerable overhead
for logging when issued at statement level, and this can impair performance. For better
performance, you can set atomicity to row level. With row level atomicity, if an error occurs
on one row, earlier rows are not undone. For example, for an error on the fifteenth row of

a twenty-row BULK INSERT, statement execution stops at the fifteenth row, but the first
fourteen rows will be processed unless you use the ROLLBACK WORK statement. To use
row level error checking, issue the following statement:

SET DMI. ATOMTCITY AT ROW LEVEL
Only DML statements can be checked for errors at the row level of atomicity. Refer to the
SET DML ATOMICITY statement in the “SQL Statements” chapter for complete details.
Deferring Error Checking beyond the Statement Level

Sometimes statement level atomicity is too narrow for your needs. For operations involving
more than one table, it may be useful to defer error checking until all tables are updated. For

Introduction 1-13

example, if you are loading two tables that have a referential relationship that is circular—

that is, each table references a primary key element in the other table—then you must defer
constraint error checking until both tables are loaded; otherwise any attempt to load a row

would result in a constraint error. To defer referential constraint error checking beyond the

statement level, issue the following statement:

SET REFERENTIAL CONSTRAINTS DEFERRED

After the loading of both tables is complete, issue the following statement:

SET REFERENTIAL CONSTRAINTS IMMEDIATE

This turns on constraint error checking and reports any constraint errors that now exist
between the two tables. Only integrity constraint error checking can be deferred beyond the
statement level. Refer to the SET CONSTRAINTS statement in the “SQL Statements”
chapter for complete details.

Additional Information about Errors

Refer to the “Introduction” to the ALLBASE/SQL Message Manual for a general description
of error handling. For the coding of error handling routines in application programs, refer to
the chapter “Using Data Integrity Features” in the ALLBASE/SQL Advanced Application
Programming Guide and the “Runtime Status Checking and the SQLCA” chapter in the
application programming guide for the language of your choice. For error handling in
procedures, refer to the chapter “Constraints, Procedures, and Rules.” For row level error
checking, see the SET DML ATOMICITY statement, and for deferred constraint checking, see
the SET CONSTRAINTS statement, both in the “SQL Statements” chapter.

Native Language Support

ALLBASE/SQL lets you manipulate databases in a wide variety of native languages in
addition to the default language, known as NATIVE-3000. You can use either 8-bit or 16-bit
character data, as appropriate for the language you select. In addition, you can always include
ASCII data in any database, because ASCII is a subset of each supported character set. The
collating sequence for sorting and comparisons is that of the native language selected.

You can use native language characters in a wide variety of places, including these:

m Character literals
m Values stored in host variables for CHAR or VARCHAR data (but not as variable names)
s ALLBASE/SQL object names

If your system has the proper message files installed, ALLBASE/SQL displays prompts,
messages and banners in the language you select; and it displays system dates and time
according to local customs. In addition, ISQL accepts responses to its prompts in the native
language selected. However, regardless of the native language used, the syntax of ISQL and
SQL statements—including punctuation—remains in ASCII. Note that MPE XL does not
support either native language file names or DBEnvironment names.

In order to use a native language other than the default, you must follow the steps below:

1. Make sure your 1/O devices support the character set you use.

1-14 Introduction

2. Set the MPE job control word NLUSERLANG to the number (LangNum) of the native

language you use. Use the following MPE XL command:

SETJCW NLUSERLANG = LangNum

This language then becomes the current language. (If NLUSERLANG is not set, the
current language is NATIVE-3000.)

3. Use the LANG = Language Name option of the START DBE NEW statement to specify

the language of a DBEnvironment when you create it. Run the MPE X1, utility program

NLUTIL.PUB.SYS to determine which native languages are supported on your system.
Here is a list of supported languages, preceded by the LangNum for each:

0 NATIVE-3000 9
1 AMERICAN 10
2 C-FRENCH 11
3 DANISH 12
4 DUTCH 13
5 ENGLISH 14
6 FINNISH 41
7 FRENCH 51
8 GERMAN

ITALTIAN
NORWEGIAN
PORTUGUESE
SPANISH
SWEDISH
ICELANDIC
KATAKANA
ARABIC

52
61
71
81
201
211
221
231

ARABICW
GREEK
HEBREW
TURKISH
CHINESE-S
CHINESE-T
JAPANESE
KOREAN

Resetting the LANG variable while you are connected to a DBEnvironment has no effect on

the current DBE session.

Introduction

1-15

Using ALLBASE/SQL

This chapter shows how to use SQL statements for the following basic tasks:

Creating DBEnvironments

Starting and Terminating a DBE Session

Creating Physical Storage

Defining How Data is Stored and Retrieved

Understanding Data Access Paths

Controlling Database Access

Manipulating Data

Managing Transactions

Auditing DBEnvironments (including setting up partitions)
Using Wrapper DBEnvironments

Using SQLAudit

Application Programming

Using Multiple Connections and Transactions with Timeouts
Administering a Database

Understanding the System Catalog

The next chapters contain more detailed information about the following topics:

m SQL Queries
m Constraints, Procedures and Rules
m Concurrency Control

The examples in this chapter are not intended to show all the functionality of the statements.
For detailed information on ALLBASE/SQL statements, refer to the chapter “SQL
Statements” in this manual. For information about database administration, refer to the

ALLBASE/SQL Database Administration Guide.

Using ALLBASE/SQL 2-1

Creating DBEnvironments

Before you can create a database, you must first configure a DBEnvironment. You use the
START DBE NEW statement, optionally specifying startup parameters to override those
assigned by default. You can use parameters to specify the following information:

Multiuser or single-user mode

Single, dual, or audit logging

Number of page and log buffers

Maximum number of partitions and concurrent transactions
Number of runtime control blocks

Timeout parameters

DBEFile0 characteristics

DBELogl and DBELog2 characteristics

The DBEnvironment name, SomeDBE for example, is specified within single quotation marks
in the START DBE NEW statement:

START DBE ’SomeDBE’ MULTI NEW

This statement configures a DBEnvironment named SomeDBE in your group and account.
This DBEnvironment contains the following files:

A DBECon file named SomeDBE

A DBEFile named DBEFile0, which is associated with a DBEFileSet named SYSTEM
DBEFile0, containing a system catalog

A single log file named DBELogl

The startup parameter MULTI makes this DBEnvironment accessible in multiuser mode by
default.

The DBECon file stores the startup parameters defined by the START DBE NEW statement.
For more information on startup parameters, refer to START DBE NEW in the “SQL
statements” chapter.

Once a DBEnvironment exists, one or more databases can be created in it. Because databases
are collections of tables and views, databases are created by defining tables and views. The
definition of tables and views is discussed later in this chapter in “Defining How Data is
Stored and Retrieved.”

Specifying a Native Language Parameter

You can specify a native language parameter in creating a DBEnvironment. Use the LANG =
LanguageName option in the START DBE NEW statement to specify a native language other
than NATIVE-3000 as in the following example:

START DBE ’SomeDBE’ NEW LANG = JAPANESE;

If you want to specify the name of the DBEnvironment in a native language, then the native
language you specify in the LANG clause must be covered by the same character set as

the language designated as the current language at the operating system level. The current
language can be different from that of the DBEnvironment. In that case, all processing—
including comparisons and sorting—will take place in accordance with the language of the
DBEnvironment, but messages will appear in the operating-system-designated language if the
appropriate message catalog is available. Also, scanning of user input will be in the current

2-2 Using ALLBASE/SQL

language. See “Native Language Support” in the “Introduction” chapter for information
about specifying a native language as the current language.

Initial Privileges
When a DBEnvironment is configured, ALLBASE/SQL grants the following initial privileges:

m DBECreator status. The logon name that issues the START DBE NEW statement is the
DBECreator. Users with this status can use all the SQLUtil statements to maintain the
DBEnvironment.

m DBA authority. The DBECreator is given DBA authority. When you have DBA authority,
you are authorized to use all the SQL statements in a DBEnvironment.

Nobody other than the DBECreator can connect to or issue SQL statements in the
DBEnvironment until the DBECreator grants the appropriate authorities.

DBA authority cannot be revoked from the DBECreator.

Starting and Terminating a DBE Session

A DBE session is the period between establishing and terminating a connection to a
DBEnvironment by a user or a program. You must be in a DBE session to execute any of the

SQL statements except the START DBE or CONNECT statements.

You can establish either a single-user DBE session or a multiuser DBE session for a
DBEnvironment. When you have a single-user session, no other users can connect to the
DBEnvironment for the duration of that session. When you have a multiuser session, others
can access the DBEnvironment at the same time.

How you establish a DBE session depends on whether the DBEnvironment is configured to
operate in autostart mode. Autostart is ON by default, but the DBA can reset it by using
SQLUtil. Refer to the “DBA Tasks and Tools” chapter in the ALLBASE/SQL Database

Administration Guide for more information about using SQLUT{il.

Sessions with Autostart

When the autostart flag for a DBEnvironment has the value of ON, users with CONNECT
authority can start a DBE session by using the CONNECT statement:

CONNECT TO ’PartsDBE.SomeGrp.Somelcct’

Initiate a single-user session if the DBEnvironment is configured to operate in single-user
mode. Initiate a multiuser session if the DBEnvironment is configured for multiuser mode.

You can have up to 32 simultaneous DBEnvironment connections.

Using ALLBASE/SQL 2-3

Sessions without Autostart

When the autostart flag has the value of OFF, a DBA must issue the START DBE statement
to make a DBEnvironment accessible. For example:

START DBE ’PartsDBE.SomeGrp.SomehAcct’

The START DBE statement illustrated above initiates a single-user session for the
DBEnvironment. To make multiuser access possible, the MULTI option is specified as follows:

START DBE ’PartsDBE.SomeGrp.SomeAcct’ MULTI

After a DBEnvironment has been started up with the MULTI option, users with CONNECT
authority can initiate multiuser sessions as in the following example:

CONNECT TO ’PartsDBE.SomeGrp.Somelcct’

The START DBE statement also lets the DBA temporarily override several of the DBECon
file startup parameters.

Terminating DBE Sessions
To terminate a DBE session, you simply specify the RELEASE statement as shown below:
RELEASE

Creating Physical Storage

To create physical storage, you use data definition statements to create the following storage
areas:

m DBEFileSets
m DBEFiles
m TempSpace

File space for tables and indexes is managed by adding and dropping DBEFiles from

DBEFileSets. DBEFiles are units of physical storage and DBEFileSets are logical collections

of DBEFiles. You use the CREATE DBEFILESET statement to define a DBEFileSet, and

the CREATE DBEFILE statement to define DBEFiles. You associate physical storage with

the DBEFileSet by associating DBEFiles with it, using the ADD DBEFILE statement.
CREATE DBEFTLESET WarehFS$

CREATE DBEFILE WarehD1 WITH PAGES = 50, NAME = ’WarehD1’
ADD DBEFILE WarehD1 TO DBEFILESET WarehFS

Once you have created DBEFileSets and added DBEVFiles to them, you need to specify the
name of a DBEFileSet in your table creation statements. This then defines, for that table,

the physical files that will be used to store the data. For complete details about creating
DBEFiles and DBEFileSets, refer to the ALLBASE/SQL Database Administration Guide.

TempSpace can be optionally defined and is a specific area of storage used by the system

for performing sorts in the database. TempSpaces are created and dropped by using the
CREATE TEMPSPACE and DROP TEMPSPACE statements. Temporary files are allocated
under the available TempSpaces as they are needed for performing a sort, and deallocated
once the sort is completed. TempSpace information is accessible through the system catalog

2-4 Using ALLBASE/SQL

view SYSTEM. TEMPSPACE. A TempSpace is referred to by a unique name. If a TempSpace
is not defined, sorting is done in the current group.

Defining How Data is Stored and Retrieved
To create database objects, you use data definition statements to define the following:

Tables
Views
Indexes
Constraints
Procedures

Rules

Creating a Table

When you define a table, use the CREATE TABLE statement to accomplish the following
tasks:

1. Establish an automatic locking mode and default access authorities.
2. Name the table.

3. Describe the columns.

4. Identify a DBEFileSet for storage of its rows.

The following example contains numbers that refer to the list of tasks shown above:

1 ——-2---
I I I
CREATE PUBLIC TABLE PurchDB.Parts

(PartNumber CHAR(16) NOT NULL, ---
PartName VARCHAR(30), | --3
SalesPrice DECIMAL (10,2)) ---

IN WarehFS

I
4

You can also specify native language characteristics and integrity constraints at both the table
and the column level.
Choosing the Locking Mode and Default Access Authorities

ALLBASE/SQL uses one of four locking modes for controlling access to data in a table by
different transactions. A transaction is one or more SQL statements that together perform a
unit of work. The locking modes are as follows:

m PRIVATE mode allows only one transaction at a time to access a table for reading or
updating. Locking is done at the table level. PRIVATE is the default mode.

m PUBLICREAD mode allows multiple transactions to read a table, but only one to update
it. Locking is done at the table level.

m PUBLIC mode allows multiple transactions to concurrently read and update a table.
Locking is done at the page level.

Using ALLBASE/SQL 2-5

m PUBLICROW mode allows multiple transactions to concurrently read and update a table.
Locking is done at the row level, which permits greater concurrency than PUBLIC mode.

ALLBASE/SQL automatically uses the locking mode in the table definition whenever you
access a table. You can use the LOCK TABLE statement to override automatic locking. You
can use the ALTER TABLE statement to permanently change the implicit locking mode.

Tables created with PUBLICREAD, PUBLIC, and PUBLICROW options also have the

following initial authorities associated with them:

m A PUBLICREAD table can be read by anyone who can start a DBE session.
m A PUBLICROW or PUBLIC table can be read and updated by anyone who can start a
DBE session.

A DBA or the table’s owner can use the GRANT and REVOKE statements to change these
authorities.

The choice of PUBLICROW rather than PUBLIC mode may result in a transaction’s
obtaining more locks, since each row must be locked individually. For more information about
the quantity of locking in PUBLIC and PUBLICROW tables, refer to the section “Effects

of Page and Row Level Locking” in the “Physical Design” chapter of the ALLBASE/SQL
Database Administration Guide.

Naming the Table and Columns

The name you assign to a table or column can be up to 20 bytes long and is governed by the
rules in the “Names” chapter.

Defining the Columns

You enclose the column definitions in parentheses, separating multiple column definitions with
a comma. At least one column must be defined. Each column is defined by a name and a data

type.

Specifying Data Types

Data types describe the kind of data that can be stored in a column. ALLBASE/SQL has five
numeric data types, two string data types, four date/time data types, and four binary data
types as follows:

m Numeric data types:

DECIMAL
FLOAT
REAL
INTEGER
SMALLINT

m Character string data types:

CHAR(n)
VARCHAR(n)

2-6 Using ALLBASE/SQL

m Date/time data types:

DATE
TIME
DATETIME
INTERVAL

m Binary string data types:

BINARY (n)
VARBINARY ()

LONG BINARY(n)
LONG VARBINARY(n)

When you define a column to be of a certain data type, ALLBASE/SQL ensures that

each value stored in the column is in the range for the data type. Some data types
(CHAR(n), VARCHAR(n), BINARY(n), VARBINARY(n), LONG BINARY(n) and

LONG VARBINARY(n)) require a column length. CHAR(n) has a default length of 1;
VARCHAR(n) does not. Other data types allow the specification of a precision (DECIMAL,
FLOAT) and a scale (DECIMAL). Data types also affect the operations you can perform on
data. The “Data Types” chapter defines the attributes of each data type as well as how the
type affects various operations.

Specifying Column Options

You can also specify a NOT NULL, DEFAULT, native language, or constraints option for each
column. The native language and constraint options are discussed in separate sections below.

When you define a column as NOT NULL, ALLBASE/SQL ensures that it contains no null
values. NULL is a special data type that indicates the absence of a value.

The DEFAULT option allows you to specify a default value for a column. If the DEFAULT
option was defined for a column and a value is not specified when an INSERT statement is
executed, ALLBASE/SQL inserts the default value. Default values are of the following types:

m Constant
m NULL

m Current date and/or time

The following example specifies column options:

CREATE TABLE PurchDB.Parts
(Column 1 char(20),
Column 2 DEFAULT NULL)

You cannot use the DEFAULT option for a LONG data type column.

Specifying a DBEFileSet

The table rows are stored in the DBEFiles previously associated with the DBEFileSet named
in the IN clause of the CREATE TABLE statement. If you do not specify a DBEFileSet, rows
for the table are stored in the SYSTEM DBEFileSet. For best performance, explicitly specify
a DBEFileSet other than the SYSTEM DBEFileSet.

Using ALLBASE/SQL 2-7

Specifying Native Language Tables and Columns

Use the LANG = Table Language Name option in the CREATE TABLE statement to specify a
language other than the DBEnvironment’s language. You can only specify NATIVE-3000 or
the current native language of the DBEnvironment.

CREATE TABLE NewTable
LANG = "NATIVE-3000"
(Columni char(20),
Column2 char(10))

You must use double quotes around the name “NATIVE-3000” because it contains a hyphen.
Normally, native language names do not require quotes. For more information on naming
rules, refer to the “Names” chapter.

Use the LANG = ColumnLanguage Name option in the column definitions of the CREATE
TABLE statement to specify a column with a language different from that of the table as a
whole. For example:

CREATE TABLE TewTable

(Columnl char(20) LANG = "NATIVE-3000",
Column2 char(20))

Sorting and pattern matching follow the rules of the column language. In order to maintain
ASCII performance as much as possible, NATIVE-3000 column sorting and matching are done
in ASCII.

By default, the language of a new table is the language of the DBEnvironment, and the
language of a new column is the language of the table it belongs to.

Creating a View

A view is a table derived by placing a “window” over one or more tables to let users or
programs see only certain data. Views are useful for limiting data visibility; they are also
useful for pulling together data from various tables for easier use. The tables from which data
for the view is derived are called base tables. You define a view with the CREATE VIEW
statement. The following are components of a view definition:

1. Name of the view
2. Name of its columns
3. Definition of how to derive data for the view

4. Specification of WITH CHECK OPTION, if desired

The following example contains numbers that refer to the view components listed above:

1

I
CREATE VIEW HiPrice

(Partlium, Price) --2
AS SELECT Partllumber, SalesPrice -
FROM PurchDB.Parts |--3

WHERE SalesPrice > 1000 --=
View names are governed by the same rules as table names.

The columns in a view can have the same names as the columns in the table(s) they are
based on, or they can have different names. You only need to include column names in a view
definition if you are using multiple base tables which have duplicate column names or if you

2-8 Using ALLBASE/SQL

want to rename the columns. You enclose the names in parentheses, but omit data types,
which depend on the types of the columns in the base tables.

The derivation of the view is a SELECT statement. In the previous example, the view is
derived from the PurchDB.Parts table. Each row in the view contains a part number and a
price; only rows for parts costing more than $1000 can be accessed through this view.

Unlike a table definition, a view definition does not require that you specify where to store
rows. A view is a SELECT statement stored in the system catalog, not a physical copy of the
data; ALLBASE/SQL extracts data from physical tables at the time you use the view. Views
can be used for both retrieving and modifying data. Refer to “Updatability of Queries” in the
“SQL Queries” chapter for restrictions governing the use of a view to change data in a base
table.

The WITH CHECK OPTION for views is described in the “Constraints, Procedures, and
Rules” chapter.

Creating Indexes

You can create an index on one or more columns in a query. An index can provide quick
access to the data in your tables. For information on indexes, section “Understanding Data
Access Paths” later in this section.

Specifying Integrity Constraints

Using integrity constraints helps to ensure that a database contains only valid data. Integrity
constraints provide a way to check data within the database system rather than by coding
elaborate validation checks within application programs. An integrity constraint is either

a unique constraint, a referential constraint, or a check constraint. These constraints are
described in the chapter “Constraints, Procedures, and Rules.”

Creating Procedures

You can define procedures to enforce relationships among database tables or to automate
nearly any operation in the DBEnvironment. The following example shows creating a

procedure to perform deletions from the SupplyPrice table in the sample DBEnvironment
PartsDBE:

CREATE PROCEDURE PurchDB.DelSupply(Part CHAR(16) NOT NULL) AS
BEGIN

DELETE FROM PurchDB.SupplyPrice

WHERE PartNumber = :Part;
END

The procedure definition includes a parameter declaration. The parameter Part accepts a
value into the procedure at run time. You execute the procedure with a statement like the
following example:

EXECUTE PROCEDURE PurchDB.DelSupply (’1123-P-01’)

The effect of the procedure is to delete all rows in the SupplyPrice table whose part number
is 1123-P-01. For detailed information about creating and using procedures, refer to the
“Constraints, Procedures, and Rules” chapter.

Using ALLBASE/SQL 2-9

Creating Rules

Once a table is defined, you can create a rule that will execute a procedure whenever a specific
firing condition is met. For example, you can define a rule that will execute a procedure to
delete rows from the SupplyPrice table whenever a specific part is dropped from the Parts
table in the sample DBEnvironment PartsDBE:

CREATE RULE PurchDB.RemovePart AFTER DELETE FROM PurchDB.Parts
EXECUTE PROCEDURE PurchDB.DelSupply (PartNumber)

Once the rule exists, you activate it by performing a DELETE:

DELETE FROM PurchDB.Parts
WHERE PartNumber = ’1123-P-01°

For detailed information about creating and using rules, refer to the “Constraints, Procedures,
and Rules” chapter.

Understanding Data Access Paths

In creating a database, you must consider not only the arrangement of data, but also the ways
in which the data will be accessed during data manipulation operations. The four following
access methods are supported directly by ALLBASE/SQL:

Serial access
Indexed access

Hashed access
TID access

For indexed access, you must create a named index, or unique or referential constraint on

a table. Unique and referential constraints are supported by constraint indexes, which are
similar to B-tree indexes. For information on B-trees, refer to the section “Designing Indexes”
in the chapter “Logical Design” of the ALLBASE/SQL Database Administration Guide

For hashed access, you must define a hash structure as you create the table.
By default, you do not explicitly choose an access method when you

issue a query; ALLBASE/SQL does this for you in a process known as optimization.
Optimization determines the best access path to the data for the query you have submitted. If
a choice is available among the different access methods—for example, if serial, indexed, and
hashed access are all possible for the same query—then the optimizer picks the best path. If
no other choice is available, the optimizer chooses serial access, also known as a sequential or
table scan. Serial access is always possible.

To override the access method chosen by the optimizer, use the SETOPT statement.

2-10 Using ALLBASE/SQL

Serial Access

Serial access does not require the existence of any special object in addition to the table itself.
If ALLBASE/SQL chooses serial access when you issue a query, it starts reading data from
the first page in the table and continues to the end. Serial access is probably the best access
method when you intend to read all the data in the table. For example, an application that
updates every row in a table in exactly the same way would perform best using a serial scan.

Indexed Access

Indexed access requires the use of a named index defined on specific columns in the table

to be accessed. Indexes can be plain, or they can be unique and/or clustering. Tables

having a unique index cannot have duplicate data values in the key column(s). A clustering
index causes rows with similar key values to be stored near to each other on disk when

this is possible. A table that is to use a clustering index should be loaded in the key order
specified by the clustering index. A clustering index can be defined on a unique or referential
constraint.

Whenever you issue a query, the query processor checks to see if an index exists for one or
more of the columns in the query. If an index is available and if the optimizer decides that
using the index is the fastest way to access the data, ALLBASE/SQL looks up the key values
in the index first, then goes directly to the pages containing table data.

For example, in the following query, assume that PurchDB.Parts contains a large number of
rows and that a unique index exists on the PartNumber column:

isql=> SELECT PartName, SalesPrice FROM PurchDB.Parts
> WHERE PartNumber = ’1323-D-01’;

The optimizer would probably choose this unique index for access to the single row because
the alternative choice—a serial scan—would require reading each page in the table until the
qualifying row is reached.

You define an index with the CREATE INDEX statement. The components of an index
definition are as follows:

1. Type of the index (optional)

2. Name of the index

3. Table on which the index operates
4. Key column(s)

The following example contains numbers that refer to the index components listed above:

1

I
CREATE UNIQUE INDEX

PartIndex -=2
ON PurchDB.Parts --3
(Partno) --4

ALLBASE/SQL can choose to use an index when processing the SELECT, UPDATE, or
DELETE statements if the following criteria are satisfied:

m The statement contains a WHERE clause, which consists of one or more predicates. A
predicate is a comparison of expressions that evaluates to a value of True or False. Refer to
the “Search Conditions” chapter for more information on predicates.

m The statement contains explicit join syntax.

Using ALLBASE/SQL 2-11

m Predicates are optimizable, which means that the use of an index is considered in choosing
an access path for the data. The following predicates are optimizable when all the data
types within them are the same; in the case of DECIMAL data, the precisions and scales of
the values must be the same:

0o WHERE Columni ComparisonOperator Column2, in which ComparisonOperator is one of
the following: =, >, >=, <, or <=. An index may be used if Columni and Column?2 are
in different tables and an index exists on either column. For example:

WHERE PurchDB.Parts.PartNumber = PurchDB.SupplyPrice.PartNumber

o WHERE Columni ComparisonOperator (Constant or HostVariable), in which
ComparisonOperator is as defined above. An index may be used if one exists on
Columnl; however, an index may be used if a host variable appears in the predicate only
if the comparison operator is =, >, >=, <, or <= . For example:

WHERE SupplyPrice = :SupplyPrice

0 WHERE Columni BETWEEN (Column?2 or Constant or HostVariable) AND (Column?2
or Constant or HostVariable). For example:

WHERE OrderNumber BETWEEN ’1123-P-01’ AND ’1243-MU-01’

m Some queries which use the MIN or MAX aggregate function on an indexed column as
follows are optimizable:

0 MIN/MAX column is the first column of a nonhashed index.
0 MIN/MAX indexed column on a single table with or without predicates.
0 MIN/MAX indexed column on the outermost table of a nested loop join query.
o Single MIN/MAX within one query.
m ALLBASE/SQL does not use an index in the following types of queries:

o The query contains a WHERE clause using a not-equal (<>) arithmetic operator, such
as, WHERE Columni <> (Column?2 or Constant or Host Variable). For example:

WHERE VendorState <> :VendorState

O

The query contains a predicate using an arithmetic expression. For example:
WHERE Columnl > Column2*: HostVariable
7 MIN or MAX is used with the GROUP BY, ORDER BY, or HAVING clause.

0 A MIN or MAX indexed column exists in the inner table of a nested-loop, join query.

7 A MIN or MAX indexed column exists on all tables of a sort-merge, join query.

0 MIN or MAX is used with an expression.

7 One query contains multiple MINs or MAXs.
o A LIKE predicate contains a host variable.
If other predicates are used, then an index is considered in choosing an access path.

For more information about indexes, refer to the “Designing Indexes” section in the “Logical
Design” chapter of the ALLBASE/SQL Database Administration Guide.

2-12 Using ALLBASE/SQL

Hashed Access

Hashed access requires you to specify hashing when you create the table, before loading data.
Because a hash structure is specified as part of the table definition, you do not assign a name
to it, as you do with an index. However, you must identify specific key columns and a number
of primary pages for data storage. ALLBASE/SQL determines the placement of rows based
on specific unique key values. You can define one hash structure per table at table creation
time; and if a hash is defined, you cannot define a clustering index on the table. You can
define a multiple-column key for a hash structure; up to 16 columns are permitted in the key.

A hash structure is a group of designated pages in a DBEFile that are set aside for the
storage of tuples according to the values in a unique hash key. The key enforces uniqueness;
duplicate values cannot exist in the hash key column(s). A well-chosen hash key, like a good
index key, provides the optimizer with the choice of a potentially faster data access method
than a serial scan.

Create a hash structure at the time you create a table. In addition to the components of a
table definition, a hash structure definition includes:

1. Columns that define the hash key
2. Number of primary pages

The reference numbers in the following example refer to the table definition components listed
above:

CREATE PUBLIC TABLE PurchDB.Vendors
(VendorNumber INTEGER NOT NULL,
VendorName CHAR(30) NOT NULL,
ContactName CHAR(30),
Phonelumber CHAR(15),
VendorStreet CHAR(30) NOT NULL,
VendorCity CHAR(20) ©NOT NULL,
VendorState CHAR(2) NOT NULL,
VendorZipCode CHAR(10) NOT NULL,
VendorRemarks VARCHAR(60))

UNIQUE HASH 0N (VendorNumber) -1
PAGES = 101 - 2
IN PurchFS

Use the UNIQUE HASH clause or the HASH ON CONSTRAINT clause to specify one or
more columns for a hash key. Use the PAGES= clause to define a number of primary pages in
which to store the data in the table. This is different from ordinary data storage, which does
not require a number of primary pages.

Based on the key and the number of primary pages you specify, ALLBASE/SQL calculates a
page number for each row before insertion into the table. The page number depends directly
on the data in the key. Because a specific number of primary pages is specified, you must
create the hash structure as you create the table; you cannot modify a table from normal to
hash storage at a later time.

The optimizer can decide to use hashed access provided the statement contains a WHERE
clause with an EQUAL factor for each column in the hash key. This makes hashing especially
useful for tables on which you need quick random access to a specific row.

For example, assuming you have defined a hash key on VendorNumber, the optimizer might
choose hashed access for the following:

Using ALLBASE/SQL 2-13

isql=> SELECT #* FROM PurchDB.Vendors
> WHERE VendorNumber = 9002;

However, it would not consider hash access for the following;:

isql=> SELECT #* FROM PurchDB.Vendors
> WHERE VendorNumber > 9002
> ORDER BY VendorName;

Hash structures operate like unique indexes; that is, they enforce the uniqueness of each key
in the table. If you attempt to insert a duplicate key, ALLBASE/SQL will return an error
message.

Differences between Hashed and Indexed Access

Hashing may provide faster access than B-tree lookups for many types of common queries,
and it does not require the overhead of additional file space required by B-tree indexes. In
addition, hashing is not subject to the overhead of updating index pages when you insert or
modify rows. However, updating key values in a hash table requires you to delete the row
containing the key value and then insert a row containing the new value. This means that you
should choose a non-volatile key for hashing whenever possible.

When to Use a Hash Structure

Hashing offers high performance when you need essentially random access to individual tuples.
It is not appropriate for applications that require sorting of the query result. In cases where
both random access and sorting are required at different times, you can define a B-tree index
as well as a hashing structure. This allows the optimizer the choice of the most efficient
method for the specific query.

The best candidates for the use of hash structures are applications in which the following
oceur:

m Keys are not frequently updated. Remember that you cannot use the UPDATE statement
on hash key columns. This means that you must delete and then insert rows that contain
changes to key values.

m Most queries contain EQUAL factors on hash key columns.

m Tuples are of fixed size, with a minimum of VARCHARS and NULL values.

You should not use a hash structure if your queries need to scan large areas, for instance, with
BETWEEN clauses or with predicates containing <> factors.

TID Access

Each row of a table has a unique address called the tuple identifier, or TID. TID functionality
provides the fastest possible data access to a single row. You can obtain the TID of

any row with the SELECT statement. For more information on TID access refer to the
ALLBASE/SQL application programming manual for the language you are using.

2-14 Using ALLBASE/SQL

Controlling Database Access

ALLBASE/SQL uses authorities to determine who can issue which SQL statements and who
can execute programs that access databases in a DBEnvironment. For complete details about
security schemes refer to the ALLBASE/SQL Database Administration Guide.

Authorities
ALLBASE/SQL has the following several kinds of authorities:

m Table and view authorities are the following privileges used to access data in a specific
table or through a specific view and to add columns and indexes, and create foreign keys
referencing a specific table:

SELECT retrieve rows

INSERT insert rows

DELETE delete Tows

UPDATE change one or more columns in a row

ALTER add new columns to a table

INDEX create an index for the table

REFERENCES refer to one or more columns when defining a foreign key in a

referencing table

m RUN authority is the privilege to execute a specific program module that accesses a
DBEnvironment.

EXECUTE execute a procedure
m Special authorities are the following privileges:
CONNECT connect to a DBEnvironment
RESOURCE create tables and authorization groups
DBA issue all SQL statements and to execute any program that accesses

an ALLBASE/SQL DBEnvironment

m OWNER authority controls specific programs, tables, views, or authorization groups.

Obtaining Authorization
You obtain authority by the following methods:

m Configuring a DBEnvironment and automatically becoming a DBA.
m Being granted one or more specific authorities.
m Owning a table, view, module, or group.

DBA Authority

When a DBEnvironment is configured, DBA authority is automatically given to the logon
name of the DBECreator.

A user with DBA authority (also referred to as the DBA) has extensive control over data in
a DBEnvironment. The DBA can issue almost all the SQL statements and execute all the
programs that access the DBEnvironment. The two SQL statements that only a DBECreator
can issue are, START DBE NEWLOG and START DBE RECOVER. Some SQL statements
only a DBA can issue. Most of these statements are DBEnvironment-wide in scope. For
example, only DBAs can grant the special authorities (CONNECT, RESOURCE, and DBA)

Using ALLBASE/SQL 2-15

and define DBEFiles and DBEFileSets. In addition, only a DBA can issue statements that
control objects owned by a class name; for example, only DBAs can drop or issue grants for a
table owned by a class name.

Grants

All authorities except OWNER authority can be granted by using the GRANT statement.
The GRANT statement gives authorities to individual users, to authorization groups, or to all
users.

The following grants authorize a user with a logon name of WOLFGANG@QDBMS to start a
DBE session and to retrieve rows from the table named Quotas. Wolfgang can also create his
own database because he is also granted RESOURCE authority.

GRANT CONNECT TO WOLFGANG@DBMS

GRANT SELECT ON Marketing.Quotas TO WOLFGANG@DBMS
GRANT RESOURCE TO WOLFGANG@DBMS

The following grants authorize the group named Managers to start a DBE session and all
users to retrieve rows from the table Forecast:

GRANT CONNECT TO Managers
GRANT SELECT ON Marketing.Forecast TO PUBLIC

The REVOKE statement is used to eliminate authorities:

REVOKE RESOURCE FROM WOLFGANG@DBMS

DBAs can grant or revoke authorities. The only individuals entitled to grant and revoke
authorities are users or members of groups that own tables, views, or modules, or those who
have received grantable privileges, as described below. Individuals or members of groups that
own tables, views, or modules can issue grants for objects they own.

Grantable Privileges

If a grantor specifies the WITH GRANT OPTION clause when issuing the GRANT statement
on table and view authorities, the grantee receives not only the privilege, but the authority to
grant that same privilege, with or without the WITH GRANT OPTION, to another user.

The grantee is also entitled to revoke authorities he or she granted. This kind of privilege is
called a grantable privilege. The use of grantable privileges can result in chains of grants.

A cycle in a chain of grants is not allowed; that is, a user cannot be granted the same
authority more than once on an object. If a grant of authority causes a cycle, you will receive
an error message. The WITH GRANT OPTION clause cannot be specified when the grantee
is a group. The following statement grants UPDATE authority to Amanda, who can then
grant that authority to individual users or a class:

GRANT UPDATE ON Marketing.Forecast TO AMANDA@DBMS WITH GRANT OPTION;

Users with a grantable privilege can only revoke privileges they have granted and chains they
have caused. To revoke the privilege given to the grantee and any subsequent grantees in a
chain, the grantor must use the CASCADE option of the REVOKE statement.

Owners can revoke any privilege on their object, but to revoke a privilege that has been given
to subsequent grantees, the CASCADE option must be used. The DBA does not have to use
the CASCADE option to revoke a grantable privilege from a user. However, if CASCADE is
not used, that privilege is removed from the specified grantee only, not from the subsequent
chain of grants. Then, an orphaned privilege is created. An orphaned privilege can be given

2-16 Using ALLBASE/SQL

a parent by the DBA with the BY clause of the GRANT statement. For more information
on orphaned privileges, refer to “Using the WITH GRANT OPTION Clause” in the chapter
“Database Creation and Security” in the ALLBASE/SQL Database Administration Guide.

Ownership
The following six objects have owners associated with them:

Tables

Views

Authorization groups
Modules

Procedures

Rules

These objects can be owned by an individual, an authorization group, or a class; but an object
can have only one owner at a time.

An owner becomes associated with an object in one of several ways:

m When an individual creates one of the five objects, that individual becomes its owner. The
owner name is derived from the individual’s logon name. To create a table or group, you
need DBA or RESOURCE authority. To create a module, you need DBA or CONNECT
authority. To create a view, you need DBA, SELECT, or OWNER authority for the tables
and views it is based on.

m A DBA or the owner of an object can transfer ownership of the object to another
individual, a group, or a class by using the TRANSFER OWNERSHIP statement. The
ownership of modules cannot be transferred. WOLFGANG@DBMS can transfer ownership
of his Composers table to Wendy as follows:

TRANSFER OWNERSHIP OF TABLE Composers TO WENDY@ROBERTS

m A DBA can create any of these objects and name the owner in the statement that creates
the object. Other users can name any group as owner when creating an object if they are
a member of that group. With the following statements, a DBA creates a group called
Managers; a DBA or a member of Managers can assign ownership of the table named Salary
to that group when creating the table:

CREATE GROUP Managers
CREATE TABLE Managers.Salary...

When you refer in an SQL statement to a table, a view, a module, or an authorization group,
you specify both the owner’s name and the name of the object. If you own the object,
however, you can omit the owner’s name. When WOLFGANG@QDBMS retrieves information
from the Parts table, for example, he must specify the owner name. For example:

SELECT PartNumber FROM PurchDB.Parts

The system views belong to special owners named SYSTEM and CATALOG. Therefore when
you refer to one of the system views, you must specify that name:

SELECT * FROM System.Table
or
SELECT * FROM Catalog.Table

Using ALLBASE/SQL 2-17

Default Owner Rules

In several statements, when a name is specified, such as table name, rule name, group name,
or index name, specification of the owner name is optional. The method of determining the
default owner when no owner is specified is as follows:

m If the name is within a CREATE PROCEDURE statement (except for the procedure name
itself), and it is not within a CREATE SCHEMA statement in that procedure, then the
default owner is the procedure’s owner.

m If the name is within a CREATE SCHEMA statement and it is not within a CREATE
PROCEDURE statement in that schema, then the default owner name is the authorization
name of that schema.

m [f you have specified an owner using the ISQL SET OWNER command, everything you
create will be owned by the owner specified in that command.

m [f you use the -o option to specify an alternate DBEUserID prior to preprocessing an
application containing embedded SQL statements, then the owner specified is the default
owner of the module.

m [f none of the above apply, then the default owner name is the current DBEUserID. The
DBEUserID is the logon name concatenated with @’ and concatenated with the group
name.

In CREATE INDEX, CREATE RULE, DROP INDEX, DROP RULE the default owner for
the index or rule name, respectively, has additional possible values which are described with
those statements.

Ownership Privileges

The following summarizes the privileges that extend to users or members of groups that own
objects:

m Group owners can add members to and remove them from their group as well as drop the
group.

m Group members have ownership privileges over all objects owned by their group.

m Group members have all privileges granted to the group.

m Table owners can add columns to the table or drop the table.

They can add and drop constraints.

They can create and drop indexes for the table. They can grant and revoke authorities
for the table, and transfer their ownership to another owner. They can retrieve data from
the table, change the data, update statistics, lock the table, and create views on the table.
Transferring ownership of a table transfers the ownership of indexes, constraints, and rules
defined on the table. And grantor of privileges by owner also changes.

m Index owners can drop their indexes. The index owner must be the same as the owner of
the table the index is defined upon. Index ownership is transferred along with the ownership
of the table the index is defined upon.

m View owners can drop their view. They can grant and revoke authorities for the view and
transfer their ownership to another owner. They can also access data through their views.

2-18 Using ALLBASE/SQL

m Module owners can execute, validate, and drop their modules. They can grant and revoke
RUN authority for their modules. Ownership of modules cannot be transferred.

m Procedure owners can drop their procedures. They can grant and revoke EXECUTE
authority for their procedures, and they can transfer ownership to another owner.

m Rule owners can drop their rules. The rule owner must be the same as the owner of the
table the rule is defined upon. Rule ownership is transferred along with the ownership of the
table the rule is defined upon.

Authorization Groups

An authorization group is a named collection of users or other groups. The CREATE GROUP
statement is used to define groups, and the ADD TO GROUP statement is used to associate
individuals or other groups with the group. The GRANT statement assigns authorities to a
group. All three statements are used in the following example:

CREATE GROUP PurchlManagers

ADD MARGUERITE@RYAN, RON@HART, SHARON@MULDOON TO GROUP PurchlManagers
GRANT SELECT on PurchDB.Parts TO PurchManagers

Any member of the group PurchManagers can select data from table PurchDB.Parts.
Authorization groups have several advantages as described here:

m Groups simplify authorization. They make it possible to grant authorities to multiple users
or groups with one GRANT statement. In addition, as new users need authorities, the DBA
can simply add them to a group already possessing the appropriate authorization.

m Groups make control over the type of data access independent of control over who can
access data. For example, the owner of a table can grant different types of access (SELECT,
UPDATE, etc.) to a group; but who belongs to the group is controlled by the DBA or the
group’s owner, not by the table’s owner.

Classes

A class is a special category of owner that is neither a conventional DBEUserID nor a group.
You may wish to assign ownership of objects to a class when you do not want any individual
or group to have automatic access to them. With class ownership, the DBA controls all
authorities, because objects that belong to a class can be created and maintained only by the
DBA. For a class to be useful, its class name must be different from the name of any existing
DBEUserID or group name.

A DBA can create a class by doing one of the following:

m Creating a table or view with the class name as owner name.

m Preprocessing an application with the class name as owner name.
m Transferring ownership of an object to a class name.

For example, the sample DBEnvironment contains several tables owned by the class PurchDB.
The table PurchDB.Parts was created with the following statement:

CREATE TABLE PurchDB.Parts
(PartNumber CHAR(16) NOT NULL,
PartName CHAR(30),
SalesPrice DECIMAL(10,2))
IN WarehFS;

Using ALLBASE/SQL 2-19

After creating objects owned by the class, you must grant the specific authorities you wish
users or groups to have. Suppose you have a group PurStaff consisting of DBEUserIDs for
members of the Purchasing department. You could grant authorities to the group as follows:

GRANT SELECT, UPDATE ON PurchDB.Parts to PurStaff;

Differences between Groups and Classes

You create a group explicitly by using the CREATE GROUP statement. You create a class
implicitly by creating objects that use the class name as the owner name.

A group has members, all of which have the privileges the group has. For example, if a user is
a member of the group Sales, then that user can drop or alter objects owned by Sales.

A class does not have members, nor can it use any authorities, although you can grant them
if you wish. This can be useful in a scenario in which you want to preassign ownership of
objects to a DBEUserID which has no logon ID on your system.

Manipulating Data

Most users of ALLBASE/SQL are primarily interested in manipulating data in
DBEnvironments. Data manipulation consists of following operations:

m Selecting data

m Inserting data into tables

m Updating rows in tables

m Deleting rows

In order to select data, you create queries, which are fully described in the next chapter. The
other types of data manipulation are presented briefly in the next sections. For complete
information, refer to the descriptions of the SELECT, INSERT, UPDATE, and DELETE

statements in the “SQL Statements” chapter.

Inserting Data
You use the INSERT statement to add rows to a table, specifying the following information:

1. A table or view name
2. Column names
3. Column values

The following example contains numbers that refer to the items in the list above:

1
|
INSERT INTO PurchDB.Parts
(Partliumber, Partlame) --2
VALUES (’9999-AJ’,’Interface Engine’)

2-20 Using ALLBASE/SQL

Only a single table name or view name can be specified. Only certain views can be used
to insert rows into a base table, as described under “Updatability of Queries” in the “SQL
Queries” chapter.

The column names can be omitted if you are going to put a value into every column in the
row. Otherwise, you name the columns you want to assign values to, enclosing the column
names in parentheses and separating multiple column names with commas. Columns not
named are assigned their default values. If no default exists for a column, it is assigned the
null value. If you define a column as NOT NULL when you create a table, then you must
assign a non-null value or specify a default value to the column.

The column values are also enclosed in parentheses and separated by commas. Character data
is delimited with single quotation marks. The value NULL can be entered into columns that
permit null values.

You can copy rows from one or more tables or views into another table by using a form of the
INSERT statement (often called a type 2 Insert) in which you specify the following items:

1. A table or view name
2. A SELECT statement

Note that the numbers in the next example refer to the items listed above:

1

|
INSERT INTO PurchDB.Drives
SELECT * FROM PurchDB.Parts -2
WHERE Partlame LIKE ’DrivesY’

The rows in the query result produced by the SELECT statement are inserted into
PurchDB.Drives. The SELECT statement cannot contain an ORDER BY clause and cannot
name the target table in the FROM clause. The target table must exist prior to an INSERT
operation.

Updating Data

You change data in one of more columns by using the UPDATE statement. These are the
components of the UPDATE statement:

1. The name of a table or a view
2. A SET clause
3. A WHERE clause

The following example illustrates the UPDATE statement and its components; the reference
numbers identify the components listed above.

UPDATE PurchDB.Parts --1
SET SalesPrice = 15.95 --2
WHERE PartNumber = ’9999-AJ’ --3

Only a single table name or view name can be specified. Only certain views can be used to
update, as described under “Updatability of Queries” in the “SQI Queries” chapter. For each
column to be updated, you specify a column name and value in the SET clause. NULL is a
valid value for columns that can contain null values. Unless you specify a WHERE clause,

all rows of the named table or view are updated. A search condition in this clause describes
which rows to update. The search condition in the previous example specifies that the row(s)
to be updated must name PartNumber 9999-AJ.

Using ALLBASE/SQL 2-21

Deleting Data

You use the DELETE statement to delete entire rows. This statement has two components as
follows:

1. A table or view name
2. A WHERE clause
The following example illustrates the DELETE statement and its two components:

DELETE FROM PurchDB.Parts --1
WHERE PartNumber = ’9999-AJ° --2

Only a single table name or view name can be specified. Only certain views can be used to
delete rows, as described under “Updatability of Queries” in the “SQI Queries” chapter.

The WHERE clause is optional. You omit it if you want to delete all the rows in a table or
view. Otherwise, you use it to specify a search condition for which row(s) to delete.

Managing Transactions

A transaction is a logical unit of work that changes the database. All actions within this
logical unit of work must succeed, or all of them must fail. When a transaction completes
successfully, it is said to commit. Should a transaction fail, none of the changes it generates
are recorded in the database, and the transaction aborts.

A transaction is bounded by the BEGIN WORK and COMMIT WORK statements. One or
more SQL statements, and any number of programming language statements can be contained
within a transaction. An example of a simple transaction is as follows:

BEGIN WORK
UPDATE PurchDB.Parts

SET PartName = ’Defibrillator’
WHERE PartHumber = ’1152-DE-95683’

COMMIT WORK

The SQL statements used in transaction management are as follows:

BEGIN WORK Starts the transaction.

COMMIT WORK Terminates a successful transaction.

ROLLBACK WORK Undoes any changes made by the current transaction.
SAVEPOINT Permits partial rollback of a transaction.

Objectives of Transaction Management

The objectives of transaction management are related to one another. Data integrity is
enforced by proper transaction management, but must be balanced by the need for high
concurrency. The use of transactions facilitates the recovery of data after a crash, maintaining
data integrity.

2-22 Using ALLBASE/SQL

Ensuring Logical Data Integrity

The data in the database must be accurate and consistent. For example, adding a part

to the warehouse inventory entails inserting a row into three tables: PurchDB.Parts,
PurchDB.SupplyPrice, and PurchDB.Inventory. All three inserts must succeed, or else the
database is left in an inconsistent state. To enforce data integrity, the three inserts are
contained in a single transaction. If any one insert fails, then the entire transaction fails and
none of the other inserts takes effect. The following example shows how this transaction might

be coded:

BEGIN WORK
INSERT INTO PurchDB.Parts ...
If the insert into PurchDB.Parts fails then
ROLLBACK
else
INSERT INTO PurchDB.SupplyPrice ...
If the insert into PurchDB.SupplyPrice fails then
ROLLBACK
else
INSERT INTO PurchDB.Inventory ...
If the insert into PurchDB.Inventory fails then
ROLLBACK
else
COMMIT WORK
endif
endif
endif

Maximizing Concurrency

Concurrency is the degree to which data can be accessed simultaneously by multiple users.
For example, an application that allows one hundred users to access a table simultaneously
has higher concurrency, and therefore better performance, than an application that allows
only one user at a time to access the table. Locking regulates the simultaneous access of
data. For example, if one user updates a row, the row is locked and other users cannot access
the row until the first user is finished. Locking the row enforces data integrity, but reduces
concurrency because other users are forced to wait. The isolation level specified in a BEGIN
WORK statement affects the duration and types of locks held within a transaction. Isolation
levels are fully discussed in the chapter, “Concurrency Control through Locks and Isolation
Levels.” Well managed transactions balance the conflicting requirements of minimal lock
contention and maximum concurrency.

Facilitating Recovery

When a soft crash occurs, incomplete transactions are automatically rolled back when

the DBEnvironment is restarted. If archive logging is in effect when a hard crash occurs,
committed transactions are applied to the database during rollforward recovery. In both cases,
only those transactions that were uncommitted when the crash occurred need to be redone.

Using ALLBASE/SQL 2-23

Starting Transactions

A transaction is initiated with either an implicit or explicit BEGIN WORK statement. An

implicit BEGIN WORK statement is issued by ALLBASE/SQL when any SQL statement is
executed, except for the following:

ASSIGH BEGIN ARCHIVE BEGIN DECLARE SECTION
BEGIN WORK CHECKPOINT COMMIT ARCHIVE

COMMIT WORK CONNECT DECLARE VARIABLE
DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING END DECLARE SECTION
GOTO IF INCLUDE

PRINT RAISE ERROR RELEASE

RESET RETURN ROLLBACK TO SAVEPOINT
ROLLBACK WORK SET SESSION SET TIMEOUT

SET TRANSACTION START DBE STOP DBE

SQLEXPLAIN TERMINATE USER WHENEVER

WHILE

Explicit BEGIN WORK statements are recommended, for the following reasons:
m Explicit BEGIN WORK statements make your code easier to read.

m You must use an explicit BEGIN WORK statement to specify a non-default isolation level
or transaction priority.

m You might unintentionally lock out other users by the default isolation level of an implicit

BEGIN WORK.

Since nested transactions are not allowed, an error is generated if a session with an active
transaction issues a BEGIN WORK statement. The first transaction must end before another
transaction can begin.

Ending Transactions
A transaction ends when either a COMMIT WORK or a ROLLBACK WORK statement is

issued. All locks held by the session are released when the transaction ends, except those held
by a kept cursor.

Using COMMIT WORK

Issue the COMMIT WORK statement when the transaction is successful and you want the
changes made permanent. Unlike the BEGIN WORK and ROLLBACK WORK statements,
the COMMIT WORK statement is never issued automatically by ALLBASE/SQL. You must
issue the COMMIT WORK explicitly for each transaction. The COMMIT WORK statement
causes the contents of the log buffer to be written to a log file. If rollforward recovery is
needed at a later time, the transactions recorded in the log file are applied to the database.

Using ROLLBACK WORK

The ROLLBACK WORK statement ends the transaction and undoes all data modifications
made since the BEGIN WORK statement, unless it references a savepoint. (See the discussion
of savepoints in the following section.) The ROLLBACK WORK statement is issued
automatically by ALLBASE/SQL under the following conditions:

m A non-archive log file becomes full.

m A RELEASE statement is issued before the end of the transaction.

2-24 Using ALLBASE/SQL

m A system failure occurs. When the system is up again, and a START DBE statement is
issued, incomplete transactions are rolled back.

m ALLBASE/SQL chooses the transaction as the victim when breaking a deadlock.
m The session is terminated by a TERMINATE USER command.

The ROLLBACK WORK statement should be issued explicitly to maintain data integrity.
You may want to issue a ROLLBACK WORK in an application program when any of the
following situations arise:

m The transaction contains more than one SQL statement and one of the statements generates
an error. For example, if your transaction contains three INSERT statements, and the
second INSERT fails, you should rollback the entire transaction.

m An INSERT, UPDATE, or DELETE statement that affects multiple rows generates an
error after some of the rows have been modified. You should rollback the transaction if the
partial changes will leave your database in an inconsistent state.

m The end user provides input indicating that he or she does not want to commit the
transaction.

Using SAVEPOINT

The SAVEPOINT statement allows you to rollback part of a transaction. Multiple savepoints
are permitted within a transaction anywhere between the BEGIN WORK and COMMIT
WORK statements. Each SAVEPOINT statement places a unique marker, called a savepoint
number, within the transaction. When a subsequent ROLLBACK references the savepoint
number, only those database changes made after the savepoint are rolled back. Rolling back
to a savepoint does not end the transaction, but it does release locks obtained after the
savepoint was issued.

In the following ISQL example, the number identifying the savepoint marker is 6. The update
performed after the SAVEPOINT statement is undone by the ROLLBACK statement, but
any database changes made before savepoint 6 are unaffected.

isql=> SAVEPOTNT;
Savepoint number is 6. Use this number to do ROLLBACK WORK to 6.

isql=> UPDATE PurchDBParts
> SET SalesPrice = 244.00
> WHERE PartNumber = ’1243-MU-01°;

isql=> ROLLBACK WORK to 6;

After a rollback to a savepoint has been executed, use the COMMIT WORK statement to
make the changes that were not rolled back permanent. If you want to rollback the entire
transaction, issue the ROLLBACK statement without a savepoint.

Savepoints are suitable for transactions that perform several operations, any of which may
need to be rolled back. In the following example, a travel agency is booking tour reservations
for 15 people. When the first attempt to make a hotel reservation fails, only that part of the
transaction is rolled back. The car reservations are unaffected by the roll back because they
were made prior to the savepoint.

BEGIN WORK

Make 15 car reservations.

Using ALLBASE/SQL 2-25

SAVEPOINT

Savepoint number is 1. An attempt to make 15 hotel reservations fails because the designated

hotel is full.

ROLLBACK WORK TO 1
SAVEPOINT

Savepoint number is 2. Make 15 hotel reservations at another hotel.

COMMIT WORK

Scoping of Transaction and Session Attributes

A set of attributes is associated with each transaction and user session. This section discusses
the statements used to specify the following transaction and session attributes:

m priority

m isolation level

m label

m fill option

m constraint checking mode

m DML atomicity level

Each attribute can be specified in one or more of the statements listed in Table 2-1. You
can issue such statements at any point in an application or ISQL session (with the exception
of BEGIN WORK which cannot be issued within a transaction). However they may not
take effect immediately, and the duration of their effect differs as described in the following
paragraphs. The “SQL Statements” chapter contains complete syntax for each statement.

When beginning a transaction, attributes specified in a BEGIN WORK statement take
effect immediately and remain in effect until the transaction ends, unless reset by a SET
TRANSACTION, SET CONSTRAINTS, or SET DML ATOMICITY statement within the

transaction.

Within a transaction, the attributes specified in a SET TRANSACTION, SET
CONSTRAINTS, or SET DML ATOMICITY statement take effect immediately and remain
in effect until the transaction ends, unless subsequently reset by such a statement. A SET
SESSION statement issued within a transaction has no effect on the present transaction,
instead it takes effect for the next transaction and remains in effect for the duration of

the session, unless reset by a subsequent BEGIN WORK, SET TRANSACTION, SET
CONSTRAINTS, SET DML ATOMICITY, or SET SESSION statement.

Outside of a transaction, the attributes specified in a SET TRANSACTION or SET SESSION
statement take effect for the next transaction, unless subsequently reset by such a statement
or by a BEGIN WORK statement. The SET TRANSACTION, SET CONSTRAINTS, and
SET DML ATOMICITY statements remain in effect for the duration of the transaction,
unless subsequently reset. The SET SESSION statement remains in effect for the duration of
the session, unless subsequently reset.

Table 2-1 shows these statements, the attributes associated with each, when each statement
goes into effect after being issued and the scope of each statement’s attributes if not reset by a
subsequent statement:

2-26 Using ALLBASE/SQL

Table 2-1. Transaction Attribute Scope

Statement Attributes When Effective Duration of Begins a
Attribute Transaction
Setting if None Already
Begun

SET SESSION ! isolation level for the next until the session |no

priority transaction ends

label

constraint checking

mode

DML atomicity level

fill option
SET isolation level for the next or until the no
TRANSACTION priority current transaction ends

label transaction

constraint checking

mode

DML atomicity level

SET constraint checking for the current until the yes
CONSTRAINTS mode transaction transaction ends
SET DML DML atomicity level for the current until the yes
ATOMICITY transaction transaction ends
BEGIN WORK isolation level when the until the yes
priority transaction transaction ends
label begins
fill option

1 Note that SET SESSION issued within a transaction is not savepoint sensitive.

For example, you might write an application containing several transactions. Each transaction
contains one or more SELECT statements. You want to ensure that all data selected has been
committed to the database. You know that the default isolation level for a session is RR, but
RR does not provide the concurrency you need. At the beginning of the session, you set the
isolation level to RC (read committed) for all transactions in the session, as follows:

SET SESSION ISOLATION LEVEL RC

Note that each transaction starts implicitly. In this example, there is no need for any BEGIN
WORK statements. However, you might choose to include BEGIN WORK statements to
make your code more readable or to set a different isolation level for a particular transaction.

Using ALLBASE/SQL 2-27

SELECT * FROM PurchDB.OrderItems
WHERE VendPartNumber = 22310’
COMMIT WORK

SELECT * FROM PurchDB.Vendors
WHERE VendorNumber = 1234
COMMIT WORK

SELECT * FROM PurchDB.SupplyPrice
WHERE VendorNumber = 1234 AND VendPartNumber = 22310’
COMMIT WORK

For more information on isolation levels, refer to the “Concurrency Control through Locks and
Isolation Levels” chapter in this manual.

Transaction Limits and Timeouts

The maximum number of concurrent transactions is determined by the MaxTransactions
parameter of the DBECon file. Use either the START DBE statement or the SQLUtil
ALTDBE command to set MazTransactions. The SQLUtIl SHOWDBE command displays
the current setting of MaxTransactions in the DBECon file. If a session attempts to start a
transaction, but the maximum number of concurrent transactions has already been reached,
the new transaction is placed in the throttled wait queue. The transaction must wait until it
reaches the head of the queue and one of the active transactions terminates. The throttled
wait queue is serviced on a first in, first out basis. The transaction priority parameter of the
BEGIN WORK statement determines which transaction is aborted to break a deadlock, not
the transaction’s position on the throttled wait queue.

If the transaction is still waiting when its timeout limit is reached, the transaction is
aborted. The timeout action can also be set to abort the command being processed

instead of the entire transaction. Set the timeout limit for the DBEnvironment with the
STARTDBE statement or the SQLUtl ALTDBE command. To specify a timeout limit for a
particular session, use the SET USER TIMEOUT statement. Both SET SESSION and SET
TRANSACTION have parameters to specify which action the system should take when a
timer expires. The setting of timeout values is also incorporated into these commands. The
SQLUtl SHOWDBE command displays the current, default, and maximum values of the
timeout parameter in the DBECon file.

Monitoring Transactions

The SYSTEM. TRANSACTION pseudo-table contains the user identifier, connection-id,
session identifier, transaction identifier, transaction priority, and isolation level of every
current transaction. To view this information with ISQL, issue the following statement:

isql=> SELECT * FROM System.Transaction;

To identify the transactions on the throttle wait queue, query the SYSTEM.CALL
pseudo-table as follows:

isql=> SELECT * FROM System.Call WHERE Status = ’Throttle wait’;

For more information on transaction activity, consult Load subsystem in SQLMON, the
ALLBASE/SQL online monitoring tool. SQLMON provides the following transaction
information:

m total number of active and waiting transactions in the DBEnvironment

2-28 Using ALLBASE/SQL

m total number of BEGIN WORK, COMMIT WORK, and ROLLBACK WORK statements
executed in the DBEnvironment

m maximum number of transactions configured

m which sessions have active or waiting transactions

m which sessions have executed BEGIN WORK, COMMIT WORK, and ROLLBACK WORK

statements

See the ALLBASE/SQL Performance and Monitoring Guidelines for more information on
SQLMON.

Tips on Transaction Management

Keep transactions short. As the length of a transaction increases, so does the chance

that other transactions are forced to wait for the locks it holds. In addition to increasing
concurrency, short transactions minimize the amount of data that must be re-entered after a
system crash. When archive logging is in effect, changes made to the database are written
to the log file whenever a COMMIT WORK is issued. If the system crashes during a long
transaction, a large number of uncommitted changes will be rolled back.

To shorten a transaction, place program statements not essential to the logical unit of work
outside of the transaction. Retrieve all user input before the start of a transaction, to ensure
that locks are not held if the user walks away from the terminal. Because terminal writes can
also be time consuming, they should not be performed within a transaction.

Careful use of savepoints can decrease the amount of time locks are held, and reduces the need
to resubmit transactions because part of a transaction was unsuccessful.

Set the maximum number of transactions (MaxzTransactions) and timeout limit parameters
correctly. If MaxTransactions is too low, transactions will wait for no reason. However, the
overall throughput of the DBEnvironment may be reduced if MazTransactions is too high. If
the timeout limit is too low, transactions will abort, but if set too high, the session might wait
indefinitely for a transaction slot.

Auditing DBEnvironments

Audit DBEnvironments are created with SQL statements that allow you to generate audit
log records. Audit log records contain information that allows you to group log records for
analysis with SQLAudit. The database operations you might analyze are UPDATE, INSERT,
or DELETE operations, perhaps for security reasons.

Audit log records contain identifiers such as table names in contrast to non-audit database
log records which contain identifiers such as page references and data. Audit log records are
generated in addition to non-audit database log records.

A unique audit name specifies an audit DBEnvironment. Audit elements indicate which
ALLBASE/SQL statement types generate audit log records. By default, statements that
change data generate audit log records (INSERT, UPDATE, and DELETE statements); this
default can also be specified explicitly by the DATA AUDIT ELEMENTS parameter. You can
also optionally specify that log comment, data definition, authorization, or section statements
(creation and deletion of sections) generate audit log records.

Using ALLBASE/SQL 2-29

The Audit Tool, SQLAudit, is introduced below. SQLAudit is fully described in the
ALLBASE/SQL Database Administration Guide. The ALLBASE/SQL Database
Administration Guide describes how to create audit DBEnvironments and how to select
records for audit. The “SQL Statements” chapter of this manual contains the detailed syntax
to create audit DBEnvironments and partitions.

Partitions in Audit DBEnvironments

Partitions are divisions of DBEnvironments that contain one or more tables processed by
SQLAudit as a unit. Partitions are specified in CREATE PARTITION, CREATE TABLE,
and ALTER TABLE statements. In addition, default partition and comment partition
numbers can optionally be specified.

Using Wrapper DBEnvironments

A wrapper DBEnvironment is a DBEnvironment created to wrap around the log files
orphaned after a hard crash of a DBEnvironment. Wrapping log files means associating the
files with a wrapper DBEnvironment. After a DBEnvironment becomes inaccessible, its log
files are not associated with any DBEnvironment. These orphaned log files are then also
inaccessible.

Wrapper DBEnvironments are usually used with inaccessible audit DBEnvironments, but they
can be used to retrieve the log files of any inaccessible DBEnvironment.

After you wrap the log files, you can then try to extract audit information from the audit log
records in the wrapped log files with SQLAudit by partition number. Access to wrapped

log files avoids having a gap in the ongoing record of audit information. The use of archive
logging facilitates wrapper DBEnvironment use, but nonarchive logging does not prevent use
of wrapper DBEnvironments.

To wrap log files, the orphaned log files marked Useable are first displayed and selected. Then,
it must be ensured that each log file is inactive. A DBEnvironment is then created with

the START DBE NEW statement and the new DBEnvironment is converted to a wrapper
DBEnvironment with the SQLUtil WRAPDBE command.

Note Recovery of the database itself is a separate operation. It is recommended
that the log files be wrapped before recovery operations.

For detailed information on database recovery and wrapper DBEnvironments, refer to the

ALLBASE/SQL Database Administration Guide.

2-30 Using ALLBASE/SQL

Using SQLAudit

SQLAudit is an ALLBASE/SQL utility program that can be used in conjunction with audit
DBEnvironments to view the changes that have been made to the DBEnvironment. You
use SQLAudit to audit only committed transactions. For security reasons, you need DBA
authorization to use SQLAudit.

Refer to the “DBA Tasks and Tools” chapter of the ALLBASE/SQL Database Administration
Guide for a full description of SQLAudit.

Application Programming

To use SQL statements in an application program, you embed the statements in source code,
then use the ALLBASE/SQL preprocessor that supports the source language.

Preprocessor
The ALLBASE/SQL preprocessor performs the following tasks:

m Checks the syntax of SQL statements embedded in an application program.

m Translates embedded SQL statements into compilable C, FORTRAN, COBOL, or Pascal
constructs that call ALLBASE/SQL external procedures at run time.

m Stores a module in the DBEnvironment.

A module contains a group of sections. A section consists of ALLBASE/SQL instructions for
executing an SQL statement at run time. ALLBASE/SQL ensures that any objects referenced
in the section exist and that current authorization criteria are satisfied. The optimal data
access path is determined at preprocessing time rather than at run time which enhances
runtime performance.

When an application program becomes obsolete, you can use the DROP MODULE statement
to delete its module from the DBEnvironment and thus ensure the program can no longer
operate on the databases in the DBEnvironment. For example:

DROP MODULE MyProgram

ALLBASE/SQL has the following statements that create modules when the information for
an SQI statement cannot be completely defined in advance. These dynamic preprocessing
statements are used in both programmatic and interactive environments:

PREPARE

EXECUTE
EXECUTE IMMEDIATE

In addition to the above statements, ALLBASE/SQL includes the following statements which
cannot be used interactively:

BEGIN DECLARE SECTION CLOSE CURSOR DECLARE CURSOR
DELETE WHERE CURRENT DESCRIBE END DECLARE SECTION
FETCH INCLUDE OPEN

REFETCH SQLEXPLAIN UPDATE WHERE CURRENT
WHENEVER

Using ALLBASE/SQL 2-31

Preprocessed programs receive messages from ALLBASE/SQL through the SQL
Communication Area, called the SQLCA. Information is sent to ALLBASE/SQL through the
SQL Description Area, called the SQLDA. These structures and the above statements are
explained in detail along with examples in the ALLBASE/SQL application programming
guides.

Authorization

ALLBASE/SQL authorization governs who can preprocess and execute a program that
accesses a DBEnvironment as described here:

m To preprocess a program, you need DBA or CONNECT authority and the authorities
needed to execute all activities against the database that are executed by the program.
The module stored for the program is owned by the logon name of the individual who
invokes the preprocessor. A DBA, however, can associate the module with a different owner
at preprocessing time. Other users can assign a group name as the module owner if they
belong to the group.

m To run a program, you need either RUN authority or OWNER authority for the stored
module. You also need the authority to start the DBE session as it is started in the
program.

DBEnvironment Changes

Certain DBEnvironment changes can affect preprocessed programs. For example, one of
the tables used by the program can be dropped from a database, or the authorities held by
the module’s owner can change. When you run a preprocessed program, ALLBASE/SQL
automatically determines whether changes such as these have occurred. If any have,
ALLBASE/SQL attempts to revalidate the affected sections. The only SQL statements that
are executed at run time are those that operate on existing objects and those which the
module’s owner is authorized to execute.

Some changes do not affect successful execution of the program, but others can. If, for
example, the owner of the program had SELECT and UPDATE authority for a table updated
by the program and the UPDATE authority is later revoked, the program is no longer able to
update that table. But if SELECT authority is revoked instead, the UPDATE statements for
the table can still execute successfully.

Host Variables

Data is passed back and forth between a program and ALLBASE/SQL in host variables. SQL
statements use both input and output host variables. Input host variables are used to transfer
data into ALLBASE/SQL from the application. Output host variables move information from
ALLBASE/SQL into the application.

An indicator variable is a special type of host variable. In the SELECT, FETCH, UPDATE,
UPDATE WHERE CURRENT, and INSERT statements, the indicator variable is an input
host variable whose value depends on whether an associated host variable contains a null
value. If the indicator variable contains a negative number, then the associated host variable
is null. If it contains a zero or positive number, the value in the host variable is not null.

2-32 Using ALLBASE/SQL

In the SELECT and FETCH statements the indicator variable can be an output host variable

and indicate that a value in the associated host variable is null or a column value is truncated.

Host variable names are prefixed with a colon (:) when embedded in an SQL statement.
:Partlumber

:PartName
:PartNameInd

When host variables are used in an application outside of an embedded SQL statement, the
host variable name is not prefixed by a colon.

Multiple-Row Manipulations

Programmatic SELECTSs and INSERTSs can operate only on a row at a time unless you use a
cursor or the BULK option of the SELECT, INSERT, or FETCH statement.

A cursor is a pointer that you advance one row at a time. The BULK option is used to
manipulate multiple rows with a single execution of the SELECT, INSERT, or FETCH
statements. When you do bulk manipulations, input and output host variables must be
arrays.

Using Multiple Connections and Transactions with Timeouts

A maximum of 32 simultaneous database environment connections can be established by
means of an application program or ISQL. When accessing more than one DBEnvironment,
there is no need to release one before connecting to another. Performance is greatly improved
using this method rather than connecting to and releasing each DBEnvironment sequentially.

This multi-connect functionality is available in either of two modes. Single-transaction mode
(the default) is standards compliant and allows one transaction at a time to be active across
the currently connected set of DBEnvironments. Multi-transaction mode can be set to allow
multiple, simultaneous transactions across the currently connected set of DBEnvironments.

Both local and remote DBEnvironments are accessible via multi-connect functionality.
Remote connections require the installation of ALLBASE/NET on the client and on each
related server.

The following sections discuss how to use multi-connect features

Connecting to DBEnvironments
Setting the Current Connection
Setting Timeout Values

Setting the Transaction Mode
Disconnecting from DBEnvironments

The sample DBEnvironment, PartsDBE, and three hypothetical DBEnvironments, SalesDBE,
AccountingDBE, and BankDBE are used to provide examples in this section.

The ALLBASE/SQL Advanced Application Programming Guide contains further application
programming information regarding multi-connect functionality.)

Using ALLBASE/SQL 2-33

Connecting to DBEnvironments

With multi-connect functionality, you can specify a connection name each time you connect to
a DBEnvironment by means of one of the following statements:

CONNECT

START DBE

START DBE NEW
START DBE NEWLOG

For example, in ISQL, the following CONNECT statement establishes a connection to
PartsDBE and assigns a connection name for this connection:

isql=> CONNECT TO ’PartsDBE’ AS ’Partsi’;

In an application program, you can use either a string or, as in the following example, a host
variable:

CONNECT TO ’PartsDBE’ AS :Partsi

The connection name is used when setting the current connection, as described in the next
section. It must be unique within an application and be assigned by means of either a
character host variable or a string literal.

Which of the above statements you choose for assigning the connection name depends on the
needs of your application. See the ALLBASE/SQL Reference Manual for the complete syntax
of each statement.

Setting the Current Connection

Within an application or ISQI., the current connection is set by the most recent statement
that connects to or sets the connection to a DBEnvironment. In order for a multi-connect
transaction to execute, the current connection must be set to the DBEnvironment in which
the transaction will execute.

To change the current connection within a set of connected DBEnvironments, use a SET
CONNECTION statement to specify the applicable connection name, as in the following
example for ISQL:

isql=> SET CONNECTION ’Partsi’;

In an application program, you can use either a string literal or, as in the following example, a
host variable:

SET CONNECTION :Partsi

Remember, any SQL statement issued applies to the current connection.

Note Following a RELEASE or DISCONNECT CURRENT command, there is no
current connection until a SET CONNECTION command is used to set the
current connection to another exisiting connection, or a new connection is
established by using the CONNECT, START DBE, START DBE NEW, or
START DBE NEW LOG commands.

2-34 Using ALLBASE/SQL

Setting Timeout Values

Be sure to set a timeout value when using multiple connections to avoid undetected deadlocks
and undetected wait conditions. An undetected deadlock is possible when multi-transaction
mode is used in conjunction with more than one DBEnvironment with multiple applications
accessing the same DBEnvironments at the same time. An undetected wait condition

is possible when multi-transaction mode is used with multiple connections to the same
DBEnvironment within a single ISQL session or application.

A timeout value can be set with any of the following:

START DBE

START DBE NEW

START DBE NEWLOG

SQLUtl ALTDBE

SET USER TIMEOUT

SET SESSION USER TIMEOUT

SET TRANSACTION USER TIMEOUT

The first four methods provide a means of setting timeout values at the DBEnvironment
level. The SET USER TIMEOUT statement provides a way of setting transaction, session,
or application specific timeout values. The range of possible values is zero (no wait) to the
specified maximum in the DBECon file for a given DBEnvironment.

For a multi-connect application operating in multi-transaction mode, it is essential to use the
SET USER TIMEOUT statement to avoid an undetectable deadlock or wait condition. (For
information regarding transaction modes, see the following section, “Setting the Transaction

Mode.”)
The following general example shows how to set user timeout values:

1. Put multi-transaction mode in effect.

SET MULTITRANSACTION ON
2. Connect to the PartsDBE DBEnvironment.
CONNECT TO ’PartsDBE’ AS ’Partsil’

3. Set the timeout value for the PartsDBE connection to an appropriate number of seconds.
In this case, the application will wait five minutes for system resources when accessing the
PartsDBE DBEnvironment.

SET USER TIMEOUT 300 SECONDS
4. Connect to the SalesDBE DBEnvironment.

CONNECT TO ’SalesDBE’ AS ’Salesl’

5. Set the timeout value for the SalesDBE connection to an appropriate number of seconds.
In this case, your application will wait 30 seconds for system resources when accessing the
SalesDBE DBEnvironment.

SET USER TIMEOUT 30 SECONDS

6. Set the current connection to Parts].

SET CONNECTION ’Partsi1’

7. Begin a transaction for PartsDBE. If this transaction waits for system resources more than
five minutes, it will time out and return an error message.

Using ALLBASE/SQL 2-35

BEGIN WORK RC

SELECT Partlumber, Partllame, SalesPrice
FROM PurchDB.Parts
WHERE PartNumber BETWEEN 20000 AND 21000

If DBERR 2825 is returned, the transaction has timed out, and your application must take
appropriate action.

8. Set the current connection to Salesl.
SET CONNECTTON ’Salesl’
9. Begin a transaction for SalesDBLE. If this transaction waits for system resources more than
30 seconds, it will timeout and return an error message to the application.

BEGIN WORK RC

BULK SELECT Partllumber, Sales
FROM Owner.Sales
WHERE PartNumber = ’1123-P-20’
AND SaleDate BETWEEN ’1991-01-01’ AND ’1991-06-30’

If DBERR 2825 is returned, the transaction has timed out, and you must take appropriate
action.

Further discussion of timeout functionality is provided in the ALLBASE/SQL Advanced
Application Programming Guide.

Setting the Transaction Mode

The SET MULTITRANSACTION statement allows you to switch between single-transaction
mode and multi-transaction mode. Single-transaction mode implies sequential execution of
transactions across a set of DBEnvironment connections. When your application requires
multiple, simultaneous transactions, you must choose multi-transaction mode.

Warning When using multi-transaction mode, be sure the current timeout value for all
connections is set to a value other than NONE (infinity). This eliminates the
possibility of an infinite wait if an undetectable deadlock or wait condition
occurs.

Using Single-Transaction Mode

If your application contains queries for two or more databases and you want to sequentially
execute a single transaction against each database, you can use single-transaction mode. This
mode is the default and is standards compliant. The following example illustrates the use of
single-transaction mode in ISQL:

1. Put single-transaction mode in effect.

isql=> SET MULTITRANSACTION OFF;

2. Connect to two DBEnvironments.

isql=> CONNECT TO ’PartsDBE’ AS ’Partsl’;
isql=> CONNECT TO ’SalesDBE’ AS ’Salesl’;

2-36 Using ALLBASE/SQL

3. Set the current connection to Partsl.

isql=> SET CONNECTION ’Partsil’;

4. Begin a transaction for PartsDBE.
isql=> BEGIN WORK RC;
isql=> SELECT PartNumber, PartName, SalesPrice

> FROM PurchDB.Parts
> WHERE PartHNumber BETWEEN 20000 AND 21000;

5. End the PartsDBE transaction.

isql=> COMMIT WORK;

6. Set the current connection to Salesl.

isql=> SET CONNECTION ’Salesl’;

7. Begin a transaction for SalesDBE.
isql=> BEGIN WORK RC;
isql=> SELECT PartNumber, Sales

> FROM Owner.Sales
> WHERE PartNumber = ’1123-P-207;

8. End the SalesDBE transaction.

isql=> COMMIT WORK;

Using Multi-Transaction Mode with Multiple DBEnvironments

The SET MULTITRANSACTION ON statement enables multiple implied or explicit BEGIN
WORK statements across the set of currently connected database environments, with a
maximum of one active transaction per database connection. While in multi-transaction
mode, an application can hold resources in more than one DBEnvironment at a time.

Suppose your application is querying one DBEnvironment and inserting the query result
into another DBEnvironment. You decide to use bulk processing with multi-transaction
functionality. The DBEnvironments could be on different systems (using ALLBASE/NET) or
on the same system, as in the following example using host variables:

1. Put multi-transaction mode in effect.

SET MULTITRANSACTION ON

DECLARE PartsCursor
CURSOR FOR
SELECT OrderNumber, VendorNumber, OrderDate
FROM PurchDB.0Orders
WHERE OrderDate > Yesterday

2. Connect to two DBEnvironments and set an appropriate timeout value for each.

CONNECT TO ’PartsDBE’ AS ’Partsl’
SET USER TIMEOUT 180 SECONDS

CONNECT TO ’Part2DBE’ AS ’Parts2’
SET USER TIMEOUT 30 SECONDS

3. Set the current connection to Partsl.

Using ALLBASE/SQL 2-37

SET CONNECTION ’Partsi1’

4. Begin a transaction for PartsDBE.

BEGIN WORK RC
OPEN PartsCursor

BULK FETCH PartsCursor
INTO :PartsArray, :StartIndex, :NumberOfRows

5. If there are qualifying rows, set the current connection to Parts2.

SET CONNECTION ’Parts2’

6. Begin a transaction for Parts2DBL.

BEGIN WORK RC

At this point, there are two active transactions.

BULK INSERT
INTO PurchDB2.0rders2
VALUES (:PartsArray, :StartIndex, :NumberOfRows)

7. Test the sqlcode field of the sqlca. If it equals -2825, a timeout has occurred, and the
transaction was rolled back. Take appropriate action.
8. End the transaction.

COMMIT WORK
There is now one open transaction holding resources in PartsDBE.

9. Set the current connection to Partsl.

SET CONNECTION ’Partsi’

10. If there are more rows to fetch, loop back to execute the FETCH statement again.
Otherwise, end the fetch transaction.

COMMIT WORK

Note that in multi-transaction mode, the SET MULTITRANSACTION OFF statement is
valid only if no more than one transaction is active. In addition, if an active transaction
exists, it must have been initiated in the current connection, otherwise the SET

MULTITRANSACTION OFF statement returns an error (DBERR 10087).

Using Multi-Transaction Mode with One DBEnvironment

Even when your application connects to just one DBEnvironment, you might require
multiple, simultaneous transactions to be active. This technique involves connecting to one
DBEnvironment multiple times and specifying a unique connection name each time. In this
case, you issue a SET CONNECTION statement for the appropriate connection name before
beginning each transaction. Note that just one transaction can be active per connection.

For example, suppose you want to keep a record of each time access to a particular table

is attempted. From a menu, the user chooses to view account information and specifies

an account number. Before giving this information, the application logs the fact that the
user is requesting it. The following pseudocode example illustrates how you might code two
simultaneous transactions, each one accessing BankDBE using host variables:

2-38 Using ALLBASE/SQL

1. Put multi-transaction mode in effect.

SET MULTITRANSACTION ON

DECLARE BankCursor
CURSOR FOR
SELECT TransactionType,
DollarAmount,
BankNumber
FROM Accounts
WHERE AccountNumber = :AccountNumber

2. Connect two times to BankDBE. Be sure to specify an appropriate timeout value for each
connection.

CONNECT TO ’BankDBE’ AS ’Bank2’
SET USER TIMEOUT 30 SECONDS

CONNECT TO ’BankDBE’ AS ’Bankl’
SET USER TIMEOUT 30 SECONDS

The user enters an account number.

3. Begin a transaction for the Bankl connection.

BEGIN WORK RC

4. Execute the following security audit subroutine:
Set the current connection to Bank?2.
SET CONNECTION ’Bank2’
Begin a second transaction for BankDBE.

BEGIN WORK RC

A security audit trail record is written whether or not the query in the first transaction
completes.

INSERT INTO BankSecuritydudit
VALUES (:UserID, :AccountNumber, CURRENT_DATETIME)

Test the sqlcode field of the sqlca. If it equals -2825, a timeout has occurred, and the
transaction was rolled back. Take appropriate action.

End the transaction.

COMMIT WORK

Set the current connection to Bankl.

SET CONNECTION ’Bank1’

5. Return from the subroutine to complete the open transaction:

OPEN BankCursor

BULK FETCH BankCursor
INTO :BankArray, :StartIndex, :NumberOfRows

Using ALLBASE/SQL 2-39

Disconnecting from DBEnvironments

The DISCONNECT statement provides a means of closing one or all active connections within
an application. An active connection is a connection established within the application that
has not been released, stopped, or disconnected.

Your application might require that all connections be terminated when the application
completes. In some cases, it might be desirable to terminate a specific connection at another
point in the application.

In the following example, three database connections are established, and one is terminated
immediately after a transaction completes:

1. Put multi-transaction mode in effect.

SET MULTITRANSACTION ON

2. Connect three times and set a timeout value for each connection. In this case, the
DBEnvironment names and the connection names are specified as host variables.

CONNECT TO ’PartsDBE’ AS ’Partsl’
SET USER TIMEOUT 60 SECONDS

CONNECT TO ’SalesDBE’ AS ’Salesl’
SET USER TIMEOUT 60 SECONDS

CONNECT TO ’AccountingDBE’ AS ’Accountingl’
SET USER TIMEOUT 60 SECONDS

SET CONNECTION ’Partsi’

3. Begin a transaction for PartsDBE.

BEGIN WORK RC

4. End the transaction that was initiated for the Partsl connection and terminate the
connection.

COMMIT WORK
DISCONNECT ’Partsl’

5. Set the current connection to 'Salesl’.

SET CONNECTION ’Salesl’

6. Begin transaction for SalesDBE.

BEGIN WORK RC

7. Set the current connection to Accountingl.

SET CONNECTION ’Accountingl’

8. Begin transaction for Accountingl.

BEGIN WORK RC

2-40 Using ALLBASE/SQL

9. End both open transactions and disconnect the two active connections. Note that the
COMMIT WORK statement is issued for the current connection’s transaction.

COMMIT WORK

SET CONNECTION ’Salesl’
COMMIT WORK

DISCONNECT ALL

Note that following the execution of a DISCONNECT CURRENT statement, no current
connection exists. To establish a current connection following a DISCONNECT CURRENT
statement, you must either establish a connection or set the connection.

Administering a Database

Activities that protect and maintain a DBEnvironment and its databases are collectively
referred to as database administration. Several of the SQI statements are used in the
following database administration activities:

Security management

Restructuring

Space management

Logging

Recovery

DBEnvironment management
DBEnvironment statistics maintenance

Refer to the ALLBASE/SQL Database Administration Guide for full details on these and
other matters of database administration. That manual provides full information on SQLUtil,
which is the primary tool for DBEnvironment reconfiguration and backup.

Understanding the System Catalog
The system catalog is a collection of tables and views that contain data about the following:

Tables and views in a DBEnvironment

Any indexes, hash structures, constraints, and rules defined for tables
DBEFiles and DBEFileSets in the DBEnvironment

Specific authorities granted to each user

Programs that can access data in the DBEnvironment

Current DBEnvironment statistics

Temporary space for sorts

Procedures

ALLBASE/SQL uses the system catalog to maintain data integrity and to optimize data
access. The system views are primarily a tool for the DBA. Initially, only the DBA can access
these views. Other users need to be granted SELECT authority by the DBA to access them.
Users without SELECT authority can retrieve descriptions of database objects they own from
the CATALOG views. For information on system and catalog views, refer to chapter “System

Catalog” in the ALLBASE/SQL Database Administration Guide.

Using ALLBASE/SQL 2-41

When a DBEnvironment is first configured, the information in the system catalog describes
the system tables and views themselves. As database objects are defined, their definitions
are stored in the system catalog. As database activities occur, most of the information in
the catalog is updated automatically, so the system catalog provides an up-to-date source of
information on a DBEnvironment.

Immediately following an UPDATE STATISTICS statement, the views in the system catalog,
summarized in Table 2-2, are a source of up-to-date information on a DBEnvironment and
the structure and use of its databases. Refer to the ALLBASE/SQL Database Administration
Guide for additional information on the system catalog.

Table 2-2. System Views

View Name Purpose

SYSTEM.ACCOUNT Identifies the I/O usage of current database sessions.

SYSTEM.CALL Identifies current internal calls.

SYSTEM.CHECKDEF Contains the search condition defined for each table check
constraint. Contains the column name for each column check
constraint.

SYSTEM.COLAUTH Identifies users and groups and their column update and reference
authorities.

SYSTEM.COLDEFAULT Describes the default value of each column defined with a
non-NULL default.

SYSTEM.COLUMN Contains the definition of each column in each table and view.

SYSTEM.CONSTRAINT Contains information on integrity constraints.

SYSTEM.CONSTRAINTCOL Contains information on the columns within unique and referential
constraints.

SYSTEM.CONSTRAINTINDEX | Describes each unique and referential constraint index.

SYSTEM.COUNTER Describes the status of internal system counters.

SYSTEM.DBEFILE Describes the characteristics of each DBEFile.

SYSTEM.DBEFILESET Decribes the characteristics of each DBEFileset.

SYSTEM.GROUP Describes each authorization group.

SYSTEM.HASH Describes each hash structure.

SYSTEM.IMAGEKEY Describes each Master and Detail Dataset key associated with
TurboIMAGE databases attached to the DBE.

SYSTEM.INDEX Describes each index.

SYSTEM.INSTALLAUTH Identifies users and authorization groups that have been granted

INSTALL authority.
SYSTEM.MODAUTH Identifies users and groups and the programs they can run.

2-42 Using ALLBASE/SQL

Table 2-2. System Views (continued)

View Name

Purpose

SYSTEM.PARAMDEFAULT

SYSTEM.PARAMETER
SYSTEM.PARTITION
SYSTEM.PLAN
SYSTEM.PROCAUTH
SYSTEM.PROCEDURE
SYSTEM.PROCEDUREDEF
SYSTEM.PROCRESULT
SYSTEM.RULE
SYSTEM.RULECOLUMN
SYSTEM.RULEDEF

SYSTEM.SECTION
SYSTEM.SETOPTINFO
SYSTEM.SPACEAUTH

SYSTEM.SPACEDEFAULT

SYSTEM.SPECAUTH
SYSTEM. TABAUTH

SYSTEM.TABLE

SYSTEM. TEMPSPACE
SYSTEM.TPINDEX

SYSTEM. TRANSACTION
SYSTEM.USER
SYSTEM.VIEWDEF

Describes the default value of each parameter defined with a
non-NULL default.

Describes each parameter of each procedure.

Contains partition information.

Stores the result of one GENPLAN for each session.

Identifies users and groups and the procedures they can execute.
Describes each procedure.

Contains the definition of each procedure.

Describes procedure result columns.

Describes each rule.

Describes columns an update rule checks for.

Contains the referencing, WHERE, and EXECUTE PROCEDURE

clause of each rule.
Describes stored modules and views.
Contains SETOPT settings for optimizing specific stored sections.

Identifies users and groups and what DBEFileSets they can use
when creating tables; or stored sections.

Identifies the default DBEFileSet to use for a new table or stored
section.

Identifies users and groups who have special authorities.

Identifies users and groups and table/view operations they can
perform.

Contains a description of each table and view in the
DBEnvironment, including size, owner, and associated DBEFileSet.

Defines the TempSpace locations.

Describes third-party indexes used in TurboIMAGE databases
attached to the DBE.

Identifies transactions.
Identifies users currently using the database.

Contains the SELECT statement that created each view defined in
the system.

Using ALLBASE/SQL 2-43

SQL Queries

This chapter describes SQL queries, through which you access the data in database tables.

The follow

ing sections are presented:

Using the SELECT Statement
Simple Queries

Complex Queries

Using GENPLAN to Display the Access Plan
Updatability of Queries

The other kinds of data manipulation, using the INSERT, UPDATE, and DELETE

statements, were presented in the chapter “Using ALLBASE/SQL.”

Using the SELECT Statement

Use the SELECT statement to compose queries. The SELECT statement consists of the
following components:

FROM

-1 O UL = W N~

Select list
INTO clause

clause

WHERE clause
GROUP BY clause
HAVING clause
ORDER BY clause

The select list and FROM clause are required; all other components of this statement are
optional. The following example does not contain an INTO clause. Note the reference

numbers identifying the above components:

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

PartNumber, COUNT(VendorNumber)

PurchDB. SupplyPrice ---3
DeliveryDays < 25 ---4
PartNumber -—=5
COUNT(VendorHumber) > 2 ---6
Partlumber --=7

SQL Queries 3-1

The result is presented in the form of a table, called a query result. The result table (shown
next) for this example has two columns: part numbers and a count of vendors who supply
each part. The query result has rows only for parts that can be delivered in fewer than 25
days by more than two suppliers. The rows are ordered in ascending order by PartNumber.

________________ e
PARTNUMBER | (EXPR)

1123-P-01
1133-P-01
1243-MU-01
1323-D-01
1353-D-01
1433-M-01

The select list identifies the columns you want in the query result. In the above example,
the (EXPR) column contains the vendor count specified as COUNT(VendorNumber) in the
select list. Computations of this kind are called aggregate functions, which are defined in the
“Expressions” chapter. The count function counts rows, in this case rows that satisfy the
conditions set up in the SELECT statement clauses.

This example contains no INTO clause because host variables are not being used. The INTO
clause is used in application programs to identify host variables for storing the query result.
For more information on host variables, refer to the appropriate ALLBASE/SQL application
programming guide.

The FROM clause identifies tables and views from which data is to be retrieved, in this case,
PurchDB.SupplyPrice.

The WHERE clause specifies a search condition for screening rows. Search conditions are
comparisons and other operations you can have ALLBASE/SQL perform in order to screen
rows for your query result. The “Search Conditions” chapter defines the ALLBASE/SQL
search conditions. In this case, the search condition states that rows in the query result must
contain information for parts that can be delivered in fewer than 25 days.

The GROUP BY clause tells ALLBASE/SQL how to group rows before performing an
aggregate function in the select list. The rows that satisfy the WHERE clause are grouped. In
this example, the rows are grouped by PartNumber. Then ALLBASE/SQL counts the number
of vendors that supply each part. The result is a vendor count for each part number.

The HAVING clause screens the groups. In the above example, data for only groups having a
vendor count greater than two becomes part of the query result.

The ORDER BY clause sorts the query result rows in order by specified column, in this case,
PartNumber.

3-2 SQL Queries

Simple Queries

A simple query contains a single SELECT statement and typically has a simple comparison
predicate in the WHERE clause. The SELECT statement can be used to retrieve data from
single tables or from multiple tables. To retrieve data from multiple tables, you join the tables
on a common column value. In the following example, ALLBASE/SQL joins rows from the
PurchDB.SupplyPrice and PurchDB.Parts tables that have the same PartNumber, as specified
in the WHERE clause:
SELECT Partllame, VendorHNumber
FROM PurchDB.SupplyPrice, PurchDB.Parts

WHERE PurchDB.SupplyPrice.PartNumber =
PurchDB.Parts.PartNumber

The query result is as follows:

|
PARTNAME | VENDORNUMBER
_______________________________ S —
Central Processor | 9002
Central Processor | 9003
Central Processor | 9007
I 9008

Central Processor

The following statement, using the explicit JOIN syntax, produces the same query result as
the statement above.
SELECT Partllame, VendorHNumber
FROM PurchDB.SupplyPrice
JOIN PurchDB.Parts

ON PurchDB.SupplyPrice.PartNumber =
PurchDB.Parts.PartNumber

The same query result is also obtained using the following statement:

SELECT Partllame, VendorHNumber
FROM PurchDB.SupplyPrice
JOIN PurchDB.Parts

USING (PartNumber)

The following NATURAL JOIN syntax would also produce the same result:

SELECT Partllame, VendorHNumber
FROM PurchDB.SupplyPrice
NATURAL JOIN PurchDB.Parts

In the four examples above, if a SELECT * is used instead of explicitly naming the displayed
columns in the select list, the query result shows some differences. For the first two examples,
the PartNumber column is displayed twice, once for each of the tables from which it is
derived. For the last two examples, where the USING (ColumnList) clause or the NATURAL
JOIN are used, the common columns are coalesced into a single column in the query result.

ALLBASE/SQL creates a row for the query result whenever a part number in table
PurchDB.Parts matches a part number in table PurchDB.SupplyPrice, for example:

SQL Queries 3-3

PurchDB.Parts:
PARTNUMBER PARTNAME SALESPRICE

1123-P-01 Central processor 500.00

PurchDB.SupplyPrice:

PARTNUMBER VENDORNUMBER . DISCOUNTQTY
1123-P-01 9002 1
1123-P-01 9003 5
1123-P-01 9007 3
1123-P-01 9008 5

Any row containing a null part number is excluded from the join, as are rows that have a part
number value in one table, but not the other.

You can also join a table to itself. This type of join is useful when you want to compare data
in a table with other data in the same table. In the following example, table PurchDB.Parts is
joined to itself to determine which parts have the same sales price as part 1133-P-01:
SELECT q.PartlNumber, q.SalesPrice
FROM PurchDB.Parts p,
PurchDB.Parts q

WHERE p.SalesPrice = q.SalesPrice
AND p.PartNumber = ’1133-P-01°

The same query result is obtained from the following explicit join syntax:

SELECT q.PartNumber, q.SalesPrice
FROM Purchdb.Parts p
JOIN Purchdb.Parts q
ON p.SalesPrice = q.SalesPrice
AND p.PartNumber = ’1133-P-01’

To obtain the query result, ALLBASE/SQL joins one copy of the table with another copy
of the table, as follows, using the join condition specified in the WHERE clause or the ON
SearchCondition3 clause:

m You name each copy of the table in the FROM clause by using a correlation name. In
this example, the correlation names are p and ¢. You use the correlation names to qualify
column names in the select list and other clauses in the query.

m The join condition in this example specifies that for each sales price, the query result should
contain a row only when the sales price matches that of part 1133-P-01. ALLBASE/SQL
joins a row in q.PurchDB.Parts to a row in p.PurchDB.Parts having a part number of
1133-P-01 whenever the SalesPrice value in q.PurchDB.Parts matches that for 1133-P-01.

The query result for this self-join appears as follows:

I
PARTTUMBER | SALESPRICE
______________________ | e
1133-P-01 | 200.00
1323-D-01 | 200.00
1333-D-01 | 200.00
1523-K-01 | 200.00

3-4 SQL Queries

For a two or more table join, if you do not use a join predicate in the ON SearchCondition3
clause or the WHERE clause, or if there are no common columns with which to join the
tables in a natural join, the result of the join is the Cartesian product. In the simplest case,
for a two table join, the Cartesian product is the set of rows which contains every possible
combination of each row in the first table concatenated with each row in the second table.

As an example, consider the simple Parts and Colors tables:

Parts Colors
PartNumber PartName PartNumber Color
1 Widgit NULL Red
NULL Thing 2 NULL
3 NULL 3 Green

The following query generates the Cartesian product:

SELECT p.PartlNumber, PartName, c.Partlumber, Color
FROM Parts p, Colors c

The Cartesian product is shown in the query result:

SELECT p.PartNumber, PartName, c.Partlumber, Color FROM Parts p, Colors c

——————————————— A e e e e e
PARTNUMBER | PARTNAME | PARTNUMBER | COLOR
——————————————— A e e e e e
1 |Widgit | WULL |Red
1 |Widgit | 2| NULL
1 |Widgit | 3|Green
WULL |Thing | WULL |Red
NULL |Thing | 2| NULL
NULL |Thing | 3|Green
3 |NULL | NULL |Red
3 |NULL | 2|NULL
3 |NULL | 3lGreen

The same algorithm is used to form the Cartesian product for a three or more table join.
Thus, it can be said that the Cartesian product of a set of n tables is the table consisting of
all possible rows r, such that r is the concatenation of a row from the first table, a row from
the second table, ... , and a row from the nth table.

As you can see, the Cartesian product for even a small two table join is much larger than the
source tables. For a three or more table join of several large tables, the Cartesian product

can be so large as to cause you to run out of memory and generate an error. Therefore it is
important to be sure that you include the appropriate join predicate in your queries and to be
sure that you specify columns common to the tables being joined.

In the example above, NULLs are included in the tables to show the difference between the
behavior of NULLs in the production of the Cartesian product and the behavior of NULLs
when a common column is specified in the WHERE clause join predicate.

Consider the following query:

SELECT p.PartlNumber, PartName, c.Partlumber, Color
FROM Parts p, Colors c
WHERE p.PartHumber = c.PartNumber

SQL Queries 3-5

The query result for the query is as follows:

SELECT p.PartlNumber, PartName, c.Partllumber, Color FROM Parts p, Colors c....
——————————————— e e e
PARTHNUMBER | PARTAME | PARTHUMBER | COLOR
——————————————— e e e
3 |NULL | 3|Green

The only rows selected for the query result are those rows for which the join predicate
(p.PartNumber = c.PartNumber) evaluates to true. Because NULL has an undetermined
value, for the cases where the values of the predicate are NULL = NULL, the value of the
predicate is undetermined, and the row is not selected.

However, for the Cartesian product shown in the prior example, due to the absence of a join
predicate, rows with NULLs in the common column are selected because the operation is the
simple concatenation of the rows, regardless of value.

Complex Queries

In addition to the simple queries shown in the previous section, you can create complex
queries, which may contain more than one SELECT statement. At the highest level, a query
is a SELECT statement, which consists of a query expression followed by an optional ORDER
BY clause. At the next lower level, you can combine different query blocks into a single query
expression with the UNION operator. Lower still, inside each query block is an optional
search condition, which can contain predicates that incorporate subqueries. A subquery is
always a single query block (SELECT) that can contain other subqueries but cannot contain
a UNION. A query expression can contain a maximum of 16 query blocks from all sources,
including UNION, subqueries, and the outer query block.

Figure 3-1 shows the range of possibilities for complex queries.

3-6 SAQL Queries

SELECT Command

QueryExpression
QueryBlock
SELECT SelectlList
FROM TableList
WHERE | SearchCondition |e—+— See Below
GROUP BY ColumnList
HAVING SearchCondition
UNION [ALL]
QueryBlock
SELECT SelectlList
FROM TableList Repeatable Unit
WHERE [SearchCondition | With UNION
GROUP BY ColumnList
HAVING SearchCondition

ORDER BY column names/numbers

SearchCondition

direction

v

0%} inor [Fradear]] [-]

[NOT] L{
/-_ L ¢

——
——
— —
————
——
Bt 3

exeression

operand

operator quantifier
= <> ALL
< >
<= >= ANY
[NOT] IN
[NOT] EXISTS SOME
[NOT] BETWEEN
{NOT] LIKE
ISNOT NULL

SubQuery
Valuelist
Expression
‘Pattern’

:HostVariable

LG200199_018

Figure 3-1. Range of Complex Query Types

You can create a complex query by using the following:

m UNION operator, which allows you to take the union of all rows returned by several query

blocks in one SELECT statement.

m Subqueries (also known as nested queries), which allow you to embed a query block within
the search condition of an outer SELECT statement.

m Special predicates, such as ANY, ALL, SOME, EXISTS, and IN, which allow you to
compare the value of an expression with the value of special structures and subqueries.

The next sections describe each type of complex query with examples.

SQL Queries 3-7

UNION Queries

A SELECT statement can consist of several query blocks connected by UNION or UNION
ALL statements. Fach individual SELECT statement returns a query result which is a set of
rows selected from a specified table or tables. The union of these query results is presented as
a table that consists of all rows appearing in one or more of the original query results.

If only the UNION statement is used, all duplicate rows are removed from the final set of
rows. In this case, the maximum size of a tuple in the query result is given by the following
formula:

(SelectListitems + 1) * 2 + (SumListLengths) <= 4000
where:
SelectListltems is the number of items in the select list.
SumListLengths is the sum of the lengths of all the columns in the select list.

At compile time, SumKeyLengths is computed assuming columns of NULL and VARCHAR
contain no data. At run time, the actual data lengths are assumed.

If the UNION ALL operator is used, duplicates are not removed. Candidates for duplicate
removal are evaluated by comparing entire tuples, not just a single field. Only if two or more
rows are entirely alike are the duplicates removed. In the case of the UNION ALL operator,
the maximum size of a tuple in the query result is 3996 bytes, as it is for a non-UNION query
expression. You cannot use LONG columns in a UNION statement.

Suppose you wanted to find out the part number for all parts that require 30 days or more for
delivery, or are supplied by the vendor whose number is 9002. The following query delivers
this information using the UNION form of the SELECT statement:

SELECT PartlNumber
FROM PurchDB.SupplyPrice
WHERE DeliveryDays >= 30

UNION

SELECT PartNumber
FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9002

ORDER BY PartNumber

1123-P-01
1133-P-01
1143-P-01
1153-P-01
1223-MU-01
1233-MU-01
1323-D-01
1333-D-01
1343-D-01
1523-K-01
1623-TD-01
1823-PT-01

Note that no rows are duplicated. When the UNION statement is not qualified by the ALL
statement, all duplicate rows are removed from the query result. Notice that the ORDER BY
clause must be at the end of the SELECT statement. It cannot be included in the separate

3-8 SAQL Queries

query expressions that make up the overall statement. Only the final query result can be
ordered.

If the UNION ALL statement is used in the previous query, the result can contain duplicate
rows. The following example flags duplicate rows with two types of arrows that are described
below:

1123-P-01
1123-P-01 <----
1123-P-01 <---+
1133-P-01
1133-P-01 <---+
1143-P-01
1143-P-01 <----
1153-P-01
1153-P-01 <---+
1223-MU-01
1233-MU-01 <----
1323-D-01
1333-D-01
1343-D-01
1523-K-01
1623-TD-01
1823-PT-01

In the above example, rows are duplicated for the following:
m More than one vendor supplies some parts (these duplicates are indicated by <----)

m Vendor 9002 supplies some parts that take 30 or more days to deliver (these duplicates are
indicated by <---+)

Note that you could get the same information in other ways. For example, you could use two
separate queries. Alternatively, you could use two predicates in the search condition joined by
the OR operator as follows:
SELECT Partllumber
FROM PurchDB.Supplyprice
WHERE DeliveryDays >= 30 OR

VendorHNumber = 9002
ORDER BY PartNumber

This query still contains duplicate rows where more than one vendor supplies a given part; but
no duplicates are caused by vendor 9002 supplying some parts, and that some of these take 30
or more days to deliver. The duplicates could be eliminated by using the SELECT DISTINCT
instead of SELECT statement.

Using Character Constants with UNION

If you want to see which SELECT statement in the UNION statement contributed each row
to the query result, you can include character constants in your SELECT statements. A
second column is then generated that shows the originating query block for each row, as in
this example:

SQL Queries 3-9

SELECT PartNumber, ’deliverydays >= 30’
FROM PurchDB.SupplyPrice
WHERE DeliveryDays >= 30

UNION ALL
SELECT PartNumber, ’supplied by 9002
FROM PurchDB.SupplyPrice

WHERE VendorNumber = 9002

ORDER BY PartHNumber

________________ e

PARTHUMBER | (CONST)

________________ .
1123-P-01 |deliverydays >= 30
1123-P-01 |deliverydays >= 30 <----
1123-P-01 | supplied by 9002
1133-P-01 | supplied by 9002
1133-P-01 |deliverydays >= 30
1143-P-01 |deliverydays >= 30
1143-P-01 |deliverydays >= 30 <----
1153-P-01 |deliverydays >= 30
1153-P-01 | supplied by 9002
1223-MU-01 |deliverydays >= 30
1233-MU-01 |deliverydays >= 30
1323-D-01 |deliverydays >= 30
1333-D-01 |deliverydays >= 30
1343-D-01 |deliverydays >= 30
1523-K-01 |deliverydays >= 30
1623-TD-01 |deliverydays >= 30
1823-PT-01 | supplied by 9002
1923-PA-01 | supplied by 9002

The indicated duplicate rows would have been removed if the example contained the UNION
statement instead of UNION ALL.

Subqueries

A subquery, also known as a nested query, is a query block that is completely embedded in a
predicate. A subquery may appear within the search condition which is a part of the WHERE
or HAVING clause of a SELECT, INSERT, UPDATE or DELETE statement. It is like any
other query expression, except that it cannot contain a UNION operator. A subquery may be
used only in the following types of predicates:

m Comparison predicate
m EXISTS predicate
m IN predicate
m Quantified predicate
Subqueries can be used to arrive at a single value that lets you determine the selection criteria
for the outer query block. In the following simple example, the subquery (in parentheses) is
evaluated to determine a single value used in selecting the rows for the outer query:

SELECT *

FROM PurchDB.SupplyPrice
WHERE PartNumber = (SELECT PartNumber

FROM PurchDB.Parts
WHERE Partlame = ’Cache Memory Unit’)

Subqueries are most frequently found within special predicates, which are described fully in
the next section. Additional examples of subqueries can be found there.

3-10 SAQL Queries

Special Predicates
The three types of special predicate are listed here:

m The quantified predicate (ALL, ANY, or SOME), used to compare the value of an
expression with some or all of the values of an operand.

m The IN predicate, used to check for inclusion of an expression in a set of values.
m The EXISTS predicate, used to check for the existence of a value in an operand.

With all these types, subqueries may be used; for ALL, ANY, SOME, and IN predicate,
additional forms allow the use of a value list in place of a subquery. For each type of special
predicate the examples in the next sections show both subquery and non-subquery forms of
the predicate whenever both possibilities exist.

Quantified Predicate

A quantified predicate compares a value with a number of other values that are either
contained in a value list or derived from a subquery. The quantified predicate has the
following general form:

ValueList
SubQuery

FEzxpression ComparisonOperator Quantifier {
The comparison operators shown here are allowable:
= <> < > <= >=
The quantifier is one of these three keywords:
ALL ANY SOME

The value list is of this form:

(Valt, Val2, ..., Valn)

Using the ANY or SOME Quantifier with a Value List

With the ANY or SOME quantifier (ANY and SOME are synonymous), the predicate is true
if any of the values in the value list or subquery relate to the expression as indicated by the
comparison operator.

Suppose you have a list of the part numbers for parts you have been buying from vendor 9011.
You would like to start obtaining those parts from other vendors. The following example
shows how you would find the part number and vendor number for all parts supplied by
vendor 9011 that are also supplied by some other vendor:

SQL Queries 3-11

SELECT Partllumber, VendorNumber
FROM PurchDB.SupplyPrice
WHERE PartNumber = ANY
(’1343-D-01’, °1623-TD-01’, 21723-AD-01°, ?1733-AD-01°)
AND NOT VendorNumber = 9011

________________ S

PARTNUMBER | VENDORNUMBER
________________ e
1343-D-01 | 9001
1623-TD-01 | 9015
1723-4AD-01 | 9004
1723-4AD-01 | 9012
1723-4AD-01 | 9015
1733-4D-01 | 9004
1733-4D-01 | 9012

The quantifier ANY is used to determine whether PurchDB.SupplyPrice contains any of the
part numbers in the value list. If so, the query returns the part number and vendor number
of vendors supplying that part. The final predicate eliminates all instances where the part is
supplied by vendor 9011. Note that SOME could be used in place of ANY, because SOME
and ANY are synonyms.

Using ANY or SOME with a Subquery

You can also use the subquery form of the quantified predicate. If you wanted to distribute
some of the business you have been giving vendor 9004, you might want to find vendor
numbers for each vendor supplying at least one part supplied by vendor 9004. The following
query returns this information:
SELECT DISTINCT VendorNumber
FROM PurchDB.SupplyPrice
WHERE PartNumber = ANY (SELECT PartNumber

FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9004)

The subquery obtains the part numbers for all parts supplied by vendor 9004. The quantifier
ANY is then used to determine if PartNumber is the same as any of these parts. If so, the
vendor number supplying that part is returned in the query result.

Some queries may require you to use ANY and SOME constructs in a manner that is not
intuitive. Consider the following query:
SELECT T1.SalesPrice
FROM T1

WHERE T1.PartNumber <> ANY (SELECT T2.PartNumber
FROM T2)

The inexperienced SQL user might think that this means, “Select the sales price of parts from
table T1 whose numbers are not equal to any part numbers in table T2.” However, the actual
meaning is, “Select the sales price of parts from T1 such that the part number from T1 is not

3-12 SAQL Queries

equal to at least one part number in T2.” This query returns the sales price of all the parts in
T1 if T2 has more than one part.

A less ambiguous form using EXISTS is as follows:

SELECT T1.SalesPrice
FROM T1
WHERE EXISTS (SELECT T2.PartNumber
FROM T2
WHERE T2.PartHumber <> T1.PartNumber)

Using the ALL Quantifier

With the ALL quantifier, the predicate is true only if all of the values in the value list or
subquery relate to the expression as indicated by the comparison operator.

Assume you have been buying parts from vendor 9010. To get a discount from this vendor,
you have been required to purchase parts in larger quantities than you would like. To avoid
large stockpiles of these parts, you want to find vendors whose discount is not dependent on
the purchase of such large quantities. The following query uses two subqueries and an ALL
quantifier to retrieve the information you want:

SELECT VendorNumber, PartNumber, DiscountQty
FROM PurchDB.SupplyPrice
WHERE DiscountQty < ALL (SELECT DiscountQty
FROM PurchDB.SupplyPrice
WHERE VendorHumber = 9010)
AWD PartNumber IN (SELECT PartNumber
FROM PurchDB.SupplyPrice
WHERE VendorHumber = 9010)

____________ e
VENDORNUMBER | PARTNUMBER |DISCOUNTQTY
____________ -
9006 [1423-M-01 | 1
9007 [1433-M-01 | 15

The first subquery obtains the number of parts needed to qualify for a discount for each part
supplied by vendor 9010. Using the quantifier ALL, rows are selected only when the quantity
needed for a discount is less than that needed for any part supplied by 9010. The second
subquery limits the selection to only those part numbers supplied by vendor 9010. Thus, the
query result shows every part supplied by vendor 9010 which can be obtained from another
vendor in smaller quantities with a discount.

IN Predicate

An IN predicate compares a value with a list of values or a number of values derived by the
use of a subquery. The IN predicate has the following general form:

lueList
Frpression [NOT]IN { ValucLis }

SubQuery

The ValueLlist and SubQuery forms of the IN predicate are described separately in the
following sections.

Note that IN is the same as = ANY.

SQL Queries 3-13

Using the IN Predicate with a Value List

If you wanted to obtain the numbers of all vendors who supplied a given list of parts, the
following query could be used:
SELECT DISTINCT VendorHumber
FROM PurchDB.SupplyPrice
WHERE PartNumber
IN (>1143-P-01°, ’1323-D-01’, ’1333-D-01’, ’1723-AD-01’,
71733-AD-017)

Using the IN Predicate with a Subquery

If you wanted a list of all the vendors who supply the same parts that vendor 9004 supplies,
the following query could be used:
SELECT DISTINCT VendorNumber
FROM PurchDB.SupplyPrice
WHERE PartHumber IN (SELECT PartNumber

FROM PurchDB.SupplyPrice
WHERE VendorNumber = 9004)

The subquery determines the part number of every part supplied by vendor 9004. The outer
query selects every vendor who supplies one or more of those parts. DISTINCT removes
duplicates from the final query result, as many vendors supply more than one such part.

EXISTS Predicate

The EXISTS predicate, also known as the existential predicate, tests for the existence of a
row satisfying some condition. It has the following general format:

EXISTS Subquery

EXISTS is true only if the query result of the subquery is not empty; that is, a row or rows
are returned as a result of the subquery. If the query result is empty, the EXISTS predicate is
false.

In the following example, suppose you need to determine the names of all vendors who
currently supply parts:

3-14 SAQL Queries

SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE EXISTS (SELECT *
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorHumber = v.VendorNumber)

Remington Disk Drives
Dove Computers

Space Management Systems
Coupled Systems
Underwood Inc.

Pro-Litho Inc.

Eve Computers

Jujitsu Microelectronics
Latin Technology

KellyCo Inc.

Morgan Electronics
Seminational Co.

Seaside Microelectronics
Educated Boards Inc.
Proulx Systems Inc.

In this example, v and sp are correlation names, which enable ALLBASE/SQL to distinguish
the two VendorNumber columns in the predicate without requiring you to repeat each table
name in full.

You can also use the NOT EXISTS form of the existential predicate. If you wanted to find
those vendors who are not currently supplying you with parts you could use a query of the
form shown here:
SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT *

FROM PurchDB.SupplyPrice sp
WHERE sp.VendorHumber = v.VendorNumber)

Covered Cable Co.
SemiTech Systems
Chocolate Chips

Correlated Versus Noncorrelated Subqueries

In many cases, it is possible to execute the subquery just once, and obtain a result which is
passed to the outer query for its use. Here is an example:
SELECT *
FROM PurchDB.SupplyPrice
WHERE Partlumber = (SELECT PartHNumber

FROM PurchDB.Parts
WHERE Partlame = ’Cache Memory Unit’)

This kind of subquery is a noncorrelated subquery.

SQL Queries 3-15

In other cases, however, it is necessary to evaluate a subquery once for every row in the outer
query, as in the following:
SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT *

FROM PurchDB.SupplyPrice sp
WHERE sp.VendorHNumber = v.VendorHumber)

The predicate in the subquery references the column value v.VendorNumber, which is defined
by the outer query block. When this type of relationship exists between a column value in
the subquery and a column value in an outer query block, the query is called a correlated
subquery.

Recognizing correlated subqueries is important when performance is a priority. Correlated
subqueries require the optimizer to use an outer loop join algorithm rather than a sort-merge
join. Because a sort-merge join is orders of magnitude faster than an outer loop join,
correlated subqueries pay a performance penalty. In addition, when the ANY, SOME, ALL,
or IN predicate makes use of subqueries, the queries are converted into correlated subqueries
using the EXISTS predicate. Therefore, if at all possible, queries using ANY, SOME, ALL,
IN, or the correlated form of the EXISTS predicate should be done as joins of two or more
tables rather than by using subqueries if performance is an issue. In fact, it is possible to state
a query as a join as well as in a form using subqueries; non-correlated subqueries are faster
than sort-merge joins. Sort-merge joins are faster than correlated subqueries which use an
outer loop join.

Outer Joins

An inner join returns only tuples for which matching values are found between the common
columns in the joined tables. A natural inner join specifies that each pair of common columns
is coalesced into a single column in the query result. The term join has become synonymous
with the term natural inner join because that type of join is used so frequently.

To include in the query result those tuples from one table for which there is no match in the
common columns of the other table you use an outer join. The term natural, when applied to
an outer join, has the same meaning as with an inner join. Common columns are coalesced
into a single column in the query result. No duplicate columns are returned.

Outer Joins Using Explicit JOIN syntax

Outer joins may be constructed using the explicit JOIN syntax of the SELECT statement (see
the “SELECT” section of the “SQL Statements” chapter). In a two table outer join, the first
table listed in the FROM clause of the SELECT statement is considered the left hand table
and the second is considered the right hand table.

The set of rows in the result may be viewed as the union of the set of rows returned by an
inner join (the inner part of the join) and the set of rows from one table for which no match is
found in the corresponding table (the outer part of the join).

If the unmatched rows from both tables being joined are preserved, the join is a symmetric
outer join. If the rows are preserved from only the left hand table, the join is a left
asymmetric outer join. (The word asymmetric is usually omitted.) If the rows are preserved
from only the right hand table, the join is a right outer join. The current syntax will allow
you to specify either a left outer join or a right outer join, but not a symmetric outer join. A

3-16 SAQL Queries

technique for creating a symmetric outer join using the UNION operator is described later in
the section, “Symmetric Outer Joins Using the UNION Operator.”

A left outer join obtains the rows from both tables for which there is a matching value in the
common column or columns (the inner part) and the rows from the left hand table for which
there is no match in the right hand table (the outer part). Each unmatched row from the left
hand table is extended with the columns coming from the right hand table. Fach column in
that extension has a null value.

A right outer join obtains the rows from both tables for which there is a matching value in the
common column or columns, and the rows from the right hand table for which there is no
match in the left hand table. The unmatched rows from the right hand table are extended
with the columns coming from the left hand table, with null column values returned in that
extension for every result row which has no match in the left hand table.

For example, the following right outer join is between the SupplyPrice and the Vendors tables.
For all vendors who supply parts, it returns the Part Number, Vendor Name and Vendor City.
For all vendors who do not supply parts, it returns just the Vendor Name and Vendor City.
SELECT PartHNumber, VendorName, VendorCity
FROM Purchdb.SupplyPrice sp
RIGHT JOIN PurchdB.Vendors v

ON sp.VendorNumber = v.VendorNumber
ORDER BY PartNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...

________________ e e

PARTNUMBER | VENDORNAME | VENDORCITY

________________ e e
|Chocolate Chips |Lac du Choc <--Unmatched
|SemiTech Systems |San Jose <--rows from
|Kinki Cable Co. |Bakersfield <--Vendors table

1943-FD-01 |Eve Computers |Snake River

1933-FD-01 |Remington Disk Drives |Concord

1933-FD-01 |Educated Boards Inc. |Phoenix

1933-FD-01 |Latin Technology |San Jose

1933-FD-01 | Space Management Systems |Santa Clara

1933-FD-01 |Eve Computers |Snake River

1923-PA-01 |Jujitsu Microelectronics |Bethesda

Humber of rows selected is 16
Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], pr[int] <n>, or e[nd] > e

When you use the ON clause of the JOIN syntax, it must contain, at a minimum, the
predicate which specifies the join condition. Other predicates may be placed within the
SELECT statement, but their location is critical as the following examples show.

Additional predicates may be placed in the ON clause. These predicates limit the rows
participating in the inner join associated with the ON clause. All rows excluded by such
predicates participate in the outer part of the associated join. The following query returns (in
the inner part of the join) Part Numbers for all vendors who supply parts and are located in
California (italics). It also returns, without the Part Number (in the outer part of the join) all
vendors who do not supply parts (highlighted), and all vendors who do supply parts, but
are not located in California.

SQL Queries 3-17

SELECT PartNumber, VendorName, VendorCity
FROM Purchdb.SupplyPrice sp

RIGHT JOIN PurchdB.Vendors v

ON sp.VendorNlumber =

AND VendorState = ’CA°

ORDER BY PartHNumber DESC

v.VendorNumber

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...

________________ o e e
PARTNUMBER | VENDORNAME | VENDORCITY
________________ o e e

|Underwood Inc. |Atlantic City

|Remington Disk Drives |Concord

|Coupled Systems |Puget Sound

|'Kinki Cable Co. |:Bakersfield

|Jujitsu Microelectronics |Bethesda

|Dove Computers |Littleton

| SemiTech Systems | San Jose

|KellyCo Inc. |Crabtree

|Educated Boards Inc. |Phoenix

| Chocolate Chips | Lac du Choc

|Morgan Electronics |Braintree

|Eve Computers |Snake River
1933-FD-01 | Latin Technology | San Jose
1933-FD-01 | Space Management Systems | Santa Clara

First 16 rows have been selected.

Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], pr[int] <n>, or e[nd] > e

In the above example, the rows participating in the inner join are further restricted by adding

to the ON clause, AND VendorState =
in the outer part of the join.

"CA’. All vendors that are not in California are placed

If you move the limiting predicate from the ON clause to the WHERE clause, the query
returns a different result. In the following query, the inner part of the join still contains all
vendors who supply parts and are located in California. However, in the outer part of the
join, only those vendors who do not supply parts and are in California are included.

SELECT PartNumber, VendorName, VendorCity
FROM Purchdb.SupplyPrice sp

RIGHT JOIN PurchdB.Vendors v

ON sp.VendorNlumber =

WHERE VendorState = ’CA’°

ORDER BY PartHNumber DESC

v.VendorNumber

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...

________________ e e
PARTNUMBER | VENDORNAME | VENDORCITY
________________ e e
|SemiTech Systems |San Jose
|Kinki Cable Co. |Bakersfield
1933-FD-01 |Latin Technology |San Jose
1933-FD-01 | Space Management Systems |Santa Clara

First 16 rows have been selected.
Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], pr[int] <n>, or e[nd] > e

In the above example, the WHERE clause is applied to all the rows returned, regardless of
whether they are in the inner or outer part of the join. Thus no rows are returned unless the
vendor is located in California.

3-18 SAQL Queries

If you want the inner part of the query to contain all vendors who do supply parts and are
located in California while the outer part contains all vendors who do not supply parts,

regardless of

SELECT

location, use the query shown below.

PartNumber, VendorName, VendorCity

FROM Purchdb.SupplyPrice sp
RIGHT JOIN PurchdB.Vendors v

ON sp.VendorNumber = v.VendorNumber

WHERE VendorState = ’CA’°

OR VendorState <> ’CA’ AND PartNumber IS NULL

ORDER BY PartHNumber DESC

SELECT PartNumber, VendorName, VendorCity FROM Purchdb.SupplyPrice sp RIGHT...

________________ e e e
PARTNUMBER | VENDORNAME | VENDORCITY
________________ e e

|SemiTech Systems |San Jose

|Chocolate Chips |Lac du Choc

|Kinki Cable Co. |Bakersfield
1933-FD-01 |Latin Technology |San Jose
1933-FD-01 | Space Management Systems |Santa Clara
1923-PA-01 |Seminational Co. |City of Industry
1833-PT-01 |Seminational Co. |City of Industry
1833-PT-01 |Seaside Microelectronics |Oceanside

|Oceanside

1823-PT-01 |Seaside Microelectronics

First 16 rows have been selected.

Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], pr[int] <n>, or e[nd] > e

If all common columns between the tables being joined are to be used for the join, the
keyword NATURAL may be used so long as the specification of the ON clause join predicate
is omitted. This technique may be used when joining more than two tables, as in the query

shown below:

SELECT PartName, DeliveryDays, VendorName

FROM PurchDB.Parts
NATURAL RIGHT JOIN PurchDB.SupplyPrice
NATURAL RIGHT JOIN PurchDB.Vendors
ORDER BY PartName DESC

SELECT PartName, DeliveryDays, VendorName FROM PurchDB.Parts NATURAL RIGHT...
______________________________ Y
PARTNAME | DELIVERYDAYS | VENDORNAME
______________________________ Y

Winchester Drive
Video Processor
Video Processor
Video Processor

First 16 rows have been selected.

| |SemiTech Systems

| |Kinki Cable Co.

| |Chocolate Chips
Winchester Drive | 20|Remington Disk Drives

| 30|Morgan Electronics

| 20|Latin Technology

| 30| Jujitsu Microelectronics

| 15|Eve Computers

Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], pr[int] <n>, or e[nd] > e

Outer Joins Using the UNION Operator

An outer join can also be created by using the UNION operator.

SQL Queries 3-19

Suppose you want to create a list of vendors who either supply some part with a unit price
less than $100 or else do not supply any parts at all. To do this, merge two separate queries
with a UNION ALL statement, as in the following examples.

The first query shown here selects the names of vendors who do not supply parts:

SELECT v.VendorName
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT #
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorHumber = v.VendorNumber)

Notice that a second query block is embedded within the first query expression. It creates

a temporary table containing the names of all vendors who do supply parts. Then note the
special predicate EXISTS, which is negated in this case. The outer SELECT statement
allows us to identify the name of each vendor in the Vendors table. Each VendorName is
compared against the list of vendors who do supply parts. If the VendorName from the outer
SELECT statement is not found in the temporary table created by the subquery, the outer
VendorName is returned to the query result, providing us a list of all the Vendors who do not

supply parts.

The second query shown here defines the vendors who supply at least one part with a unit
price under $100:

SELECT DISTINCT v.Vendorllame

FROM PurchDB.Vendors v, PurchDB.SupplyPrice sp
WHERE v.VendorNumber = sp.VendorHNumber

AWD sp.UnitPrice < 100.00

The next example shows this query joined to the previous one by the UNION ALL statement.
It also shows the use of character constants to indicate which rows result from which query

block.

SELECT DISTINCT v.VendorName, ’supplies parts under $100’
FROM PurchDB.Vendors v, PurchDB.SupplyPrice sp

WHERE v.VendorNumber = sp.VendorHNumber
AWD sp.UnitPrice < 100.00

UNION ALL

SELECT v.VendorName, ’none supplied’
FROM PurchDB.Vendors v
WHERE NOT EXISTS (SELECT #
FROM PurchDB.SupplyPrice sp
WHERE sp.VendorHumber = v.VendorNumber)

—————————————————————————————— B =
VENDORNAME | (CONST) I
—————————————————————————————— B =
Dove Computers | supplies parts under $100]|
Educated Boards Inc. | supplies parts under $100]|
Jujitsu Microelectronics | supplies parts under $100]|
Proulx Systems Inc. | supplies parts under $100]|
Seaside Microelectronics | supplies parts under $100]|
Seminational Co. | supplies parts under $100]|
Underwood Inc. | supplies parts under $100]|
Covered Cable Co. |none supplied

SemiTech Systems |none supplied

Chocolate Chips |none supplied |

3-20 SAQL Queries

Symmetric Outer Join Using the UNION Operator

Since the syntax does not support a symmetric outer join, you might try to simulate a
symmetric outer join using the left outer join syntax in combination with the right outer join
syntax. Intuitively, the following query might seem correct:
SELECT PartName, PartNumber, VendorName, VendorCity
FROM Purchdb.Parts
NATURAL LEFT JOIN Purchdb.SupplyPrice

NATURAL RIGHT JOIN Purchdb.Vendors
ORDER BY Partlame, VendorName

This three table outer join does a left outer join between the Parts and the SupplyPrice
tables. The result of that join is then used as the left hand table in a right outer join with the
Vendors table.

It would seem as though the result first displays all parts supplied by a vendor, then all parts
for which there is no supplier, followed by all vendors who do not supply parts.

But, the action of the query is subtle. The natural left join preserves the parts from the

Parts table that is not supplied by any vendor. This supplies the left hand component for the
simulated symmetric outer join. However, although the natural right join preserves the three
vendors from the vendors table who do not supply parts (the right hand component for the
simulated symmetric outer join), it eliminates the unmatched parts from the Parts table. This
happens because the natural right join only preserves unmatched rows from the right hand
table, eliminating the row from the Parts table.

Note If you test the next query on the sample database, you must first use the
following ISQL INSERT statement to add a row with no vendor to the Parts
table.

INSERT INTO PurchDB.Parts

(Partliumber, Partlame)
VALUES (°XXXX-D-L0O’, ’test part’);

To preserve all the unmatched rows from both sides, thus generating a full symmetric outer
join, you must use the following syntax:

SELECT PartName, PartNumber, VendorHName
FROM PurchDB.Parts
NATURAL LEFT JOIN PurchDB.SupplyPrice
NATURAL LEFT JOIN PurchDB.Vendors
UNION
SELECT PartName, PartNumber, VendorHName
FROM PurchDB.Parts
NATURAL RIGHT JOIN PurchDB.SupplyPrice
NATURAL RIGHT JOIN PurchDB.Vendors
UNION
SELECT PartName, PartNumber, VendorHName
FROM PurchDB.Parts
NATURAL RIGHT JOIN PurchDB.SupplyPrice
NATURAL LEFT JOIN PurchDB.Vendors
ORDER BY Partllame DESC, PartNumber;

The result from the natural left join ... natural left join preserves the unmatched part from
Parts. The natural right join ... natural right join preserves the unmatched vendors from
Vendors. The natural right join ... natural left join would preserve all unmatched rows from

SupplyPrice if there were any (in this example there are none). The union operation combines
the three results, preserving the unmatched rows from all joins. There are three complete

SQL Queries 3-21

sets of rows that satisfy the inner join, but the union operation eliminates the duplicate rows

unless UNION ALL is specified.
The result of the above query follows:

SELECT Partllame, PartNumber, VendorName FROM PurchDB.Parts NATURAL LEFT...
______________________________ o
PARTNAME | PARTHUMBER | VENDORNAME
______________________________ o

| |Kinki Cable Co.

| |SemiTech Systems

| |Chocolate Chips

test part | XXXX-D-L0 |

Winchester Drive |11343-D-01 |Remington Disk Drives
Winchester Drive |11343-D-01 |Morgan Electronics
Video Processor 11143-P-01 |Eve Computers

Video Processor 11143-P-01 |Coupled Systems

Using GENPLAN to Display the Access Plan

When a statement is executed in ISQL or is preprocessed in an application program, the
optimizer attempts to generate the most eflicient path to the desired data. Taking into
account the available indexes, the operations that must be executed, and the clauses in the
predicates that may increase the selectivity of the statement, the optimizer decides what
indexes to use and the proper order of the needed operations. The result of this evaluation
process is an access plan produced by the optimizer.

In most cases, the optimizer chooses the best plan. But, there are times when you may want
to display the access plan chosen by the optimizer. You may then evaluate that plan in light
of your specific knowledge of the database and decide if the optimizer has generated the
optimum access plan for your situation.

If you want to override the access plan chosen by the optimizer, issue the SETOPT statement.

The statements used to generate and display the access plan are the GENPLAN statement
and a SELECT on the pseudotable SYSTEM.PLAN.

Generating a Plan

Suppose you want to generate the access plan for the query shown below.

isql=> GENPLAN FOR

SELECT p.Partllame, p.PartNumber, v.VendorName,

s.UnitPrice, i.QtyOnHand

FROM PurchDb.Parts p, PurchDB.Inventory i,
PurchDB. SupplyPrice s, PurchDB.Vendors v
WHERE p.PartNumber = i.PartNumber

AND s.PartNumber = p.Partlumber

AND s.VendorNumber = v.VendorNumber
AND p.PartNumber = ’1123-P-017;

Vv V V V V V V VvV

The access plan will then be placed in the system pseudotable, SYSTEM.PLAN, but will not
be displayed until you do a SELECT from SYSTEM.PLAN. You can also generate the access
plan for a query that is stored in the database as a stored section. For example:

isql=> GENPLAN FOR MODULE SECTION MyModule(10);

3-22 SAQL Queries

Displaying a Query Access Plan

To display the access plan generated by the optimizer, showing the columns in the order most
useful to you, execute the following statement:

isql=> SELECT Operation, TableName, IndexName, QueryBLock, Step, Level
> FROM System.Plan;

SELECT Operation, TableName, IndexName, QueryBlock, Step, Level FROM System.Plan

———————————————————— T T S et et R TR
OPERATION | TABLENAME | INDEXNAME | QUERYBLOCK | STEP |LEVEL

———————————————————— B et E e el E R e
index scan | INVENTORY | INVPARTHNUMINDEX | 1] 1] 4
index scan | PARTS | PARTHUMINDEX | 1] 2] 4
merge join | | | 1] 3l 3
serial scan | SUPPLYPRICE | | 1] 4] 3
nestedloop join | | | 1] 5] 2
index scan | VENDORS | VENDORNUMINDEX | 1] 6| 2
nestedloop join | | | 1] 71 1

Humber of rows selected is 7
Ulpl, dlown], 1[eft], r[ight], t[opl, blottom], prl[int] <n>, or e[nd] >r

Interpreting a Display

The information from the columns in SYSTEM.PLAN helps you to understand the access
plan generated by the optimizer. The columns are discussed in the order most useful to you.

OPERATION shows each operation being executed to obtain the data. Because your
greatest concern is usually whether indexes are being used effectively,
you should look at this column first. For each index scan operation,
indexes are being used to access the data.

If there is no limiting predicate in the WHERE clause of the
statement, or if the predicate will cause the selection of a large
percentage of the rows from the table, a serial scan will be chosen
instead of an index scan.

When a join is specified, you can look at the join chosen to see if it is
the most appropriate type of join, considering the specific data in your
database.

For more information, see the “Understanding Data Access Paths”

section of the chapter “Using ALLBASE/SQL.”

TABLENAME shows the table upon which an operation is being executed. Thus, you
can see the tables for which indexes are being used, and the tables
which are participating in various joins.

INDEXNAME shows which specific index is being used to access data in a particular

table. This may be useful if multiple indexes exist for a given table.

QUERYBLOCK shows the block in which a given operation is taking place. A simple
statement will have only one query block. More complex statements
will be broken into additional blocks to simplify processing.

STEP shows the order in which operations are executed within a given
queryblock. From this information you can determine the order of
operations.

SQL Queries 3-23

LEVEL shows the hierarchy of the operations so you can easily graph the
operations as an execution tree. This is normally necessary only when
your HP Service Representative is evaluating a query.

Updatability of Queries

INSERT, UPDATE and DELETE operations may be performed through views or as qualified
by search conditions provided the views or search conditions are based on updatable queries.
UPDATE WHERE CURRENT and DELETE WHERE CURRENT operations may be

performed through cursors provided the cursors are based on updatable queries.

Queries that underlie views and cursors are called updatable queries when they conform to all
of the following updatability criteria:

m No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT

statement; and no aggregate is specified in the outermost select list.

m The FROM clause specifies exactly one table, either directly or through a view. If the
FROM clause specifies a view, the view must be based on an updatable query.

m For INSERT and UPDATE through views, the select list in the view definition must not
contain any arithmetic expressions. It must contain only column names.

m For UPDATE WHERE CURRENT and DELETE WHERE CURRENT operating on
cursors, the cursor declaration must not include an ORDER BY clause, and the query
expression must not contain subqueries, the UNION or UNION ALL statement, or any
nonupdatable views.

m The target table of an INSERT, UPDATE, or DELETE operation is the base table to which
the changes are actually being made.

m For noncursor INSERT, UPDATE, or DELETE operations, the view definition must not
include any subqueries which contain the target table in their FROM clause; and if a search
condition is given, it must not include any subqueries which contain the target table in their

FROM clause.

If a query is updatable by the previous rules, then the underlying table is an updatable table.
Otherwise it is considered a read-only table and is locked accordingly. This means that in
cursor operations, SIX, IX, and X locks are not used unless the query that underlies the
cursor matches the updatability criteria and was declared with columns for UPDATE. In
noncursor view operations, SIX, IX, and X locks are not obtained unless the table underlying
the view is updatable. Refer to the chapter “Concurrency Control through Locks and
Isolation Levels” for a complete explanation of SIX, IX, and X locks.

3-24 SAQL Queries

Constraints, Procedures, and Rules

In addition to the basic tables and indexes in a DBEnvironment, ALLBASE/SQL lets you
create database objects known as constraints, procedures, and rules, which provide for a
high degree of data consistency and integrity inside the DBEnvironment without the need
for extensive application programming. Constraints define conditions on the rows of a table;
procedures define sequences of SQL statements that can be stored in the DBEnvironment
and applied as a group either through rules or through execution by specific users; and rules
let you define complex relationships among tables by tying specific procedures to particular
kinds of data manipulation on tables. Together, these tools let you store many of your
organization’s business rules in the DBEnvironment itself, reducing the need for application
code.

This chapter presents the following topics:

m Using Integrity Constraints
m Using Procedures
m Using Rules

Using Integrity Constraints

Using integrity constraints helps to ensure that a database contains only valid data. Integrity
constraints provide a way to check data within the database system rather than by coding
elaborate validation checks within application programs. An integrity constraint is either a
unique constraint, a referential constraint, or a check constraint. All of these constraints are
described in this section.

When a table is created, integrity constraints can be defined at the column level or at the
table level. A constraint can be placed on an individual column (at the column or table level)
or on a combination of columns (at the table level).

Unique Constraints

A unique constraint requires that no two rows in a table contain the same value in a given
column or list of columns. You can create a unique constraint at either the table level or the
column level. Unique constraints can be defined as either UNIQUE or PRIMARY KEY. The
two types of unique constraints differ in that if a PRIMARY KEY is placed on a column or
column list, the column name(s) can be omitted from the referential constraint syntax in the
definition of the referencing table. A given column upon which a unique or primary constraint
has been defined need not be referenced by a referential constraint; but a referential constraint
can only refer to a column upon which a unique or primary key constraint has been defined.
Referential constraints are discussed below.

Constraints, Procedures, and Rules 4-1

Additionally, PRIMARY KEY can be specified only once per table. Duplicate unique
constraints are not allowed. Neither UNIQUE nor PRIMARY KEY columns can contain null
values—they must be defined as NOT NULL.

The following syntax is used to define a unique constraint on an individual column or column
list at the table level:

{ UNIQUE

}(ColumnName [s e]) [CONSTRAINT Constmz'ntID]
PRIMARY KEY

ConstraintID is the name of the constraint. It is not necessary to name the constraint. If it is
not named, ALLBASE/SQL names it SQLCON _uniqueid, where uniqueid is a unique string.
The constraint names are maintained in the system catalog table SYSTEM.CONSTRAINT.

A column list cannot contain a column more than once. In the example below, a constraint is
placed on a column at the table level:
CREATE PUBLIC TABLE RecDB.Clubs
(Clubllame CHAR(15) NOT NULL,

UNIQUE (Clubllame) CONSTRAINT ClubConstrnt)
IN RecFS;

The syntax for defining a unique constraint at the column level is part of the column
definition. NOT NULL and either UNIQUE or PRIMARY KEY are included along with
the other column parameters. In the example below, one column is defined with a unique
constraint:

CREATE PUBLIC TABLE RecDB.Clubs

(ClubName CHAR(15) NOT NULL UNIQUE CONSTRAINT ClubConstrnt)
IN RecFS;

A table defined with a PRIMARY KEY followed by a column list is shown in the section
“Examples of Integrity Constraints.”

Referential Constraints

A referential constraint requires that the value in a column or columns of the referencing
table, must either be null or match the value of a column or columns of a unique constraint in
the referenced table. To establish a referential constraint, a unique or primary key constraint
must first be defined on the referenced table’s column or column list and then a referential
constraint must be defined on the referencing table’s column or column list.

The Referenced Table

The referenced table must contain a unique constraint created with either a UNIQUE or
PRIMARY KEY clause on a column or column list:

CREATE PUBLIC TABLE RecDB.Clubs
(ClubName CHAR(15) NOT NULL
PRIMARY KEY CONSTRAINT Clubs_PK, -- column level constraint
ClubPhone SMALLINT,
Activity CHAR(18))
IN RecFS;

The referenced table must be created before the referencing table unless the referenced and
referencing tables are created within a CREATE SCHEMA statement or if both the tables are
created in the same transaction, the SET REFERENTIAL CONSTRAINTS DEFERRED

statement has been executed and is still in effect.

4-2 Constraints, Procedures, and Rules

The Referencing Table

A referential constraint is placed on columns which are dependent on other columns (in
the referenced table). You can create a referential constraint at either the table level or the
column level. Referencing columns need not be NOT NULL.

The following syntax is used to define a referential constraint at the table level in the
CREATE TABLE statement for a referencing table:

FOREIGN KEY (FKColumnName [, ...])
REFERENCES RefTableName [(RefColumnName [, ... |)| [CONSTRAINT ConstraintID |

FOREIGN KEY identifies a referencing column or column list. REFERENCES identifies the
referenced table and referenced column list. The order and number of referencing columns

in the FOREIGN KEY clause must be the same as that of the referenced columns in the
REFERENCES clause. The referenced table cannot be a view.

The syntax for defining a referential constraint at the column level for a referencing column is
shown here:

REFERENCES RefTableName [(RefColumnName) | [CONSTRAINT ConstraintID |
Only one RefColumnName is possible.

Note in the following example that the table’s column definitions and table level constraints
can be in any order within the parentheses and are separated from each other with commas:

CREATE PUBLIC TABLE RecDB.Members
(MemberName CHAR(20) NOT HNULL, column definition
Club CHAR(15) NOT NULL,
MemberPhone SMALLINT,

FOREIGN KEY (Club) table level
REFERENCES Clubs (ClubName)) referential constraint
IN RecFS;

If the REFERENCES clause does not specify a RefColumnName, then the table definition
referenced must contain a unique constraint that specifies PRIMARY KEY. The primary
key column list is the implicit RefColumnName list. It must have the appropriate number of
columns.

The owner of the table containing referencing columns must have the REFERENCES
authority on referenced columns, have OWNER authority on the referenced table, or have
DBA authority, for the duration of the referential constraint.

Check Constraints

A check constraint specifies a condition which must be upheld for an insert or update to be
successfully performed on a table or view. A table check constraint must not be false for any
row of the table on which it is defined. A view check constraint must be true for the condition
in the SELECT statement that defines the view.

A table check constraint is defined in the CREATE TABLE or ALTER TABLE statement
with the following syntax:

CHECK (SearchCondition) [CONSTRAINT ConstraintID |

Constraints, Procedures, and Rules 4-3

If a check constraint is added to an existing table, data already in the table is verified to

ensure that the check constraint is satisfied. A constraint error occurs if the constraint is not
satisfied; the ALTER TABLE statement adding the constraint fails.

The check is also performed when the INSERT or UPDATE statement is executed. A
DELETE statement never causes a check constraint error.

The check search condition must not contain a subquery, aggregate function, TID function,
local variable, procedure parameter, dynamic parameter, current function, USER, or host
variable. The search condition expression also cannot contain a LONG column unless it is
within a long column function. When adding a new column, the columns specified in the
search condition must be defined in the same CREATE TABLE or ALTER TABLE ADD
COLUMN statement. For the ALTER TABLE ADD COLUMN statements, the check
constraint can only be specified for the column being added. When adding a constraint,
columns specified in the check constraint search condition must already exist in the table.

The search condition is a boolean expression which must not be false for a table check
constraint to be satisfied. If any value specified in the search condition expression is NULL,
the result of the expression may be the boolean unknown value rather than true or false. The
check constraint is satisfied if the result is true or unknown.

For example, consider the following check constraint:
CHECK (NumParts > 5)

If NumParts is 5, the result is false and the check is not satisfied. If NumParts is 10, the
result is true and the check constraint for this row is satisfied. If NumParts is NULL, the
result is unknown and the check constraint is also satisfied for this row.

A table check constraint can be defined at a column level or a table level. A check constraint
defined on a column is specified before the comma that ends the column definition as shown
below. A table constraint can be placed anywhere—before, after, or among the column
descriptions. These rules apply for columns defined with either the CREATE TABLE or
ALTER TABLE statements.

For example, a column level check constraint on the Date column is defined as follows:

CREATE PUBLIC TABLE RecDB.Events
(SponsorClub CHAR(15),
Event CHAR(30),
Date DATE DEFAULT CURRENT_DATE No comma here
(CHECK (Date >= 21990-01-017),
Constraint Check_No_01d_Events),

Time TIME,
Coordinator CHAR(20),
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members (MemberName, Club)
CONSTRAINT Events_FK)

IN RecFS;

However, the same constraint defined at the table level is defined as follows:

4-4 Constraints, Procedures, and Rules

CREATE PUBLIC TABLE RecDB.Events
CHECK (Date >= 21990-01-017) Check Constraint
CONSTRAINT Check_No_01d_Events
(SponsorClub CHAR(15),
Event CHAR(30),
Date DATE DEFAULT CURRENT_DATE,
Time TIME,
Coordinator CHAR(20),
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members (MemberName, Club)
CONSTRAINT Events_FK)
IN RecFS;

This table level constraint could also be defined after the Date or Time column, or at any
point in the parenthesized list. There is one difference between table and column level check
constraints: a column level check constraint must reference only the column on which it is

defined.

A check constraint that references more than one column must be defined at the table level.
For example, the constraint CHECK (Date >= ’1990-01-01" AND Time > ’00:00.000’) must
be defined at the table level because both the Date and Time columns are specified in the
check constraint.

A view check constraint is defined with the CREATE VIEW statement using the following
syntax at the end of the view definition:

WITH CHECK OPTION [CONSTRAINT ConstraintlD]

The conditions of the SELECT statement defining the view become the view check constraint
search conditions when the WITH CHECK OPTION clause is specified. A view can have
only one WITH CHECK OPTION. This check constraint checks all of the conditions which
are included in the SELECT statement. These SELECT statement conditions serve two
purposes. First, they originally define the view. They also define the conditions of the check
constraint that is applied when the underlying base table is modified through the view. When
a table is modified through a view, the view check constraint is checked along with any table
constraints. The view check constraint must be true (not unknown) to ensure that all changes
made through a view can still be displayed. All underlying views are also checked, whether or
not they are defined with check options. Unique and referential constraints cannot be defined
on views.

See the “SQL Statements” chapter for the check constraint syntax, within the syntax of
CREATE TABLE, ALTER TABLE, or CREATE VIEW statements.

Examples of Integrity Constraints

The schema example in this section shows the constraints among three tables: Clubs,
Members, and Events. The tables are created as PUBLIC so as to be accessible to any user or
program that can start a DBE session.

Constraints are placed on the tables to ensure that:
1. Events are coordinated by club members who are listed in the Members table
2. Clubs sponsoring the events are listed in the Clubs table

3. Events cannot be scheduled earlier than the current date.

Constraints, Procedures, and Rules 4-5

CREATE PUBLIC TABLE

IN

CREATE PUBLIC TABLE

IN

CREATE PUBLIC TABLE

IN

RecDB.Clubs

(ClubName CHAR(15) NOT NULL
PRIMARY KEY CONSTRAINT Clubs_PK,
ClubPhone SMALLINT,

Activity CHAR(18))

RecFS;

RecDB.Members

(MemberName CHAR(20) NOT NULL,

Club CHAR(15) NOT NULL,

MemberPhone SMALLINT,

PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
FOREIGN KEY (Club) REFERENCES RecDB.Clubs

CONSTRAINT Members_FK)

RecFS;

RecDB.Events

(Event CHAR(30),

Coordinator CHAR(20),
SponsorClub CHAR(15),

Date DATE DEFAULT CURRENT_DATE,
CHECK (Date >= ’1990-01-017),
Time TIME,

FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members
CONSTRAINT Events_FK)

RecFS;

Note that updating the Members table before the Clubs table could cause a referential
constraint error when error checking is at statement level. The RecDB.Members.Club column
references the RecDB.Clubs.ClubName column which is not yet updated. However, if you
deferred referential checking to the end of the transaction, no error would occur. A value
could then be inserted into the RecDB.Clubs.ClubName column that would resolve the
reference. When a COMMIT WORK statement is executed, no constraint errors will exist.

The illustration in Figure 4-1 shows the referential constraints based on this sample schema.
The arrows point to the columns with unique constraints.

Clubs Table Members Table Events Table

ClubName < MemberName Event
Members_FK]\
Events_FK
T~

ClubPhone Club |: Coordinator
Activity MemberPhone SponsorClub
Date
Time
LG200199_033

Figure 4-1. Referential Constraints in a Set of Tables

The Events table contains information about events. The combination of values in the
Coordinator and SponsorClub columns of the Events table must be either be null or match
the combination of values in the MemberName and Club columns of the Members table, as
shown by the Events_FK constraint.

4-6 Constraints, Procedures, and Rules

The Members table contains the names of members and clubs. A member can be in more
than one club. For every Coordinator/SponsorClub pair of values exists a corresponding
MemberName/Club match.

The Clubs table contains information about clubs. For every club entry in the Members table,
a corresponding entry must exist in the Clubs table, as shown by the Members FK constraint.

Inserting Rows in Tables Having Constraints

There are two ways you can insert data in tables having constraints. You can insert values in
referenced columns before inserting values in referencing columns, or you can defer constraint
error checking in a transaction until all constraints referring to each other have been resolved.

With the first method, using the tables defined in the previous example, the Clubs data
should be loaded first, then the Members data, because the MemberName column is
dependent on the ClubName column. The Events table should be loaded last as the
Coordinator and SponsorClub columns are dependent on the MemberName and Club columns
of the Members Table.

If the Clubs, Members, and Events tables were empty and you attempted to insert the values
in the order shown below, you would receive the following corresponding results:

Order | Table Values Result
1 Members | "John Ewing’, "’Energetics’, Violates Members_FK because "Energetics’ club
6925 does not exist in the ClubName column of the Clubs
table

Members | "John Ewing’, NULL, 6925 Violates NOT NULL on Members_ PK columns
Clubs "Energetics’, 1111, ’aerobics’ | Valid
Clubs "Windjammers’, 2222, Valid

’sailing’

5 Clubs "Energetics’, 3333, lo-impact’ | Violates Clubs_PK because "Energetics’ is already
in the ClubName column of the Clubs table (entries
must be unique in a primary key column)

6 Members | "John Ewing’, "’Energetics’, Valid
6925

7 Events | ’Energetics’, ’advanced Valid
stretching’, 1986-12-04",
’15:30:00°, "Martha Mitchell’

8 Members | 'Martha Mitchell’, Valid
"Energetics’, 1605

9 Events | ’Energetics’, ’advanced Violates check constraint which states that an
stretching’, 1986-12-04", event’s date must be later or the same as January 1,
’15:30:00’, "Martha Mitchell” | 1990

10 | Events | ’Energetics’, advanced Valid

stretching’, 1990-01-
01°,°15:30:00’,’Martha
Mitchell”

Values cannot be inserted into Members or Events without the references being satisfied. To
insert rows, either NULLs must be inserted and then the tuples updated after the referenced
rows are inserted, or the referenced rows must be inserted first. Note that a NULL cannot

Constraints, Procedures, and Rules 4-7

be inserted into the Members_FK column Club because that column also participates in
Members_ PK—and therefore was declared NOT NULL.

With the second method, you can also perform these inserts in one transaction, deferring
constraint checking to the end of the transaction. While you are inserting data, constraint
error violations are not reported because they will be resolved by the time the COMMIT
WORK statement is executed. Use a SET CONSTRAINTS statement after a BEGIN WORK

statement to defer constraint checking, as follows:

BEGIN WORK
SET REFERENTIAL CONSTRAINTS DEFERRED

Modify all tables that refer to each other.

COMMIT WORK

You can issue the SET CONSTRAINTS statement to defer several types of operation at one
time. Refer to the “SQL Statements” chapter for the syntax of the SET CONSTRAINTS
statement.

How Constraints are Enforced

Constraints are controlled and checked by ALLBASE/SQL once they are defined. Once a
constraint is placed on a column, ALLBASE/SQL performs the necessary checks each time
a value is inserted, altered, or deleted. By default, integrity constraints are enforced on a
statement level basis. That is, if an integrity constraint is not satisfied after the execution
of an INSERT, UPDATE, or DELETE statement, then the statement has no effect on the
database and an error message is generated.

You can, however, use the SET CONSTRAINTS DEFERRED statement to defer constraint
enforcement until either the end of a transaction or a SET CONSTRAINTS IMMEDIATE
statement is encountered. Deferred constraint enforcement avoids concern over the order of
inserting or updating when a foreign key and primary key exist in the same table or different
tables. The table can be modified without constraint violations being reported until either
the end of a transaction or SET CONSTRAINTS IMMEDIATE statement is encountered.
While a constraint check is deferred, you are responsible for ensuring that data placed in the
database is free of constraint errors.

In addition, you can temporarily use the SET DML ATOMICITY statement to set the DML
error checking level to row level. However, you must handle partially processed statements
yourself, as statements that get errors will not undo their partial execution.

Constraint error checking is part of general error checking but you can override the checking
level by setting constraint checking to deferred. However, when you set constraint checking
back to IMMEDIATE, the level of constraint checking returns to the current level specified by
the most recent SET DML ATOMICITY statement.

Refer to the “SQL Statements” chapter for detailed information on the SET DML
ATOMICITY and SET CONSTRAINTS statements.

4-8 Constraints, Procedures, and Rules

Using Procedures

An ALLBASE/SQL procedure consists of control flow and status statements together with
SQL statements that are stored as sections in the system catalog for later execution at the
user’s request or through the firing of a rule. You can create a procedure through ISQL or
through an application program; and you can execute the procedure through ISQL, through
an application program, or through rules that are created separately. For more information
about rules, refer to the section “Using Rules,” later in this chapter.

Procedures offer the following features:

m They reduce communication between applications and the DBEnvironment, thereby
improving performance.

m They provide additional security by controlling exactly which operations users can perform
on database objects.

m Along with rules, they enable you to store business rules in the database itself rather than
coding them in application programs.

m They let you protect application programs from changes in the database schema.

Often, procedures are built to accommodate a set of rules defined on particular tables.
Although you can use procedures without rules, rules always operate in conjunction with
procedures. When you create a rule, the referenced procedure must already exist. So you
must create procedures first, then rules.

The following sections describe the use of procedures:

Understanding Procedures

Creating Procedures

Executing Procedures

Procedures and Transaction Management
Using SQL Statements in Procedures
Queries inside Procedures

Using a Procedure Cursor in ISQL

Error Handling in Procedures

Using RAISE ERROR in Procedures

Recommended Coding Practices for Procedures

Understanding Procedures

Procedures (defined either in ISQL or through applications) can include many of the
operations available inside application programs. Within a procedure, you can use local
variables, issue most SQL statements, create looping and control structures, test error
conditions, print messages, and return data or status information to the caller. You can pass
data to and from a procedure through parameters. You create a procedure with the CREATE
PROCEDURE statement and execute it using an EXECUTE PROCEDURE statement.
When it is no longer needed, you remove a procedure from the DBEnvironment with the
DROP PROCEDURE statement. You cannot execute a procedure from within

another procedure; however, a procedure can contain a statement that fires a rule that
executes another procedure. This is called chaining of rules. Refer to “Using Rules,” below.

To create a procedure, you must have RESOURCE or DBA authority. In order to invoke a
procedure, you need EXECUTE or OWNER authority for the procedure or DBA authority.

Constraints, Procedures, and Rules 4-9

If the procedure is invoked through a rule, the rule owner needs EXECUTE or OWNER
authority for the procedure or DBA authority.

Creating Procedures

The following is a very simple example of procedure creation:

CREATE PROCEDURE ManufDB.Failurelist
(Operator CHAR(20) NOT NULL,
FailureTime DATETIME NOT NULL,
BatchStamp DATETIME NOT NULL) AS
BEGIN
INSERT INTO ManufDB.TestMonitor
VALUES (:Operator, :FailureTime,
:BatchStamp) ;
END;

This example shows the definition of a procedure named FailureList owned by user ManufDB.
This procedure enters a row into the ManufDB.TestMonitor table when a failure occurs during
testing.

Three input parameters are declared with names and data types assigned—Operator,
FailureTime, and BatchStamp. At run time, these parameters accept actual values into the
procedure from the caller. The procedure body starts with the BEGIN keyword and concludes
with the END keyword. The procedure body consists of a single INSERT statement that uses
the parameters just as you would use host variables in an embedded SQL program. The effect
of a call to the procedure is to create a new row in a table named ManufDB.TestMonitor
containing a record of the current date and time along with the name of the operator, and the
batch stamp (unique identifier) of the batch of parts that failed during testing.

Executing Procedures

You execute the procedure using an EXECUTE PROCEDURE statement. The EXECUTE
PROCEDURE statement can be issued directly in ISQL or in an application program, or
the EXECUTE PROCEDURE clause can appear inside a CREATE RULE statement. The

following shows an invocation of a procedure in an ISQL session:

isql=> EXECUTE PROCEDURE

> ManufDB.FailureList (USER, CURRENT_DATETIME,
> 21984-06-14 11:13:15.4377);

isql=>

The following shows an invocation of the same procedure within an application program:

EXECUTE PROCEDURE
:ReturnCode = ManufDB.FailureList (:0Operator,
CURRENT_DATETIME, :BatchStamp)

This example shows the use of a return status and host variables, which cannot be employed
in ISQL or with rules. For more information about using host variables and return status with
procedures, refer to the ALLBASE/SQL Advanced Application Programming Guide chapter
“Using Procedures in Application Programs.”

The next example shows an invocation of the ManufDB.FailureList procedure through a

CREATE RULE statement:

4-10 Constraints, Procedures, and Rules

isql=> CREATE RULE AFTER INSERT TO ManufDB.TestData

> WHERE PassQty < TestQty

> EXECUTE PROCEDURE

> ManufDB.FailureList(USER, CURRENT_DATETIME, BATCHSTAMP);
isql=>

In this case, the invocation of the procedure takes place when an INSERT operation is
performed on ManufDB.TestData for a batch of parts in which there were some failures.
When executing the procedure from within a rule, you can refer to the names of columns in
the table on which the rule is triggered. More information about invoking procedures from
rules appears in the section “Techniques for Using Procedures with Rules,” later in this
chapter.

Procedures and Transaction Management

A procedure that is not executed from within a rule can execute any of the following
transaction management statements:

BEGIN WORK

COMHIT WORK

ROLLBACK WORK

ROLLBACK WORK TO SAVEPOINT
SAVEPOINT

Since there are no restrictions on the use of these statements, you must ensure that
transactions begin and end in appropriate ways. One recommended practice is to code
procedures that are atomic, that is, completely contained in a transaction which the procedure
ends with either a COMMIT or a ROLLBACK as its final statement. An alternative
recommended practice is to code procedures without any transaction management statements
at all. Note that when you issue the EXECUTE PROCEDURE statement in an application,
and if a transaction is not already in progress, a transaction is begun. If a transaction is
already in progress at the time EXECUTE PROCEDURE is issued, and the procedure issues
either a COMMIT or a ROLLBACK statement to end the transaction, the entire transaction,
including the portion in the application, is affected.

In all cases, it is important to document procedures carefully. Refer to the section
“Recommended Coding Practices for Procedures” later in this chapter.

When a procedure is executed from within a rule, all the transaction management statements
are disallowed and result in an error.

Using SQL Statements in Procedures

Within a procedure, you can use most of the SQL statements that are allowed in embedded
SQL application programs, including COMMIT WORK,

ROLLBACK WORK, and ROLLBACK WORK TO SAVEPOINT. The following (including

dynamic SQL statements) are not allowed in procedures:

Constraints, Procedures, and Rules 4-11

ADVANCE

BEGIN DECLARE SECTION
BULK statements

CLOSE USING

COMMIT WORK RELEASE
CONNECT
CREATE PROCEDURE (including inside CREATE SCHEMA)

DECLARE CURSOR for EXECUTE PROCEDURE

DESCRIBE

DISCONNECT

END DECLARE SECTION
EXECUTE

EXECUTE IMMEDIATE
EXECUTE PROCEDURE
GENPLAN

INCLUDE

OPEN USING

PREPARE

RELEASE

ROLLBACK WORK RELEASE
SET CONNECTION

SET DML ATOMICITY
SET MULTITRANSACTION
SET SESSION

SET TRANSACTION
SQLEXPLAIN

START DBE

STOP DBE

In procedures that are invoked by execution of rules, the following statements result in an
error:

BEGTHN WORK

COMMTT WORK

ROLLBACK WORK

ROLLBACK WORK TO SAVEPOINT
SAVEPOINT

Another set of statements is provided for use only within procedures:

Assignment (=)

BEGIN...END
DECLARE Variable
GOTO

IF...THEN.. .ELSEIF.. .ELSE. . .ENDIF
Labeled Statements

PRINT

RETURN

WHILE...DO. . .ENDWHILE

Inside procedures, statements are terminated with a semicolon ().

You can define parameters for passing information into and out of a procedure. In addition,
procedures let you store data in local variables, which are declared inside the procedure with
the DECLARE Variable statement.

4-12 Constraints, Procedures, and Rules

Specifying Parameters

A parameter represents a value that is passed between a procedure and an invoking
application or rule. You define formal parameters with the CREATE PROCEDURE
statement.

When executing a procedure directly, you pass input parameter values in the EXECUTE
PROCEDURE statement, and output parameter values are returned when the procedure
terminates. However, when using a procedure cursor, input parameter values must be set
before opening the cursor, and output parameter values are returned when the CLOSE
statement executes.

Within the body of the procedure, a parameter name is prefixed with a colon (:).
You can specify up to 1023

parameters of any SQL data type except the LONG data types. Default values and nullability
may be defined just as in a CREATE TABLE statement. If a language is specified for a
parameter defined as a CHAR or VARCHAR type, it must be either the language of the
DBEnvironment or else NATIVE-3000. The following shows a procedure with a single
parameter:

CREATE PROCEDURE Process10 (PartNumber CHAR(16)) AS
BEGIN

END;

If you wish to return values to a calling application program, specify the parameter for
OUTPUT in both the CREATE PROCEDURE and EXECUTE PROCEDURE statements. If
no input value is required for a parameter, specify OUTPUT ONLY. Note that no OUTPUT
option is allowed in the EXECUTE PROCEDURE statement in ISQL nor in the EXECUTE
PROCEDURE clause of the CREATE RULE statement.

Using Local Variables in Procedures

A local variable holds a data value within a procedure. Local variable declarations must
appear at the beginning of the main body of the procedure using the DECLARE statement,
and they must specify a data type and size. Optionally, the DECLARE statement can

include nullability, language, and a default value. The

following are typical examples:

DECLARE Lastlame CHAR(40);

DECLARE SalesPrice DECTMAL(6,2) ;

DECLARE LowPrice, HighPrice DECIMAL(6,2) NOT NULL;
DECLARE LocationCode INTEGER NOT NULL;

DECLARE Quantity INTEGER DEFAULT O;

Types and sizes are the same as for column definitions, except that you cannot specify a
LONG local variable. You can declare several variables in the same DECLARE statement

by separating them with a comma provided they share the same data type, size, nullability,
native language, and default value. Within the body of the procedure, a local variable name is
prefixed with a colon (:). A local variable name cannot duplicate a parameter name.

Local variables function in procedures much as host variables function in application
programs, but the two are not interchangeable. That is,

Constraints, Procedures, and Rules 4-13

you cannot use host variables from the application within the body of the procedure definition
nor can you use local variables in the application. Since the application’s host variables
cannot be directly accessed from within the procedure, you must use local variables or
parameters in the INTO clause of any FETCH, REFETCH, or SELECT statement within
a procedure. Then, if necessary, you transfer data to a calling application through output
parameters. If multiple rows must be returned to the calling application, a SELECT
statement with no INTO clause should be used in conjunction with a procedure cursor.
Further information regarding procedure cursors is found in the “Using Procedures in
Application Programs” chapter of the ALLBASE/SQL Advanced Application Programming
Guide and in this manual under related syntax statements (ADVANCE, CLOSE, CREATE
PROCEDURE, DECLARE CURSOR, DESCRIBE, EXECUTE PROCEDURE, FETCH,
OPEN).

In contrast to host variables, local variables do not use indicator variables to handle NULL
values. A local variable itself contains the null indicator, if the variable is nullable. Declaring
a local variable to be NOT NULL makes it work like a host variable that is used without an
indicator variable.

Using Built-in Variables in Procedures

The following built-in variables can be used in error handling:

Table 4-1. Built-in Variables in Procedures

Variable Data Type Description

:sqlcode INTEGER DBERR number returned after the execution of an SQL
statement, 0 if no errors.

:sqlerrd2 INTEGER Number of rows processed in an SQL statement.

sqlwarn0 CHAR(1) Set to “W” if an SQL warning was detected.

ssqlwarnl CHAR(1) Set to “W” if a character string value was truncated when
being stored in a variable or parameter.

ssqlwarn2 CHAR(1) Set to “W” if a null value was eliminated from the argument
set of an aggregate function.

:sqlwarn6 CHAR(1) Set to “W” if the current transaction was rolled back.

sractivexact CHAR(1) indicates whether a transaction is in progress (“Y”) or not

(“N”). For information about transactions, see “Managing
Transactions” in the chapter “Using ALLBASE/SQL.”

The built-in variables are read-only, and are not available outside of procedures. The first
six of these have the same meaning that they have as fields in the SQLCA in application
programs. They are always prefixed by a double colon to differentiate them from any local
variables or parameters.

Note that in procedures, sqlerrd2 returns the number of rows processed for all host languages.
However, in application programs, sqlerrd3 is used in COBOL, Fortran, and Pascal, while
sqlerrd2 is used in C.

For procedures returning multiple row result set(s), note that the built-in variables in the
procedure do not reflect the status of any FETCH or ADVANCE statements issued by the

4-14 Constraints, Procedures, and Rules

application to manipulate a procedure cursor. After issuing such a statement, the application
should examine the appropriate fields of the SQLCA to determine status and handle any
errors.

Queries inside Procedures

Within a procedure, you can declare parameters or local variables to process either single

row or multiple row query results. Multiple row query results within a procedure must

be processed one row at a time, by means of a select cursor. A select cursor is a pointer
indicating the current row in a set of rows retrieved by a SELECT statement. Bulk processing
is not available for a select cursor within a procedure.

Multiple row query results for queries within a procedure can be processed by means of a
procedure cursor declared in a calling application. A procedure cursor is a pointer used to
indicate the current row in a set of rows retrieved by a set of SELECT statements within

a procedure. When you issue an EXECUTE PROCEDURE statement in ISQL, and the
procedure contains queries with no INTO clause, ISQL uses a procedure cursor to process
the query results. Further information regarding procedure cursors is found in the “Using
Procedures in Application Programs” chapter of the ALLBASE/SQL Advanced Application
Programming Guide and in this manual in the following section, “Using a Procedure Cursor in
ISQL,” and under related syntax statements (ADVANCE, CLOSE, CREATE PROCEDURE,
DECLARE CURSOR, DESCRIBE, EXECUTE, EXECUTE IMMEDIATE EXECUTE
PROCEDURE, FETCH, OPEN).

The following sections discuss the use of a simple select, a select cursor, and an ISQL
procedure cursor.

Using a Simple SELECT

A simple SELECT statement with an INTO clause returns only a single row. If more than
one row qualifies for the query result, only the first row is put into the parameter or local
variable specified in the INTO clause, and a warning is issued. Example:

CREATE PROCEDURE PurchDB.DiscountPart(PartHumber CHAR(16))
AS BEGIN
DECLARE SalesPrice DECTMAL(6,2) ;

SELECT SalesPrice INTO :SalesPrice
FROM PurchDB.Parts
WHERE PartNumber = :PartHumber;

IF ::sqlcode = O THEN
IF :SalesPrice > 100. THEN
:SalesPrice = :SalesPrice*.80;
INSERT INTO PurchDB.Discounts
VALUES (:PartNumber, :SalesPrice);
ENDIF;
ENDIF;
END;

The procedure inserts a row into the PurchDB.Discounts table containing the part number
and 80% of the sales price if the current price of a given part is over $100. The parameter
PartNumber supplies a value for the predicate in the SELECT statement and later supplies a
value for the VALUES clause in the INSERT statement. The local variable :SalesPrice is used
for the single-row result of the query on the Parts table, and it is also used in the expression
in the VALUES clause of the INSERT statement. The procedure tests if the built-in variable

Constraints, Procedures, and Rules 4-15

::sqlcode = 0 to ensure that the SELECT was successful before inserting data into the
PurchDB.Discounts table.

Using a Select Cursor

If your procedure must process a set of rows one at a time, you can use a cursor to loop
through the set and perform desired operations, as in the following:

CREATE PROCEDURE PurchDB.DiscountAll(Percentage DECIMAL(4,2))
AS BEGIN
DECLARE SalesPrice DECIMAL(6,2);
DECLARE C1 CURSOR FOR SELECT SalesPrice FROM PurchDB.Parts
FOR UPDATE OF SalesPrice;
OPEN C1;
WHILE ::sqlcode = O DO
FETCH C1 INTO :SalesPrice;
IF ::sqlcode = O THEN
IF :SalesPrice < 1000. THEN
UPDATE PurchDB.Parts
SET SalesPrice = :SalesPrice*:Percentage
WHERE CURRENT OF Ci;
ELSEIF :SalesPrice >= 1000. THEN
UPDATE PurchDB.Parts

SET SalesPrice = :SalesPrice*(:Percentage - .05)
WHERE CURRENT OF C1;
ENDIF;
ENDIF;
ENDWHILE;

IF ::sqlcode = 100 THEN
PRINT ’Success’;
CLOSE C1;
RETURN;

ELSE
PRINT ’Error in Fetch or Update’;
CLOSE C1;
RETURN;

ENDIF;

END;

This procedure discounts the prices of all part numbers by a specified percentage if the
current sales price is less than $1000, and it discounts prices by five percentage points for part
numbers whose current price is greater than or equal to $1000. The procedure displays a
message indicating success or failure.

The use of select cursors for multiple row query results is presented in great detail in the
ALLBASE/SQL application programming guides. Refer to the chapter “Processing with
Cursors” in the guide for the programming language you use.

Using a Procedure Cursor in ISQL

When you issue an EXECUTE PROCEDURE statement in ISQL for a procedure containing
one or more SELECT statements with no INTO clause, ISQL uses a procedure cursor to
display the query results.

4-16 Constraints, Procedures, and Rules

For example, create a procedure as follows:

CREATE PROCEDURE PurchDB.PartNo2 AS
BEGIN
SELECT *
FROM PurchDB.Parts
WHERE Partlumber LIKE ’11%7;

SELECT PartNumber, BinNumber, QtyOnHand
FROM PurchDB.Inventory
WHERE Partlumber LIKE ’11%7;
END;

When you execute the procedure, the following is displayed:

execute procedure purchdb.partno2;

________________ U
PARTNUMBER | PARTNAME | SALESPRICE

________________ e e e e e e e e e e
1123-P-01 |Central Processor | 500.00
1133-P-01 |Communication Processor | 200.00
1143-P-01 |Video Processor | 180.00
1153-P-01 |Graphics Processor | 220.00

Humber of rows selected is 4
Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], prl[int] <n>, e[nd] or n[ext] >

Entering nlext] moves you from one SELECT statement to the next. You would see the
following;:

execute procedure purchdb.partno2;

________________ SR,
PARTNUMBER | BINNUMBER | QTYONHAND
________________ Fmm e
1123-P-01 | 4003 5
1133-P-01 | 4007 | 11
1143-P-01 | 4016

1153-P-01 | 4027 5

Humber of rows selected is 4
Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], prl[int] <n>, e[nd] or n[ext] >

Entering n[ext] when the last result set is displayed produces a message like the following;:

End of procedure result sets.
Procedure return status is O.
isql=>

Note that although you can move back and forward through the current result set, you cannot
move back to redisplay a previous result set.

Constraints, Procedures, and Rules 4-17

Error Handling in Procedures Not Invoked by Rules

You must provide explicit mechanisms for error handling inside procedures. The techniques
you use for this depend on whether or not the procedure is invoked by the firing of a rule.
This section describes error handling within a procedure that is not invoked by a rule. For
information about error handling in procedures invoked by rules, see the section “Error
Handling in Procedures Invoked by Rules,” below. For information about error handling in
an application that invokes a procedure, see the section “Using Procedures in Application
Programs” in the ALLBASE/SQL Advanced Application Programming Guide.

By default, when an error occurs in an SQL statement in a procedure, the effects of the
SQL statement are undone, but the procedure continues on to the next statement. If you
want errors in SQL statements to cause an immediate error return from the procedure, use
the WHENEVER statement with the STOP option. The syntax for the WHENEVER is as
follows:

STOP
SQLERROR
CONTINUE
WHENEVER { SQLWARNING
GOTO [:] Label
NOT FOUND

GO TO [:] Label

The STOP option causes the current transaction to be rolled back, and the procedure’s
execution is terminated. If an error occurs in evaluating the condition in an IF or WHILE
statement, or in evaluating the expression in a parameter or variable assignment statement,
the execution of the procedure terminates, and control is returned to the caller with
SQLCODE set to the last error encountered inside the procedure.

Within the procedure, the entire message buffer is not available. That is, SQLEXPLAIN
cannot be used. The built-in variable ::sqlcode holds only the error code from the first
message in the message buffer (guaranteed to be the most severe error).

In procedures, as elsewhere in ALLBASE/SQL, the message buffer is cleared out only before
executing an SQL statement. That is, execution of the following do not cause the message
buffer to be reset:

m Assignment
s GOTO

n [F

m PRINT

m RETURN
s WHILE

The argument of any PRINT statement is passed back to the caller in the message buffer.
When the message buffer is reset, PRINT statements are not removed.

Runtime errors are accompanied by a

generic error message indicating, by number, which procedure statement caused the error.
All SQL statements in a procedure and all non-SQL statements except variable declarations,
ENDIF, ELSE, ENDWHILE, END, and THEN, are numbered

consecutively from the beginning of the procedure. The following is an example of a sequence
of errors returned when an EXECUTE PROCEDURE statement fails:

4-18 Constraints, Procedures, and Rules

Integer divide by zero. (DBERR 2601)

Error occurred executing procedure PURCHDB.DISCOUNT statement 2. (DBERR 2235)
Error occurred during evaluation of the condition in an IF or WHILE

statement or the expression in a parameter or variable assignment.

Procedure execution terminated. (DBERR 2238)

Using RAISE ERROR in Procedures

You can use the RAISE ERROR statement to generate an error within a procedure and make
a message available to users, as in the following example:

RAISE ERROR 7500 MESSAGE ’Error Condition?;
RETURN 1;

The RAISE ERROR statement causes the message to be stored in the message buffer, and
the RETURN statement causes an immediate return from the procedure following the error.
Following the return from a procedure, an application program can retrieve the messages
from raised errors by using the SQLEXPLAIN statement. Since SQLCODE is 0 in this case
(because the procedure executed correctly; it was an SQL statement within it that received
the error), you should execute SQLEXPLAIN in a loop that tests SQLWARNJ[0], as follows:

while (sqlwarn[0]==’W’)
EXEC SQL SQLEXPLATN :SQLMessage;
However, SQLEXPLAIN cannot be used within the procedure itself. You should document
the cause of all errors generated by the RAISE ERROR statement in a procedure so that the
procedure caller can understand the error condition.

Note The behavior of errors, including RAISE ERROR, in procedures called by
rules differs somewhat from that described here. Refer to “Using RAISE
ERROR in Procedures Invoked by Rules” for more information.

Recommended Coding Practices for Procedures

The use of procedures can have indirect consequences that the procedure writer and the
procedure caller may not anticipate. Problems are most likely to arise in the areas of
transaction management, cursor management, error handling, and DBEnvironment settings.
In order to minimize difficulty, good communication between the procedure writer and

the caller of the procedure is essential. Thus procedures should be carefully documented

as to what is expected from the calling application, and applications should be carefully
documented as to what they expect a called procedure to do and not to do.

Within a procedure, you can use ISQL comments or comment notation for the programming
language of an application that invokes a procedure. See the ISQL Reference Manual
for ALLBASE/SQL and IMAGE/SQL or the appropriate ALLBASE/SQL application

programming guide for information about comments.

The following practices are suggested to ensure that a procedure is always called under the
same conditions and with the same expectations:

m If the procedure might execute a COMMIT or ROLLBACK, the application should issue
a COMMIT or ROLLBACK before calling the procedure. Any cursors opened in the
application with the KEEP cursor option and subsequently committed should be closed and
committed before the application calls the procedure.

m Documentation of the calling application should clearly state the following:
0 Whether the procedure will be called with a transaction open.

Constraints, Procedures, and Rules 4-19

0 Whether the procedure is expected to have COMMIT or ROLLBACK statements.
0 Whether the procedure is expected to be atomic.

The following practices are suggested to ensure that a procedure will always execute as
expected:

m Procedure execution should not span transaction boundaries. Either the procedure
should be treated as an atomic transaction, that is, it should always issue a COMMIT or
ROLLBACK statement upon completion of work and before termination; or it should be
entirely contained within a transaction, that is, it should not contain any COMMIT or
ROLLBACK statements.

m [f the procedure executes any COMMIT or ROLLBACK statements, it should be treated as
a transaction. This means that the last statement accessing the DBEnvironment within the
procedure should be a COMMIT WORK or a ROLLBACK WORK statement.

m If the procedure uses any cursors, they should be closed before termination. If the
procedure opens any cursors with the KEEP option, and subsequently executes any
COMMIT statements, the cursors should be closed and committed before termination.

m A procedure should not change the application’s environment without restoring it upon
termination. The application’s environment includes settings for isolation level, constraint
checking, timeout values, and rule firing.

m Documentation of the procedure should clearly state the following:

7 Whether or not a transaction should already exist at the time of procedure execution.

7 Whether any COMMIT or ROLLBACK statements will be executed by the procedure.

7 Whether the procedure modifies any environment settings.

7 What types of errors are handled by the procedure and how they are handled.

Meanings of all possible return status values.

Meaning of any errors returned by RAISE ERROR statements.

Ooo0ooooao

Using Rules

Rules allow you to tie procedures to data manipulation statements. Rules are more flexible
than simple integrity constraints, enabling you to incorporate complex business rules into the
structure of a DBEnvironment with minimal application programming. The following sections
describe the use of rules:

Understanding Rules

Creating Rules

Techniques for Using Procedures with Rules

Error Handling in Procedures Invoked by Rules

Using RAISE ERROR in Procedures Invoked by Rules
Enabling and Disabling Rules

Special Considerations for Procedures Invoked by Rules
Differences between Rules and Integrity Constraints

4-20 Constraints, Procedures, and Rules

Understanding Rules

Rules allow you to define generalized constraints by invoking procedures whenever specified
operations are performed on a table. The rule fires, that is, invokes a procedure, each time the
specified operation (such as INSERT, UPDATE, or DELETE) is performed and the rule’s
search condition is satisfied.

Rules tie procedures to particular kinds of data manipulation statements on a table. This
permits data processing to be carried out by the DBEnvironment itself. The effect is less
application coding and more efficient use of resources. This is especially important for
networked systems.

Rules will fire under the following conditions:

m The rule’s statement types must include the statement type of the current statement.
Statement types are INSERT, DELETE, and UPDATE. (You can have more than one
statement type per rule.)

m If the rule’s statement type includes UPDATE, and if the StatementType clause includes a
list of columns in the table, and if the current statement is an update, it must be on at least
one of the listed columns of that table.

m The rule’s search condition must evaluate to TRUE for the current row of the current
statement.

A rule fires once for each row operated on by the current statement that satisfies the rule’s
search condition.

Creating Rules

A rule is defined in a CREATE RULE statement, which identifies a table, types of data
manipulation statements, a firing condition, and a procedure to be executed whenever the
condition evaluates to TRUE and the data manipulation statement is of the right type.

The following is a simple example of a rule tied to deletions from the Parts table:

CREATE RULE PurchDB.RemovePart
AFTER DELETE FROM PurchDB.Parts
WHERE SUBSTRING(PartNumber,1,4) < > ’XXXX’
EXECUTE PROCEDURE PurchDB.ListDeletes (OLD.PartNumber);

The table on which the rule is defined is PurchDB.Parts. The statement type required to
trigger the procedure is the DELETE operation. The search condition that must be satisfied
in addition to the statement type of DELETE is that the first four characters in PartNumber
must not be “XXXX.” The procedure to be executed is PurchDB.ListDeletes, shown in the
following;:

CREATE PROCEDURE PurchDB.ListDeletes (PartNumber CHAR(16) NOT NULL) AS

BEGIN

INSERT INTO PurchDB.Deletions

VALUES (:PartNumber, CURRENT_DATETIME);
END;

When a row containing a part number that does not start with XXXX is deleted from
the Parts table, its number is inserted along with the current date and time, in the
PurchDB.Deletions table.

Constraints, Procedures, and Rules 4-21

Techniques for Using Procedures with Rules

One common use of the rule-and-procedure combination is to enforce integrity within a
DBEnvironment. This can be done in different ways, depending on your needs. The following
sections contrast two approaches to integrity enforcement:

m Using Rule Chaining

m Using a Single Procedure

Using a Chained Set of Procedures and Rules

The following example uses a chained set of procedures and rules to remove all references to a
part number once it has been deleted from the database. In this case a rule fires a procedure,
which causes another delete, which causes another rule to invoke an additional procedure, and
SO on.

CREATE PROCEDURE PurchDB.RemovePart (PartNum CHAR(16) NOT NULL)
AS BEGIN
DELETE FROM PurchDB.Inventory WHERE PartNumber = :PartNum;
DELETE FROM PurchDB.SupplyPrice WHERE PartNumber = :PartNum;
END;

CREATE RULE PurchDB.RemovePart
AFTER DELETE FROM PurchDB.Parts
EXECUTE PROCEDURE PurchDB.RemovePart (OLD.PartHlumber);

CREATE PROCEDURE PurchDB.RemoveVendPart (VendPartNum CHAR(16) NOT NULL)
AS BEGIN
DELETE FROM PurchDB.0OrderItems WHERE VendPartNumber = :VendPartNum;
DELETE FROM ManufDB.SupplyBatches WHERE VendPartNumber = :VendPartlum;
END;

CREATE RULE PurchDB.RemoveVendPart
AFTER DELETE FROM PurchDB.SupplyPrice
EXECUTE PROCEDURE PurchDB.RemoveVendPart (OLD.VendPartNumber) ;

CREATE PROCEDURE ManufDB.RemoveBatchStamp (BatchStamp DATETIME NOT NULL)
AS BEGIN

DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
END;

CREATE RULE ManufDB.RemoveBatchStamp

AFTER DELETE FROM ManufDB.SupplyBatches
EXECUTE PROCEDURE ManufDB.RemoveBatchStamp (OLD.BatchStamp);

Executing the Chained Set of Procedures and Rules

Whenever a user performs a DELETE operation on PurchDB.Parts, the procedures and rules
are executed on each row of each table for the identified part number in the following order:

4-22 Constraints, Procedures, and Rules

—

—_

Delete from Parts table.

Fire rule RemovePart.

Invoke procedure RemovePart.
Delete from Inventory table.
Delete from SupplyPrice table.
Fire rule Remove VendPart.
Invoke procedure Remove VendPart.
Delete from Orderltems table.
Delete from SupplyBatches table.
Fire rule RemoveBatchStamp.
Delete from TestData table.

Using a Single Procedure with Cursors

The following example uses a single rule and one procedure to remove all references to a

part number once it has been deleted from the database. In this case, a single procedure

RemovePart determines which rows need to be deleted in the other tables once a part number
is deleted from the Parts table. Since this method only uses one rule and one procedure, it
would be effective only when a DELETE is done from the Parts table. Deletions of part
numbers from other tables would not trigger any rules at all.

The single procedure uses two cursors to scan the PurchDB.SupplyPrice and
ManufDB.SupplyBatches tables for entries that correspond to a deleted part number.
The procedure then performs deletions of qualifying rows in PurchDB.OrderItems and
ManufDB.TestData.

CREATE PROCEDURE PurchDB.RemovePart(PartNum CHAR(16) HOT NULL)

AS

Open

BEGIN

DECLARE VendPartNum CHAR(16) NOT NULL;

DECLARE BatchStamp DATETIME NOT NULL;

DECLARE SupplyCursor CURSOR FOR
SELECT VendPartNumber FROM PurchDB.SupplyPrice
WHERE PartHumber = :Partlum;

DECLARE BatchCursor CURSOR FOR
SELECT BatchStamp FROM ManufDB.SupplyBatches
WHERE VendPartNumber = :VendPartNum;

DELETE FROM PurchDB.Inventory WHERE PartNumber = :PartNum;

the first cursor:

OPEN SupplyCursor;
FETCH SupplyCursor INTO :VendPartium;

WHILE ::sqlerrd2 = 1 DO
DELETE FROM PurchDB.OrderItems WHERE VendPartHumber = :VendPartlum;

Constraints, Procedures, and Rules

4-23

Open the second cursor:

OPEN BatchCursor;
FETCH BatchCursor INTO :BatchStamp;

WHILE ::sqlerrd2 = 1 DO
DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
FETCH BatchCursor INTO :BatchStamp;

ENDWHILE;

CLOSE BatchCursor;

DELETE FROM ManufDB.SupplyBatches WHERE VendPartNumber = :VendPartHNum;
FETCH SupplyCursor INTO :VendPartium;
ENDWHILE;
CLOSE SupplyCursor;
DELETE FROM PurchDB.SupplyPrice WHERE PartNumber = :PartNum;
END;

The single rule that invokes the above procedure is as follows:

CREATE RULE PurchDB.RemovePart
AFTER DELETE FROM PurchDB.Parts
EXECUTE PROCEDURE PurchDB.RemovePart (OLD.PartHlumber);

Error Handling in Procedures Invoked by Rules

When invoked by a rule, a procedure is executed inside the execution of a data manipulation
statement. Therefore, if the procedure encounters an error, the effect of the procedure and the
effect of the data manipulation statement as a whole are undone. Statements that may fire
rules always execute with statement atomicity, regardless of the current general error checking
level set by the SET DML ATOMICITY statement.

Inside procedures invoked by rules, SQL errors have the usual effect of issuing messages,
halting execution of the current statement, rolling back a transaction, or ending a connection.
In addition, even if the error does not result in rolling back a transaction or losing a
connection, it results in the undoing of the effects of all procedures invoked in a chain by the
current statement, and it results in the undoing of the effects of all rules triggered by the
current statement. Thus the entire execution of the statement is undone.

Using RAISE ERROR in Procedures Invoked by Rules

Within a procedure which is triggered by a rule, the RAISE ERROR statement can be used to
generate an error, which causes an immediate return and undoes the statement that triggered
the rule. The text of the RAISE ERROR message can provide useful information to the user
such as the procedure name, the exact reason for the error, the location in the procedure, or
the name of the rule that invoked the procedure (if the procedure is only fired by one rule).

Suppose the following rule executes whenever a user attempts to delete a row in the Vendors

table:

CREATE RULE PurchDB.CheckVendor
AFTER DELETE FROM PurchDB.Vendors
EXECUTE PROCEDURE PurchDB.DelVendor (OLD.VendorHNumber) ;

The procedure PurchDB.DelVendor checks for the existence of the use of a vendor number
elsewhere in the database, and if it finds that the number is being used, it rolls back the delete
on the Vendors table. The procedure is coded as follows:

CREATE PROCEDURE PurchDB.DelVendor (VendorNumber INTEGER NOT NULL) AS

4-24 Constraints, Procedures, and Rules

BEGIN
DECLARE rows INTEGER NOT NULL;

SELECT COUNT(*) INTO :rows FROM PurchDB.Orders

WHERE VendorNumber = :VendorNumber;
IF :rows <> O THEN

RAISE ERROR 1 MESSAGE ’Vendor number exists in the "Orders" table.’;
ENDIF;

SELECT COUNT(*) INTO :rows FROM PurchDB.SupplyPrice
WHERE VendorNumber = :VendorNumber;
IF :rows <> O THEN

RAISE ERROR 1 MESSAGE ’Vendor number exists in "SupplyPrice" table.’;
ENDIF;
END;

PurchDB.DelVendor checks for the existence of the use of a vendor number in two tables:
PurchDB.Orders and PurchDB.SupplyPrice. If it retrieves any rows containing the vendor
number, it returns an error code and a string of text to the caller by means of the RAISE

ERROR statement.

The following shows the effect of the rule and procedure when you attempt to delete a row
from the Vendors table in ISQL:

isql=> DELETE FROM purchdb.vendors WHERE vendornumber = 9006;

Vendor number exists in the "Orders" table.

Error occurred executing procedure PURCHDB.DELVENDOR statement 3.
(DBERR 2235)

INSERT/UPDATE/DELETE statement had no effect due to execution errors.
(DBERR 2292)

Humber of rows processed is O

isql=>

The DELETE statement triggers the rule, which executes the procedure PurchDB.DelVendor.
If the vendor number that is to be deleted is not found in either of the two tables, sqlcode is
0, and no messages are displayed.

When a procedure is called through the use of a rule, the procedure exits as soon as an error
occurs. This can be either an ordinary SQL error (but not a warning), or a user-defined error
produced with the RAISE ERROR statement. After an error return, the statement that fired
the rule is undone, and the operation of all other rules fired by the statement is also undone.

In application programs, you use SQLEXPLAIN to retrieve the messages generated by RAISE
ERROR and other SQL statements.

Enabling and Disabling Rules
Rule processing takes place by default in the DBEnvironment. However, the DBA can use the

following statement to disable the operation of rules in the current session:
isql=> disable rules;
This statement, which is useful in debugging, should be employed only with great care, since

it can affect the integrity of the database, if rules are being used to control data integrity. To
restore the operation of rules in the session, use the following statement:

isql=> enable rules;

Rules are not fired retroactively when the ENABLE RULES statement is issued after the
DISABLE RULES statement has been issued.

Constraints, Procedures, and Rules 4-25

Special Considerations for Procedures Invoked by Rules

Procedures operate somewhat differently when invoked by rules than when invoked directly by
a user. The differences are most pronounced in several areas:

Transaction handling.
Effects of rule chaining.
Invalidation of sections.
Changing session attributes.
Performance considerations.

Transaction Handling in Rules

Since rules are fired by data manipulation statements that are already being executed, a
transaction is always active when a rule invokes a procedure. Therefore, BEGIN WORK and
BEGIN ARCHIVE statements will result in errors in a procedure invoked by a rule. The error
will cause the rule to fail and the user’s statement to be undone.

COMMIT WORK, COMMIT ARCHIVE, ROLLBACK WORK, ROLLBACK ARCHIVE,
SAVEPOINT, and ROLLBACK TO SAVEPOINT statements will generate errors when
encountered in procedures triggered by rules. The error causes the user’s statement and all
subsequent rule-driven statements to be undone. If you wish to include COMMIT WORK,
COMMIT ARCHIVE, ROLLBACK WORK, ROLLBACK ARCHIVE, SAVEPOINT, or
ROLLBACK TO SAVEPOINT statements in the procedure, because the procedure will be
executed by users directly as well as by rules, you should include these statements within a
condition that will only be true for non-rule invocation. To do this, add a flag parameter to
the procedure. Have users invoking the procedure pass in a fixed value (such as 0), and have
rules invoking the procedure pass in a different value (such as 1). Then the procedure can be
coded with IF statements like the following:

if :Flag = O then

commit work;
endif;

The flag check ensures that the rule will not execute statements that would cause it to

generate an error when the procedure is invoked by a rule, while user calls can commit or roll
back changes automatically.

Effects of Rule Chaining

Procedures invoked by rules can include data manipulation statements that invoke rules that
trigger the execution of other procedures. Excessive chaining of rules in this fashion uses
additional system resources. When the chain length exceeds 20, an error occurs, which causes
the user’s statement to be undone. To avoid problems, be sure to trace the dependencies of
statements within procedures invoked by rules so as to:

m avoid an endless loop of rule chaining,.
m avoid exceeding a rule depth greater than the maximum of 20.
m control and maintain the rule system with minimal complexity.

To assist in tracing, the DBA can use the SET PRINTRULES ON statement to display the
names of rules being fired.

The rule developer should also determine if multiple rules will apply to the same data
manipulation statement. An analysis of the rule type and WHERE conditions can be done
to see whether any rules overlap in statement type on a given table, and whether their

4-26 Constraints, Procedures, and Rules

conditions are mutually exclusive or not. The rules are checked for each row an INSERT,
DELETE, or UPDATE statement affects. If multiple rules can affect a single row, the order
of their execution is not guaranteed to be fixed if the section is ever revalidated. To avoid
potential problems, it is best to ensure that rules affecting the same statement have mutually
exclusive WHERE conditions or that the order of execution of the procedures they invoke is
unimportant.

Invalidation of Sections

Procedures can include data definition statements that affect the execution of procedures
and rules by invalidating sections. Use care when issuing the following statements inside
procedures:

m DROP PROCEDURE. If a rule depends on the procedure, all sections checking that rule
will be invalidated by the DROP PROCEDURE statement, and will fail to be revalidated.

m CREATE RULE and DROP RULE. Because rule enforcement is checked during the lifetime
of the rule, CREATE RULE and DROP RULE should be used with care. If a rule that is
currently among those checked for a statement is dropped within a procedure invoked by
a rule on behalf of that statement, the statement will be invalidated while it is still being
executed. In this situation, execution will halt, an error will occur, and the statement will
be undone.

m Any data definition. Within a procedure invoked by a rule, if any DDL is performed which
invalidates a statement currently being executed (either the user’s statement, or a statement
within an invoked procedure which chained another rule), an error will occur, and the user’s
statement will be undone.

Changing Session Attributes

Procedures should avoid the following statements, which change the attributes of transactions
Or sessions:

m SET CONSTRAINTS
m DISABLE RULES

m ENABLE RULES

m SET PRINTRULES

m SET USER TIMEOUT

If you include one of these statements in a procedure invoked by a rule, consider its effect
carefully. If any of these statements is executed by a procedure invoked by a rule, and it
causes the setting of the attribute to change, then the user’s statement will execute partly in
the original mode and partly in the altered mode. In the event of rule chaining, attributes
might change several times. If a statement that invokes a procedure is undone, any settings
modified by the procedure are restored to their values prior to the issuing of the statement.

The SET CONSTRAINTS statement will change the application of check constraints as of the
next statement in the procedure, and this change will affect the remainder of the set of rows
defined by the triggering statement. The SET CONSTRAINTS statement will change the
application of unique and referential constraints as of the user’s next statement—that is, the
statement following the one that invoked the procedure through a rule.

The DISABLE RULES statement will have no effect on the firing of the rules on their
respective current rows. It will only affect rows not yet checked and rules not yet fired.

Constraints, Procedures, and Rules 4-27

DISABLE RULES can be used to ensure that the rule depth of 20 is not exceeded, if the
chain of rule dependencies is understood well enough for the appropriate placement of this
statement.

SET PRINTRULES ON and SET PRINTRULES OFF affect the printing of rule names of

rules not yet fired, or of rows not yet checked.

Performance Considerations

The placement of conditions on execution of statements within the firing of a rule should be
examined carefully. Firing conditions placed in the WHERE clause can avoid the overhead
of loading and invoking the procedure, since the WHERLE condition is checked before

the procedure is invoked. Thus, it might be better to develop several rules with separate
conditions and procedures with well-defined actions rather than a single rule with no
condition and a single procedure that makes checks before deciding what steps to carry out.
To determine the best design for your needs, weigh the overhead of frequent loading and
executing of a procedure against the overhead of maintaining several procedures and rules.

Differences between Rules and Integrity Constraints

Rules are similar to integrity constraints in that when a rule is created, all existing INSERT,
UPDATE, and DELETE statements will be affected by the rule (if the statement type is
appropriate to the rule). Rules are viewed as changes to the table definition, and so all
existing sections depending on the table are invalidated when a rule is created. When these
sections are next revalidated, the rule definition is picked up and compared to the section;
appropriate rules are then included in the revalidated section for checking at statement
execution time.

The following are some of the most important ways in which rules differ from integrity
constraints:

m Rules are entirely reactive. They are not fired at CREATE RULE time against the existing
rows in the table. Moreover, after DISABLE RULES, no record is kept of rows the rule
would have fired on; so, when the ENABLE RULES statement is next issued, the rule is not
fired retroactively. Integrity constraints, on the other hand, are always checked when an
ALTER TABLE statement is issued with the ADD CONSTRAINT clause, and when SET
CONSTRAINTS IMMEDIATE is executed.

m Rules only fire on the statement types they are defined to fire on, whereas integrity
constraints will be checked on all data change operations.

m Rules do not use index structures to enforce the constraints they define; some integrity
constraints build special indexes.

m The only side effect of the integrity constraint is an error, while a rule can have many
different side effects depending on the actions of the procedure it invokes.

m In addition to providing a general way of implementing constraints, rules can be used to
define more abstract tasks such as logging the changes made to a table or enforcing stricter
security measures developed by the database designer. Rules are most useful in defining
complex relationships that cannot be modeled with existing check, unique, or referential
constraints.

4-28 Constraints, Procedures, and Rules

<

Concurrency Control through Locks and Isolation
Levels

Concurrency control is the process of regulating access to the same data by multiple
transactions operating in the same DBEnvironment. Without regulation, a database could
easily become inconsistent or corrupt. Consider what can happen if two or more concurrent
users access the same data without any concurrency control. For example, one user could
delete a row while another user is in the process of updating it. Or one user might update a
row, and a second user might make a decision based on the update, then the first user might
decide to roll back the update, at which point the second user’s decision becomes invalid. To
avoid problems of this type, it is important to regulate the kinds of access to database tables
available to concurrent users.

This chapter describes the methods employed by ALLBASE/SQL to provide concurrency
control for multiuser DBEnvironments. A section is devoted to each of the following topics:

Defining Transactions

Understanding ALLBASE/SQL Data Access

Use of Locking by Transactions

Defining Isolation Levels between Transactions
Details of Locking

What Determines Lock Types

Scope and Duration of Locks

Examples of Obtaining and Releasing Locks
Resolving Conflicts among Concurrent Transactions
Monitoring Locking with SQLMON

The techniques of concurrency control described in this chapter are normally implemented
through application programs, though you can use some of them interactively as well.

Concurrency is a complex subject. If you are a new user of relational technology or of
ALLBASE/SQL, you should read the entire chapter before attempting to use any of the
special features described here.

Concurrency Control through Locks and Isolation Levels 5-1

Defining Transactions

Concurrency control in ALLBASE/SQL operates at the level of the transaction, which
identifies an individual user’s unit of work within a multiuser DBEnvironment. As mentioned
in a previous chapter, transactions are bounded by BEGIN WORK and COMMIT WORK
statements. If you omit the BEGIN WORK statement, ALLBASE/SQL issues one
automatically, using the RR (repeatable read) isolation level. ALLBASE/SQL keeps track

of which transactions are accessing which pages of data at a particular moment in time.
Transactions have unique ID numbers which are listed in the SYSTEM. TRANSACTION
pseudotable in the system catalog.

Transactions can be seen as taking place over time, as in Figure 5-1.

Transaction 1

Transaction 2

Transaction 3

00:00 00:03 00:05 00:07 00:09 00:11

LG200199_030

Figure 5-1. Transactions over Time

In this example, transaction 2 begins before transaction 1 ends; therefore, transaction 1
and transaction 2 are concurrent transactions. Transaction 3 begins after transaction 1 has
committed; therefore, transaction 1 and transaction 3 are not concurrent, since they do not
occupy the same time.

Concurrent transactions that need to access the same data pages may be in contention for a
particular table, page, or row at a particular moment. Suppose transaction 1 needs to access
an entire table as part of a reporting application. If transaction 2 needs to update parts of
that table, it may need to wait until transaction 1 is complete before the update can proceed.

5-2 Concurrency Control through Locks and Isolation Levels

Understanding ALLBASE/SQL Data Access

Concurrent access to data by multiple users is facilitated by the use of a shared data buffer for
all users of an ALLBASE/SQL DBEnvironment. Understanding how this buffer is used can
clarify many concurrency issues.

A DBEnvironment running in multiuser mode is accessed by multiple processes, as shown in
Figure 5-2.

User 1's
Process

User 2's
Process

Data Buffer (One per DBE)

ALLBASE/SQL: Index | Index | Index ALLBASE/SQL
Process Page | Page | Page Process
Index | Data | Data

Pages | Page | Page | Page
of
Data Index | Data
Page | Page
Rows Data Data Rows
of Page Page of
Data Data
12K Tuple Buffer Shared Memory 12K Tuple Buffer

LG200199_032

Figure 5-2. Multiuser DBEnvironment

A single data buffer services the needs of all users of the DBEnvironment. In addition, each
interactive user or application program has its own 12K tuple buffer associated with it. The
data buffer holds 4096-byte pages from the DBEFiles in which tables and indexes are stored.
All pages of data requested from tables in the DBEnvironment and all index pages required
for access to the data are read first into this shared data buffer. In the case of queries,
qualifying rows (tuples) are read from the data buffer into the tuple buffer, and then they are
transferred to the screen (in the case of ISQL) or to host variables or arrays (in the case of an
application program). All changes to existing data and index pages are placed in the data
buffer before being written to disk.

The use of the data buffer makes access to data efficient, because pages of data are only read
into the buffer when necessary. These data pages stay in the buffer until they are swapped out

Concurrency Control through Locks and Isolation Levels 5-3

when buffer space is needed for some other page. The use of the buffer also promotes quick
access to the same pages of data by different transactions, because a page may not have to be
read in from disk if it is already in the buffer.

When you issue a query, you request a specific set of rows and columns from different tables
in a database. The content of this set of rows and columns is the query result. For every
query, ALLBASE/SQL maintains a cursor, which is a pointer to a row in the query result. A
query result may be much larger than the size of available memory, so result rows are read
into your application’s tuple buffer in blocks of up to 12K at a time. As your application
advances through a query result, the cursor position advances. When the application has read
the last row in the tuple buffer, a new set of rows is read in until the end of the query result is
reached.

Note In procedures or embedded SQL applications, you can explicitly declare and
open a cursor for each query result. In ISQL, you do not explicitly open
cursors; ALLBASE/SQL maintains the pointer position for you.

For unsorted queries, the tuple buffer is filled with rows of data taken from pages found in the
data buffer. Of course, the tuples in the query result are a subset of the content of each data
page. In other words, the data buffer contains everything on each data page, but the tuple
buffer contains only the columns and rows you have requested. As the cursor moves through
the tuple buffer containing the query result, additional rows must be fetched from the data
buffer. When data has been fetched from all qualifying pages in the data buffer, additional
data pages must be read into the data buffer from disk, and then additional qualifying rows
and columns must be read into the tuple buffer. In the case of sorting, the sort output is
stored in a temporary table in the SYSTEM DBEFileSet before being read into the data
buffer.

Use of Locking by Transactions

Transactions obtain locks to avoid the possible interference of one transaction with another.
This is important when you use PUBLIC or PUBLICROW tables, which can be accessed by
many concurrent users of a DBEnvironment. Within the framework of a transaction, the
PUBLIC tables that contain the required data for the operation you are performing are locked
to regulate access to the data they contain. In addition, individual pages in PUBLIC tables
are locked as needed when they are read into the data buffer. In the case of PUBLICROW
tables, individual rows are locked as needed before they are read into the tuple buffer. In
some cases, the use of a table lock may make the use of individual locks on pages unnecessary.
Locks are released on both tables and pages when the transaction that acquired them issues

a COMMIT WORK or ROLLBACK WORK statement, or when other conditions are met

(described further in the section on “Defining Isolation Levels”).

5-4 Concurrency Control through Locks and Isolation Levels

Basics of Locking
The following are the two basic requirements of locking:

m Read operations on data pages must acquire share locks before data can be retrieved.
m Write operations on data pages must obtain exclusive locks before data is modified.

Lock types are described in more detail in a later section.

When a lock is obtained, the transaction ID (a number), the name of the object locked, and
the type of lock acquired are stored in a lock list in shared memory. When a user needs

a particular lock, a lock request is issued, and ALLBASE/SQL checks to see whether the
object is already locked by some other transaction. If the lock request cannot be granted, the
transaction waits until the other transaction releases the lock. If the request can be granted,
the new lock is placed in the lock list. (Compatibility of locks is described in a later section.)

When one transaction is waiting for another transaction to release a lock, and the second
transaction is also waiting for the first to release a lock, the transactions are said to be in
deadlock. If a deadlock occurs, ALLBASE/SQL rolls back one transaction, and this allows the
others to obtain the needed lock and continue.

When a transaction ends through a COMMIT WORK or ROLLBACK WORK statement,
locks are released; that is, the entries are deleted from the lock list. If the transaction has
obtained several different locks, they are all released in a group.

When a transaction ends through an abnormal termination, locks are released by the monitor.

Locks and Queries

During query processing on PUBLIC tables, the cursor is positioned on a row in the query
result; by extension, the cursor also points to the underlying data buffer page from which the
specific row was derived. Typically, the underlying page to which a cursor points is locked to
restrict access to it by other transactions. When a page in the data buffer is locked, another
transaction may only access that page in a compatible lock mode. For example, if someone
else is updating a row of user data on page A of a PUBLIC table, your transaction must wait
until the update is committed before reading rows from page A into your tuple buffer.

During query processing on PUBLICROW tables, the underlying row to which a cursor points
is locked, and the page on which the row resides is also locked (with an intent lock, explained
in “Types of Locks”, below). Other users can access the same row only in a compatible lock
mode, but they can access different rows on the same page in different lock modes. For
example, if someone else is updating a row of user data on page A, your transaction must wait
until the update is committed before it can read the same row. However, you can read other
rows from page A into your tuple buffer and update them.

Locks on System Catalog Pages

In addition to locks on user data, ALLBASE/SQL locks pages of data in the system catalog
for the duration of the transaction. Data pages in one or more system tables are locked when
any SQL statement is executed.

See the appendix, “Locks Held on the System Catalog By SQL Statements.” in the
ALLBASE/SQL Database Administration Guide for more information.

Concurrency Control through Locks and Isolation Levels 5-5

Locks on Index Pages

B-tree indexes on PRIVATE and PUBLICREAD user tables are never locked, because
concurrency control on the index is already achieved via the table level locks that are always
acquired on these tables. B-tree indexes on PUBLIC or PUBLICROW user tables are not
locked for read operations, but they are locked with intention exclusive (IX) page locks for
write operations. B-tree indexes on PUBLIC and PUBLICROW tables are locked with
exclusive (X) page locks only in the following cases:

m When an index row is inserted and the page must be compressed before the insertion.
Compression is an attempt to recover non-contiguous space that has become available on an
index page.

m When an insert is made and the page must be split into two new pages. Splitting occurs
when compression does not result in enough space for inserting the new index row. In
such a case, the data from the original page is moved to the two new pages, each of which
receives half of the key values from the original page. The new index key is inserted on one
of the new pages, and the original page is freed, that is, made available for reuse. A total of
three X locks are obtained during this operation: one on the original page, and two on the
newly allocated index pages.

m When a delete is made, and an index page becomes empty because the last key on the page
was deleted. In this case, ALLBASE/SQL frees the page, which requires an X page lock.

Costs of Locking

The price paid for ensuring the integrity of the database through locking is a reduction in
throughput because of lock waits and deadlock and the CPU time used to obtain locks. This
price can be high. For example, one way to guarantee that two transactions do not interfere
with one another is to allow only one transaction access to a database table at a time. This
serialization of transactions avoids deadlocks, but it causes such a dramatic reduction of
throughput that it is obviously not desirable in most situations.

Another cost of locking is the use of shared memory resources. Each lock requires the use of
some runtime control block space. The more locks used by a transaction, the more memory
required for control blocks. This is especially important for PUBLICROW tables, which
usually require more locks than PUBLIC tables.

To minimize the costs of locking on PUBLIC and PUBLICROW tables, you should design
each transaction in such a way as to lock only as much data as necessary to keep out other
transactions that might conflict with your transaction’s work. The following sections explain
the features of ALLBASE/SQL that you can use to accomplish this.

5-6 Concurrency Control through Locks and Isolation Levels

Defining Isolation Levels between Transactions

Isolation level is the degree to which a transaction is separated from all other concurrent
transactions. Four levels are possible, shown here in order from most to least restrictive:

m Repeatable read (RR)—the default
m Cursor stability (CS)

m Read committed (RC)

m Read uncommitted (RU)

In general, you should choose the least restrictive possible isolation level for your needs in
order to achieve the most concurrency. You select an isolation level in the BEGIN WORK
statement, as in the following example:

isql=> BEGIN WORK CS;

An isolation level can also be specified with either the SET TRANSACTION or SET
SESSION statement.

Repeatable Read (RR)

By default, transactions have the Repeatable Read (RR) isolation level, which means that
within the transaction, you can access the same data as often as you wish with the certainty
that it has not been modified by other transactions. In other words, other transactions are
not allowed to modify any data pages that have been read by your transaction until you issue
a COMMIT WORK or ROLLBACK WORK statement. This is the most restrictive level,

allowing the least concurrency.

All the examples of transactions shown so far use the RR (repeatable read) isolation level.
At the RR level, all locks are held until the transaction ends with a COMMIT WORK or
ROLLBACK WORK statement. This option causes each data row or page read to be locked
with a share lock, which forces any other user trying to update the data on the same row
or page to wait until the current transaction completes. However, other transactions may
read the data on the same row or page. For PUBLICROW tables, if you update a row
during a transaction, the row receives an exclusive lock, which forces other transactions to
wait for both reading or writing that row until your transaction ends. For PUBLIC tables,
if you update a data page during a transaction, the page receives an exclusive lock, which
forces other transactions to wait for both reading or writing until your transaction ends.
Repeatable Read should be used if you must read the same data more than once in the
current transaction with assurance of seeing the same data on successive reads.

Cursor Stability (CS)

The Cursor Stability (CS) isolation level guarantees the stability of the data your cursor
points to. However, this isolation level permits other transactions to modify rows of data you
have already read, provided you have not updated them and provided they are not still in

the tuple buffer. CS also permits other transactions to update rows in the active set which
your transaction has not yet read into the tuple buffer. With cursor stability, if you move your
cursor and then try to reread data you read earlier in the transaction, that data may have
been modified by another transaction. At the CS level, share locks on data (whether at the
row or page level) are released as soon as the associated rows are no longer in the tuple buffer.
Exclusive locks are held until the transaction ends with a COMMIT WORK or ROLLBACK
WORK statement. The following describes what using CS means:

Concurrency Control through Locks and Isolation Levels 5-7

m No other transactions can modify the row on which the transaction has a cursor positioned.

m A shared lock is kept on the row or page that the cursor is currently pointing to. When the
cursor is advanced to the next page of data and nothing has been updated on the previous
page, the lock on that previous page is released.

m [f an update is done on a data page, the exclusive lock on that page is retained until the

transaction ends with a COMMIT WORK or ROLLBACK WORK statement.

Use the CS isolation level for transactions in which you need to scan through large portions of
a database to locate rows that need to be updated immediately. CS lets you do this without
preventing other transactions from updating data pages that you have already passed by
without updating. CS guarantees that a row of data will not be changed between the time
you issue the FETCH statement and the time you issue an UPDATE WHERE CURRENT in
the same transaction.

Note When you use CS for a query that involves a sort operation, such as an
ORDER BY, DISTINCT, GROUP BY, or UNION, or when a sort/merge join
is used to join tables for the query, the sort may use a temporary table for
the query result. In such cases, your cursor actually points to rows in this
temporary table, not to rows in the tuple buffer. Therefore, when sorting
is involved, the locks held on data pages or rows are released before you
manipulate the cursor. In other words, no locks are held at the cursor position
for sorted scans at the CS isolation level. If it is important to retain locks in
this situation, use the RR isolation level.

If you are updating a row based on the information in a sorted query result,
use a simple SELECT statement to verify the continued existence of the data
before doing the update operation. In this case, it is good practice to include
the TID as part of the original SELECT, and then to use the TID in the
WHERE clause of the SELECT that verifies the data.

Read Committed (RC)

With Read Committed, you are sure of reading consistent data with a high degree of
concurrency. However, you are not guaranteed the ability to reread the data your cursor
points to, because other transactions can modify that data as soon as it has been read into
your application’s tuple buffer. Also, you cannot read rows or pages from the data buffer

that have been modified by another transaction unless that other transaction has issued a
COMMIT WORK statement. At the RC level, share locks on data are released as soon as the
data has been read into your buffer. Exclusive locks are held until the transaction ends with a

COMMIT WORK or ROLLBACK WORK statement.
The following describes what using RC means:

m You can retrieve only rows that have been committed by some transaction or modified by
your own transaction.

m Other transactions can write on the page on which the transaction has a cursor positioned,
because locks are released as soon as data is read.

m [f an update is done on a page, the lock is retained until the transaction ends with a

COMMIT WORK or ROLLBACK WORK statement.

5-8 Concurrency Control through Locks and Isolation Levels

Use the RC isolation level for improved concurrency, especially in transactions which include a
long duration of time between fetches. When you must update following a FETCH statement
using the RC isolation level, use the REFETCH statement first, which obtains and holds
locks on the current page, thus letting you verify the continued existence of the data you are
interested in.

Read Uncommitted (RU)

The Read Uncommitted (RU) isolation level lets you read anything that is in the data buffer,
whether or not it has been committed, in addition to pages read in from disk. For example,
someone else’s transaction might perform an update on a page, which you can then read;
then the other transaction issues a ROLLBACK WORK statement which cancels the update.
Your transaction has thus seen transitory data which was not committed to the database.

At the RU level, no share locks are obtained on user data. Exclusive locks obtained during
updates are held until the transaction ends with a COMMIT WORK or ROLLBACK WORK

statement.
The following describes what using RU means:

m The transaction does not obtain any locks on user data when reading, and therefore may
read uncommitted data.

m The transaction does not have to wait on locks on user data, so deadlocks are considerably
reduced. However, transactions may still have to wait for system catalog locks to be
released.

m If an update is done on a page, the transaction obtains an exclusive lock, which is retained

until the transaction ends with a COMMIT WORK or ROLLBACK WORK statement.

RU is ideal for reporting and similar applications where the reading of uncommitted data is
not of major importance. If you must update following a FETCH statement using the RU
isolation level, use the REFETCH statement first, which obtains and holds the appropriate
locks, letting you verify that you are not updating a row based on uncommitted data.

Details of Locking

To promote the greatest concurrency, ALLBASE/SQL supports a variety of granularities and
lock types. Granularity is the size of the object locked. Lock type is the severity of locking
provided. Compatibility refers to the ability of different transactions to hold locks at the same
time on the same object.

Lock Granularities

The use of different granularities of locking promotes a high level of concurrency. There are
three levels of granularity in ALLBASE/SQL:

m Row (tuple) level
m Page level
m Table level

Although some system operations use row level locking internally, system operations acquire
page locks by default. User-created tables can be locked at the row, page, or table level,
depending on the table type. B-tree and constraint indexes are locked with weak locks at the

Concurrency Control through Locks and Isolation Levels 5-9

page level for update operations and are not locked at all on reads. Table, page, and row level
locking are illustrated in Figure 5-3 and Figure 5-4. Figure 5-3 portrays a query that accesses
two pages of a table.

\9_ \ l¢— Query

Y Query
/

£ 0

Table Table

Page Level Locking Table Level Locking

LG200199_032

Figure 5-3. Page Versus Table Level Locking

With page level locking, pages containing data scanned for the query are locked. All other
pages can be locked by other transactions. With table level locking, the same query locks the
table as a whole, whether or not the individual pages are being used for a query. This means
that when a table has an exclusive lock on it, no other transaction can obtain any locks on the
table or any data page in it until the transaction holding the page lock terminates.

Figure 5-4 also portrays a query that accesses two pages of a table.

Locked K g

Locked Jw.| g‘\

Query > Query

Locked -
Locked g
Table Table
Row Level Locking Page Level Locking

LG200199_035

Figure 5-4. Row Versus Page Level Locking

With row level locking, only the rows containing data scanned for the query are locked. All
other rows can be locked by other transactions. With page level locking, the same query locks
an entire page, even if the page contains row(s) not used by the query.

5-10 Concurrency Control through Locks and Isolation Levels

Table size can affect concurrency at the page level. For example, if a small table occupies only
one page, then the effect of a page level lock is the same as locking the entire table. In the
case of small tables where frequent access is needed by multiple transactions, row level locking
can provide the best concurrency. After issuing an UPDATE STATISTICS statement on a
table, you can query the SYSTEM.TABLE view to determine how many pages it occupies.

Table level locking serializes access to the table, that is, forces transactions with incompatible
locks to operate on a table one at a time. This reduces deadlocks by keeping other users from
accessing the table until the transaction is committed or otherwise terminated. A small table
limits concurrency by its very nature since the probability is high that many users will want
to access the limited number of pages or rows. By locking a small table at the table level, you
can improve performance by reducing the work of retrying deadlocked transactions. On larger
tables, the price of table level locking is higher, since the naturally higher concurrency of the
large table is sacrificed to serialization.

Page level locking improves concurrency by allowing multiple users to access different pages in
the same table concurrently. Row level locking maximizes concurrency by allowing multiple
users to access different rows in the same table at the same time, even on the same page.

Because ALLBASE/SQL uses a buffer system in accessing data from database files, keep in
mind that the system can actually acquire several page or row locks, one at a time, before the
data is exposed to the user. In effect, the user’s transaction obtains and releases locks on sets
of pages or rows at a time as it moves through a query result. This is because data from many
pages and rows can be required to fill the 12K tuple buffer.

Types of Locks

Locks in ALLBASE/SQL can be classified into the following five types, listed from the lowest
to the highest level of severity:

m Intention Share (IS): Indicates an intention to read data at a lower level of granularity.
An IS lock on a PUBLIC table indicates an intention to read a page. An IS lock on a
PUBLICROW table together with an IS lock on a page indicates an intention to read a row
on that page. When a need to read data at a lower level is established, ALLBASE/SQL
internally requests an IS lock at the higher level. For example, after an IS table lock has
been granted on a PUBLIC table, requests are made for S locks on particular pages. In the
case of a PUBLICROW table, after IS locks have been granted on both table and page,
requests are made for S locks on particular rows.

m Intention Exclusive (IX): Indicates an intention to update or modify data at a lower level
of granularity. An IX lock on a PUBLIC table indicates an intention to modify data on a
page. An IX lock on a PUBLICROW table together with an IX lock on a page indicates
an intention to modify a row on that page. When a need to write data at a lower level is
established, ALLBASE/SQL internally requests an IX lock at the higher level. For example,
after an IX table lock has been granted on a PUBLIC table, requests are made for X locks
on particular pages. In the case of a PUBLICROW table, after IX locks have been granted
on both table and page, requests are made for X locks on particular rows.

m Share (S): Permits reading by other transactions.

m Share and Intention Exclusive (SIX): Indicates a share lock at the current level and an
intention to update or modify data at a lower level of granularity. SIX locks are placed
on both tables, pages, and rows. When the need to write data at the page or row level is
established, and there is also a need to be able to read every page in the table without its

Concurrency Control through Locks and Isolation Levels 5-11

being modified by any other transaction, then ALLBASE/SQL internally requests a SIX
lock on the table. After an SIX lock has been granted on a PUBLIC table, no additional
locks are acquired when a page is read, but an X page lock is acquired when a page is
written. After an SIX lock has been granted on a PUBLICROW table, no additional locks
are acquired when a row is read, but an IX page lock and an X row lock are acquired when
a row is written.

m Exclusive (X): Prevents any access by other users. An exclusive lock is required whenever
data is inserted, deleted, or updated. Because no other user can read this data before the
transaction completes, the integrity of the database is not endangered if the changes have to
be rolled back, either at the user’s request or on recovery after a system failure.

Some of these locks are intention locks. Intention locks are obtained at a higher level of
granularity whenever a lock is obtained at a lower level. For example, when you obtain a
share lock (S) on a page, the table is normally locked with an intention share lock (IS). This is
done so that other transactions can quickly tell that a table is being read by someone without
the need to determine which specific pages are being read. Suppose another transaction
wishes to lock the table in exclusive mode. The IS lock on the table would prevent the other
transaction from locking the table in exclusive mode. Without the use of higher granularity
locks, ALLBASE/SQL would have to search all page or row locks to determine whether the
exclusive lock request could be granted.

Figure 5-5 shows the use of an intention lock at the table level and share locks on the page
level. The example assumes that an index is being used for data access.

Page

Lock:

S |wd

T~ Quey SELECT
P FROM PurchDB.Parts
L:glz // WHERE SalesPrice > 1000.;
S
Table Lock: IS
LG200199_029

Figure 5-5. Locks at Different Granularities

5-12 Concurrency Control through Locks and Isolation Levels

Lock Compatibility

Table Table 5-1 shows the compatibility of different lock types. A Y (yes) at the intersection
of a row and column in the table indicates that two locks are compatible at the same level of
granularity; a blank space indicates that they are not compatible.

Table 5-1. Lock Compatibility Matrix

IS IX S SIX X
IS Y Y Y Y
IX Y Y
S Y Y
SIX Y
X

When two lock requests are compatible, both transactions are allowed to access the table,
page, or row concurrently, and the lock on this data object is promoted to or left at the lock
mode of higher severity. For example, if transaction 2 wishes to update a page that is already
being read by transaction 1, transaction 2 requests an IX lock on the table and an X lock on
the page. Transaction 1 has an IS lock on the table, which is compatible with the requested
IX, so the lock on the table is promoted to IX. Then, transaction 2 obtains the X lock on the
page it needs to update only if transaction 1 is not already reading that same page. Note that
S and X locks on the same page are not compatible.

When locks are not compatible, the second access request must wait until the lock acquired by
the first access request is released.

Weak Locks

Intention exclusive locks are called weak locks when there is no other lock at a finer level of
granularity on the object being locked. This is the case for index pages, which are locked IX
when concurrent transactions are updating different rows on the same page. Weak locks, also
known as sublocks or concurrent locks, are used to prevent the deletion of an index page by
another concurrent transaction. ALLBASE/SQL uses strong locks (exclusive locks) on index
pages only for splitting, deleting, or compressing index pages.

Concurrency Control through Locks and Isolation Levels 5-13

What Determines Lock Types
ALLBASE/SQL locks one or more of the following three objects:

m Tables. Rows or pages of tables or entire tables are locked when you execute SQL
statements referencing them.

m PCRs. Pages of PCRs (indexes that support referential constraints) are locked when
ALLBASE/SQL updates a key value.

m Indexes. Pages of indexes are locked when ALLBASE/SQL updates an index.

m System tables. Rows or pages in one or more system tables are locked when you execute
any SQL statement. System tables are always locked at the RR level regardless of the
transaction isolation level, when they are accessed for execution of an SQL statement.
Refer to the appendix “Locks Held on the System Catalog by SQL Statements” in the
ALLBASE/SQL Database Administration Guide for complete information.

As this summary indicates, locks on user data and indexes are obtained at the row level, page
level, or at the table level. Although some locking of system data is done at the row level,
system catalog indexes are always locked at the page level.

The locks that are applied to pages and tables are determined by a combination of the
following factors:

Type of SQL statement.

Locking structure implicit at CREATE TABLE time.
Use of the LOCK TABLE statement.

Optimizer’s choice of a scan type.

Choice of isolation level.

Updatability of cursors or views used to access data.
Use of sorting.

Type of SQL Statement

Specific SQL statements imply particular kinds of data access. Statements such as SELECT
and FETCH, which merely read data, request share locks. INSERT, DELETE, and UPDATE,
all of which modify tables, request exclusive locks. In addition, the cursor manipulation
statements let you specify an intention to update certain rows of data. When you declare a
cursor in a program for updating certain columns, and you then open the cursor, share update
(SIX) locks may be obtained.

Data definition statements (CREATE and DROP, ADD and REMOVE) also request exclusive
locks, both for the objects being defined, and for the system catalog pages containing
descriptions of the objects. During data definition, locking of the system catalog can be
extensive. Refer to the appendix “Locks Held on the System Catalog by SQL Statements”

in the ALLBASE/SQL Database Administration Guide for a complete list of statements and
their effects on the system catalog.

When data manipulation or data definition statements update a table that has a B-tree or
constraint index defined on it, locks may also be placed on those index pages.

5-14 Concurrency Control through Locks and Isolation Levels

Locking Structure Implicit at CREATE TABLE Time

Table Table 5-2 shows the general locking structure used for a table depending on the type of
locking assigned when the table is created. For clarity, the table shows only the locks obtained
for index scans. (Scan type is described in a later section.)

Table 5-2. Locking Behavior Determined by CREATE TABLE Statement

Table Type Read Locks Write Locks
PRIVATE (default) Table Exclusive (X) Table Exclusive (X)
PUBLICREAD Table Share (S) Table Exclusive (X)
PUBLIC Table Intent Share (IS) Table Intent Exclusive (IX)
Page Share (S) Page Exclusive (X)

PUBLICROW Table Intent Share (IS) Table Intent Exclusive (IX)
Page Intent Share (IS) Page Intent Exclusive (IX)
Row Share (S) Row Exclusive (X)

PUBLICROW and PUBLIC tables allow concurrent users to access the table for both reads
and writes but they increase the chances of deadlock, because concurrent transactions can be
waiting for each other to release locks. PUBLICROW tables obtain locks at the row level,
which affords more concurrency than with PUBLIC tables, at the possible cost of obtaining
more locks. PUBLICREAD tables allow only one transaction to write to a table, or they allow
multiple transactions to read the table; no readers can access the table while any writing is
going on. PRIVATE tables allow only one transaction to read from or write to a table at a
time.

If the locking structure of a table does not allow a transaction to access the table, the
transaction must wait. In a typical example, if one transaction is reading a PUBLICREAD
table, and a second transaction executes a statement to update that table, the second
transaction waits until the first transaction executes a COMMIT WORK or ROLLBACK
WORK statement.

The implicit locking structure of a table can be changed by using the ALTER TABLE
statement.

Use of the LOCK TABLE Statement

The LOCK TABLE statement is another determinant of lock types. With this statement,
ALLBASE/SQL explicitly locks a table as a whole, making most page or row locking
unnecessary. You can lock tables in SHARE mode, EXCLUSIVE mode, or in SHARE
UPDATE mode. With SHARE locking (S locks), other transactions may read pages in the
table you have locked but not update them. With EXCLUSIVE locking (X locks), no other
transaction may access the locked table until your transaction commits. With share update
locking (SIX locks), other transactions may read pages that are not being updated. However,
no other transaction can obtain an exclusive lock until your transaction ends with a COMMIT

WORK or ROLLBACK WORK statement.

Concurrency Control through Locks and Isolation Levels 5-15

You can upgrade the implicit locking mode of a table to a more severe level by using the
LOCK TABLE statement. Thus, you can lock a PUBLIC, PUBLICROW, or PUBLICREAD
table in EXCLUSIVE mode. However, you cannot downgrade the implicit locking mode. If
you attempt to lock a PRIVATE table in SHARE mode, the LOCK TABLE statement has no
effect.

Use the LOCK TABLE statement to reduce the following:

m The overhead of obtaining and maintaining locks
m The potential for deadlock

Choice of a Scan Type

Another factor that determines the kind of locking in a data access transaction is the type of
scan used to process a query. There are four types of scan:

m Serial scan

m Index scan

m Hash scan

m TID scan

A sequential scan (also known as a serial scan) is one in which ALLBASE/SQL begins at
the first page of a table and reads each page, looking for rows that qualify for the query
result, until it arrives at the end of the table. An index scan looks up the page locations of
those rows that qualify for the query result in an index which you have separately created.
A hash scan accesses an individual row by calculating the row’s primary page location from
a value supplied in the query’s predicate. A TID scan obtains a specific row by obtaining its
page number from the TID (tuple ID) directly. A hash scan accesses an individual row by
calculating the row’s primary page location from a value supplied by the query’s predicate.

When a sequential scan is used to access a table, the data is being read at the table level.
Depending on the isolation level of a transaction (described in the next section), a sequential
scan either locks the whole table or else locks each page of a table in share mode (each row, in
the case of a PUBLICROW table) in turn until it finds the row it is seeking.

When an index scan is used to access a table, the data is being read at the page level if the
table is PUBLIC or at the row level if the table is PUBLICROW. An index scan has to read
index pages, but no locks are acquired; a transaction only needs to lock the data page or row
pointed to by the index. Thus, an index scan that retrieves only a few rows from a large
PUBLIC table will obtain locks on fewer data pages than a sequential scan on the same table.
(Index pages are locked with IX locks only when an index is updated.) A TID scan locks only
the page or row pointed to by the TID. A hash scan locks only the data page containing the
hash key, possibly with some overflow pages. Hashing is not possible with PUBLICROW
tables.

By default, the choice of a plan of access to the data is made by the ALLBASE/SQL
optimizer. You can override the access plan chosen by the optimizer with the SETOPT
statement.

As a rule of thumb, you can assume that the optimizer chooses a sequential scan when the
query needs to read a large proportion of the pages in a table. Similarly, the optimizer

often chooses an existing index when a small number of rows (or only a single row) is to be
retrieved, and the index was created on the columns referred to in the WHERE clause of

the query. When you use a TID function, you can assume the optimizer will choose a TID
scan. To display the access plan chosen by the optimizer, use the SQL GENPLAN statement,

5-16 Concurrency Control through Locks and Isolation Levels

specifying the query of interest. Then perform a query on the SYSTEM.PLAN view in the
system catalog to display the optimizer’s choices. For more information, refer to the section
“Using GENPLAN to Display the Access Plan” in the “SQL Queries” chapter.

Note If you are reading a large table, and if you do not expect it to be updated by
anyone while your transaction is running, you can avoid excessive overhead in
shared memory from locks obtained on each page by using the LOCK TABLE
statement in SHARE mode. This makes it unnecessary for ALLBASE/SQL to
lock individual pages or rows.

Choice of Isolation Level

One more factor that determines the kinds of locks obtained on data objects is the isolation
level of the transaction. A higher degree of isolation means less concurrency in operations
involving PUBLIC and PUBLICROW tables. You can select the isolation level used in your
transactions to maximize concurrency for the type of operation you are performing and to
minimize the chance of deadlocks.

The kind of lock obtained at different isolation levels depends on the other factors that
determine locks—scan type, kind of SQL statement, and implicit table type. A simplified
summary of locks obtained on PUBLIC tables and their indexes appears in Table 5-3. Hash
and TID scans are omitted.

Table 5-3. Locks Obtained on PUBLIC Tables with Different Isolation Levels

Isolation Level Read Operations Read for Update? Write Operations
and Scan Type (SELECT, FETCH) (UPDATE, INSERT,
DELETE)
Table Page Table Page Table Page
RR Sequential S - SIX - SIX X
RR Index IS S IX SIX IX X
CS Sequential 1S §? X SIX? X X
CS Index IS S? IX SIX? IX X
RC Sequential 1S §3 X SIX X X
RC Index IS s3 IX SIX IX X
RU Sequential None None IX SIX IX X
RU Index None None IX SIX IX X
1" Opening a cursor that was declared FOR UPDATE (RR and CS), or using REFETCH
(RC and RU).
2 Lock released at the end of the next read.
3 Lock released at the end of the current read.

A simplified summary of locks obtained on PUBLICROW tables appears in Table 5-4. Hash
and TID scans are omitted.

Concurrency Control through Locks and Isolation Levels 5-17

Table 5-4.
Locks Obtained on PUBLICROW Tables with Different Isolation Levels

Isolation Level Read Operations Read for Update? Write Operations
and Scan Type (SELECT, FETCH) (UPDATE, INSERT,
DELETE)
Table Page Row Table Page Row Table Page Row
RR Sequential S - - SIX - - SIX X X
RR Index IS IS S IX IX SIX IX IX X4
CS Sequential 1S 1S2 §? X IX? SIX? X X X
CS Index IS 152 S? IX X2 SIX? IX IX X4
RC Sequential 1S Is3 §3 X IX3 SIX X X X
RC Index IS Is3 s3 IX IX SIX IX IX X4
RU Sequential None None None IX IX SIX IX IX X
RU Index None None None IX IX SIX IX IX X4

1 Opening a cursor that was declared FOR, UPDATE (RR and CS), or using
REFETCH (RC and RU).

2 TLock released at the end of the next read.
Lock released at the end of the current read.

Next higher key’s data row is locked for an insert or delete, and the next two higher
key’s data rows are locked for an update.

Note ALLBASE/SQL locks system catalog pages at the RR isolation level when
they are accessed or modified on behalf of an SQL statement. Refer to the
appendix “Locks Held on the System Catalog by SQL Statements” in the
ALLBASE/SQL Database Administration Guide for a list of locks acquired for
each SQL statement.

Neighbor Locking

Neighbor locking is a way indexes are maintained. More than one object is locked within a
Publicrow. SQLMon is the best tool to get the kind of locks held on SQL objects.

During an index scan, “weak” (IS, IX) locks are placed on index and data pages. A tuple
(page) lock will be placed on the qualifying tuple(s). In order to insure RR (Repeatable
Read), an additional tuple (page) lock is placed on the data tuple corresponding to the higher
key next to the qualifying key. During a RR/CS/RC index scan, the qualifying data tuple are
locked in S. During inserts and deletes, the higher key’s tuple is locked in X for uniqueness
and to insure RR for readers. Of course, the updated tuple is locked in X also. During an
update where the key is updated, we end up with two higher key locks because the update
corresponds to an index delete followed by an index insert. What should you lock if there is
no higher? Lock an imaginary tuple which has the highest possible key. Note that locks are
placed at the tuple level for PUBLICROW or at the page level for PUBLIC tables.

5-18 Concurrency Control through Locks and Isolation Levels

Updatability of Cursors or Views

When a transaction uses cursors or views to access and manipulate data, the kinds of locks
obtained depend partly on whether the cursors or views are updatable according to the rules
presented under “Updatability of Queries” in the “SQL Queries” chapter. Table 5-3 shows the
locks obtained on updatable views and on updatable cursors declared FOR UPDATE; they
are listed in the “Read for Update” column in the table. In general, SIX, IX, and X locks will
not be used unless the query that underlies the view or cursor is updatable.

Use of Sorting

If a query involves a sort operation, locks are maintained only if the transaction is at the RR
isolation level. When there is an ORDER BY, a GROUP BY, UNION, or DISTINCT clause
in a query, or if the optimizer decides to use the sort/merge join method for joins or nested
queries, the data in the tables is sorted and copied to a temporary table. The user’s cursor is
really defined on this temporary table, which does not require any locking since it is private
to the user. Locks on the original tables underlying the view or cursor are retained only if the
transaction was started at the RR isolation level. Locks obtained at the CS or RC level are
released; locks are not obtained at all at the RU level.

Scope and Duration of Locks

In general, the length of a transaction affects concurrency. Long transactions hold locks
longer, which increases the chances that another transaction is waiting for a lock. Short
transactions are “in and out” quickly, which means they are less likely to interfere with other
transactions.

The isolation level determines what kinds of locks are obtained in particular circumstances,
and also how long these locks are held. Great differences can be found between isolation levels
in the duration of locks. For example, a sequential scan that obtains share locks at the RR
level holds them while the entire table is read, making updates impossible by others during
that time. At the RU level, other users can update the table throughout an entire scan by
another reader. Figure 5-6 shows the relative scope and duration of share locks obtained for a
sequential scan by the RR, CS, and RC isolation levels on PUBLIC and PUBLICROW tables.

RU is not shown, because it does not obtain any share locks on user data.

Concurrency Control through Locks and Isolation Levels 5-19

Repeatable Read
. Y
Granularity: Ve N
Table
Read
Comjncitted
Page)
4 y/\§%
4& /A Time
Start End Start End
Fetch Fetch Fetch Fetch
Begin 1) End
Transaction Y . Transaction
Cursor Stability

LG200199_028
Figure 5-6. Scope and Duration of Share Locks for Different Isolation Levels

Examples of Obtaining and Releasing Locks

The following sections present a few scenarios that show how locks are obtained and released
within concurrent transactions.

Simple Example of Concurrency Control through Locking

The following scenario illustrates in a simple way how locks are obtained and released. It is
based on the sample DBEnvironment PartsDBE, which is fully described in Appendix C. Try
this example yourself on a system that has several terminals available in physical proximity to
one another, and observe the results:

m Four users each issue the following CONNECT statement (assume they are connecting from
a different group and account than the one containing PartsDBE):

isql=> CONNECT TO ’PartsDBE.SomeGrp.Somelcct’;

m User 1 issues the following query (transaction 1):

isql=> SELECT SALESPRICE FROM PurchDB.Parts
> WHERE PartNumber = ’1123-P-017;

At this point, transaction 1 obtains a share lock on page A.

m User 2 issues the following UPDATE statement (transaction 2):

isql=> UPDATE PurchDB.Parts SET SalesPrice = 600.
> WHERE PartNumber = ’1123-P-01’;

Transaction 2, executing concurrently, needs an exclusive lock on page A. Transaction 2
waits.

m Users 3 and 4 each issue the following query, independently (transactions 3 and 4):

isql=> SELECT #* FROM PurchDB.Parts;

5-20 Concurrency Control through Locks and Isolation Levels

Transactions 3 and 4, executing concurrently, each need a share lock on page A.
Transactions 3 and 4 wait, because of an upcoming exclusive lock request.

m User 1 issues the following statement:
isql=> COMMIT WORK;

m Transaction 1 terminates, so transaction 2 obtains its exclusive lock on page A. Transactions
3 and 4 still wait.

m User 2 issues the following statement:

isql=> COMMIT WORK;
m Transaction 2 terminates, so transactions 3 and 4 both obtain share locks on page A.

This sequence is illustrated in Figure 5-7, Figure 5-8, and Figure 5-9.

Transaction 1 Transaction 2 Transaction 3 Transaction 4

-

Tuple Buffer Tuple Buffer Tuple Buffer Tuple Buffer
Share Waiting for Waiting for Waiting for
Lock Exclusive Share Share
Obtained Lock Lock Lock

LG200199_023

Figure 5-7. Lock Requests 1: Waiting for Exclusive Lock

Concurrency Control through Locks and Isolation Levels 5-21

Transaction 1 Transaction 2 Transaction 3 Transaction 4
Committed Tuple Buffer Tuple Buffer Tuple Buffer
Exclusive Waiting for Waiting for
Lock Share Share
Obtained Lock Lock
LG200199_024

Figure 5-8. Lock Requests 2: Waiting for Share Locks

Transaction 1

Transaction 2

Transaction 3

Transaction 4

Start Time 00:01 Start Time 00:05 Start Time 00:10 Start Time 00:15
Tuple o e il ——

Buffers _}]'

| |

Commit Time Commit Time | |

00:06 00:12 | |

Share Lock| Share Lock |

Obtained | Obtained |

At 00:13| At 00:18|

| |

t |

| I

{ |

S I Y O A O [

Data |
Page

Buffers T 17117 r1rT T T —'_J'_ ——]
LG200199_025

5-22 Concurrency Control through Locks and Isolation Levels

Figure 5-9. Lock Requests 3: Share Locks Granted

Sample Transactions Using Isolation Levels

The following sections show typical situations in which different isolation levels affect the
behavior of your transactions when using the sample DBEnvironment PartsDBE.
Example of Repeatable Read

The following scenario illustrates the operation of the RR isolation level:

1. Two users each issue the following CONNECT statement (assume they are connecting from
a different group and account than the one containing PartsDBE):

isql=> CONNECT TO ’PartsDBE.SomeGrp.Somelcct’;

2. User 1 then issues a query (transaction 1) as follows:

isql=> SELECT #* FROM PurchDB.Vendors;

This implicitly issues a BEGIN WORK statement at the RR isolation level, and obtains a
share lock (S) on the Vendors table, because the scan is a sequential one, reading the entire
table. User 1 sees the query result in the ISQL browser, and exits the browser, but does
not issue a COMMIT WORK statement.

3. User 2 then issues the following statement (which starts transaction 2 at the RR isolation

level):

isql=> UPDATE PurchDB.Vendors
> SET Contactllame = ’Harry Jones’
> WHERE VendorNumber = 9001;

Transaction 2 now must wait for an IX lock on the Vendors table because an IX lock is not
compatible with the S lock already held by transaction 1. Transaction 2 also must obtain
an X lock on the page containing data for vendor 9001.

4. User 1 now issues the following statement:
isql=> COMMIT WORK;

5. Transaction 2 can now complete the update, because transaction 1 no longer holds the S
lock on the Vendors table. This makes it possible for transaction 2 to obtain the IX lock on
the Vendors table and the X lock on the page containing data for 9001.

Example of Cursor Stability

The following scenario illustrates the operation of the CS isolation level:

1. Two users each issue the following CONNECT statement (assume they are connecting from
a different group and account than the one containing PartsDBE):

isql=> CONNECT TO ’PartsDBE.SomeGrp.Somelcct’;

2. User 1 then sets the CS isolation level for transaction 1 and issues the following query:

isql=> BEGIN WORK CS;
isql=> SELECT #* FROM PurchDB.Vendors;

User 1 sees the query result in the ISQL browser, but does not exit the browser.

3. User 2 then issues the following statement (this statement implicitly starts transaction 2 at
the RR isolation level):

isql=> UPDATE PurchDB.Vendors

> SET Contactllame = ’Harry Jones’

Concurrency Control through Locks and Isolation Levels 5-23

> WHERE VendorNumber = 9001;

Transaction 2 now waits for an exclusive lock on a page in the Vendors table, because
transaction 1 still has a cursor positioned on that page.

4. User 1 now exits from the ISQL browser, but does not issue a COMMIT WORK
statement.

5. Transaction 2 can now complete the update, because transaction 1’s cursor is no longer
positioned on the page that transaction 2 wishes to update.

6. Transaction 1 now attempts to issue the same query again, using a REDO statement:

isql=> REDO;
SELECT * FROM PurchDB.Vendors;

Now transaction 1 waits, because transaction 2 has obtained an exclusive lock on the table.
7. Transaction 2 issues the following statement:
isql=> COMMIT WORK;

The query result for transaction 1 now appears in the ISQL browser again, this time with
the changed row in the query result.

Example of Read Committed

The following scenario illustrates the operation of the RC isolation level in concurrent
transactions in the sample DBEnvironment PartsDBE. Most of the details are the same as for
the CS example just presented:

1. Two users each issue the following CONNECT statement (assume they are connecting from
a different group and account than the one containing PartsDBE):

isql=> CONNECT TO ’PartsDBE.SomeGrp.Someldcct’;

2. User 1 then sets the RC isolation level for transaction 1 and issues the following query:

isql=> BEGIN WORK RC;
isql=> SELECT #* FROM PurchDB.Vendors;

User 1 sees the query result in the ISQL browser, but does not exit the browser.

3. User 2 then issues the following statement (this statement implicitly starts transaction 2 at
the RR isolation level):

isql=> UPDATE PurchDB.Vendors
> SET Contactllame = ’Harry Jones’
> WHERE VendorNumber = 9001;

Transaction 2 is able to perform the update, because the locks on pages that were obtained
by transaction 1’s cursor were released as soon as the data was placed in transaction 1’s
tuple buffer. Notice the difference between RC and CS.

Example of Read Uncommitted

The following scenario illustrates the operation of the RU isolation level:

1. Two users each issue the following CONNECT statement (assume they are connecting from
a different group and account than the one containing PartsDBE):

isql=> CONNECT TO ’PartsDBE.SomeGrp.Someldcct’;

2. User 1 issues the following update:

5-24 Concurrency Control through Locks and Isolation Levels

isql=> UPDATE PurchDB.Vendors SET ContactName = ’Rogers, Joan’
> WHERE VendorNumber = 9005;

3. User 2 then sets the RU isolation level for transaction 2 and issues a query:

isql=> BEGIN WORK RU;
isql=> SELECT #* FROM PurchDB.Vendors WHERE VendorNumber = 9005;

User 2 sees the desired row in the ISQL browser, where the contact name for vendor 9005 is
Rogers, Joan, even though user 1 has not issued a COMMIT WORK statement. In other
words, user 2 has read uncommitted data.

Resolving Conflicts among Concurrent Transactions

Several kinds of conflict can occur between transactions that are contending for access to the
same data. The following three are typical cases:

m One transaction has locked an object that another transaction needs and is in a wait state.

m Two transactions each need an object the other transaction has locked in the same
DBEnvironment and are both in a wait state.

m Two transactions each need an object the other transaction has locked in another
DBEnvironment and are both in a wait state.

The first conflict results in a lock wait, which simply means that the second transaction must
wait until the first transaction releases the lock. The second conflict is known as conventional
deadlock, which is automatically resolved by ALLBASE/SQL. The third conflict is an
undetectable deadlock, which cannot be automatically resolved.

Lock Waits

When a transaction is waiting for a lock, the application pauses until the lock can be acquired.
When a transaction is in a wait state, some other transaction already has a lock on the row,
page, or table that is needed. When the transaction that is holding a lock on the requested
row, page, or table releases its lock through a COMMIT WORK or ROLLBACK WORK

statement, the waiting transaction can then acquire a new lock and proceed.

The amount of time an application waits for a lock depends on the timeout value. A timeout
value is the amount of time a user waits if a requested database resource is unavailable. If an
application times out while waiting for a lock, an error occurs and the transaction is rolled
back. See the SET USER TIMEOUT statement in the “SQL Statements” chapter of this
manual for more information.

The larger the number of lock waits, the slower the performance of the DBEnvironment as a
whole. You can observe the lock waits at any given moment in the DBEnvironment by issuing
the following query:

isql=> SELECT #* FROM SYSTEM.CALL WHERE STATUS = ’WAITING ON LOCK’;

The use of isolation levels less severe than Repeatable Read can improve concurrency by
reducing lock waits. For example, reporting applications that do not depend on perfect
consistency can use the Read Uncommitted level, while applications that scan an entire table
to update just a few rows can use Read Committed with REFETCH or Read Uncommitted
with REFETCH for the greatest concurrency. Applications that intend to update a larger
number of rows can use Cursor Stability.

Concurrency Control through Locks and Isolation Levels 5-25

You can set the amount of time a transaction will wait for a lock by using the SET USER
TIMEOUT statement, or by setting a default timeout value using the ALTDBE command in
SQLUtIl. If no timeout value is set as a default, the transaction will wait until the resource is
released. Consult your database administrator about default timeout values.

Deadlocks

The second kind of conflict is known as a deadlock between two transactions. This happens
when two transactions both need data or indexes that the other already has locked. Deadlocks
involving system catalog pages are also possible. ALLBASE/SQL detects and resolves
deadlocks when they occur. If different priority numbers are assigned to the transactions in
the BEGIN WORK statement, the transaction with the larger priority number is rolled back.
If no priorities are assigned, the more recent transaction is rolled back.

ALLBASE/SQL resolves deadlocks between two transactions at a time. Therefore, if more
than two transactions are deadlocked at one time, the transaction aborted may not be the
transaction with the largest priority number or the newest transaction among all transactions

deadlocked.

By default, the action taken to resolve a deadlock is to roll back one of the transactions.
However, it is also possible to set the deadlock action for a transaction to roll back the
current command instead of the entire transaction by using the SET SESSION or SET
TRANSACTION statements.

Table Type and Deadlock

Specific table types are likely to incur particular types of deadlock. Two transactions can
deadlock on the same PUBLIC or PUBLICROW table when the transactions attempt to
access the same page or row. The larger the table, the less likely it is that two transactions
will need to access the same page or row, so deadlock is reduced. If the table is small, there is

less chance of deadlock when it is defined PUBLICROW rather than PUBLIC.

The following scenario illustrates the development of a deadlock involving two fairly large
PUBLIC tables with indexes in the sample DBEnvironment PartsDBE. Assume that both
transactions are at the RR isolation level.

Transaction 1: UPDATE PurchDB.Parts SET Obtains 1X lock on table,
SalesPrice = 1.2*SalesPrice; X on each page.
Transaction 2: SELECT * FROM PurchDB.SupplyPrice; Obtains S lock on table.
Transaction 1: UPDATE PurchDB.SupplyPrice SET Waits for IX on table
UnitPrice = 1.2%UnitPrice;
Transaction 2: SELECT * FROM PurchDB.Parts; Deadlock.

This sequence results in a deadlock which causes ALLBASE/SQL to choose a transaction to
roll back. In the example, since no priorities are assigned, ALLBASE/SQL rolls back both
of user 2’s queries and displays an error message. User 1’s second update then completes.
Figure 5-10 shows the deadlock condition that results from the previous example.

5-26 Concurrency Control through Locks and Isolation Levels

Transactions SupplyPrice
Parts Table - Table

Obtain X
«—————— 1. | T1 | UPDATE Parts

5 | 72 | SELECTFROM__ Obtain S

Locked X) SupplyPrice Locked S
by T1 5 [71] UPDATE Wait for X by T2
: SupplyPrice >

Deadlock
. —2adloc a.| T2 | SELECT FROM

on Wait) Parts
for S

LG200199_034

Figure 5-10. Deadlock

The use of PRIVATE tables ensures there will be no deadlock on the same table, because
access to the table is serialized. However, deadlock across two or more tables is common with
PUBLICREAD and PRIVATE tables that are accessed by different transactions in different
order. The following example shows a deadlock involving a PRIVATE table:

Transaction 1: SELECT * FROM TABLEA; Obtains X lock on table.
Transaction 2: SELECT * FROM TABLEB; Obtains X lock on table.
Transaction 1: SELECT * FROM TABLEB; Waits for X on table.
Transaction 2: SELECT * FROM TABLEA; Deadlock.

A common deadlock scenario for PUBLICREAD tables is to do a SELECT, thus obtaining a
table level share lock, and then an UPDATE, which must upgrade the lock to exclusive:

Transaction 1: SELECT * FROM TABLEA; Obtains S lock on table.
Transaction 2: SELECT * FROM TABLEA; Obtains S lock on table.
Transaction 1: UPDATE TABLEA; Waits to upgrade to X on table.
Transaction 2: UPDATE TABLEA; Deadlock.

The need to upgrade frequently results in deadlock.

Table Size and Deadlock

The size of a table is another factor affecting its susceptibility to deadlock. If the table is
small, it is highly probable that several users may need the same pages, so deadlocks may be
relatively frequent when page level locking is used. The probability of collision is highest when
the table is small and its rows are also small, with many stored on one page. If the table is
large, it is relatively unlikely that multiple users will want the same pages at the same time, so
page level locking should cause relatively few deadlocks.

Concurrency Control through Locks and Isolation Levels 5-27

Avoiding Deadlock

The tradeoff between deadlock and throughput is one of the central issues in concurrency
control. It is important to minimize the number of deadlocks while permitting the greatest
possible concurrent access to database tables.

Avoiding Deadlock by Using the Same Order of Execution

To avoid deadlock among multiple tables, be sure to have all transactions access them in the
same order. This can often be done by modifying programs to use the same algorithms to
access data in the same order (for example, first update table 1, then table 2), rather than
accessing data in random order. This strategy cannot always be followed, but when it can be
used, processes will wait their turn to use a particular data object rather than deadlocking.

Avoiding Deadlock by Reading for Update

You can avoid deadlocks that stem from upgrading locks by designing transactions that use
SIX locks, which have the effect of serializing updates on a table while permitting concurrent
reads. To employ SIX locks, read the table with a cursor that includes a FOR UPDATE
clause. You can also obtain SIX locks by using the LOCK TABLE statement, specifying the
SHARE UPDATE option.

Avoiding Deadlock by Using the LOCK TABLE Statement

Locking at the table level should reduce deadlocks when all or most pages in a PUBLIC table
(rows in a PUBLICROW table) are accessed in a query. Locking the table in share update
mode obtains SIX locks on the table and its pages (or rows) when you are reading data with
the intention of updating some data.

Avoiding Deadlock on Single Tables by Using PUBLICREAD and PRIVATE

The use of PUBLICREAD and PRIVATE tables decreases the chance of encountering a
deadlock by forcing serialization of updates within a single table, that is, requiring one
update transaction to be committed before another can obtain any locks on the same table.
Obviously, this reduces concurrency during update operations. You can also use the LOCK
TABLE statement for transactions on PUBLICREAD tables that read data prior to updating
it.

Avoiding Deadlock by Using the KEEP CURSOR Option

In applications that declare cursors explicitly, you can use the KEEP CURSOR option in the
OPEN statement to release exclusive locks as quickly as possible. When you use the KEEP
CURSOR option for a cursor you explicitly open in a program, you can use the COMMIT
WORK statement to end the transaction and release locks without losing the cursor’s
position. Furthermore, you can either retain or release the locks on the page or row pointed to
by the current cursor position. When you use the KEEP CURSOR option, your transaction
holds individual exclusive locks only for a very short time. Thus, the chance of deadlock is
reduced, and throughput is improved dramatically. For details, refer to the chapter entitled
“Processing with Cursors” in the ALLBASE/SQL application programming guide for the
language of your choice.

5-28 Concurrency Control through Locks and Isolation Levels

Undetectable Deadlock

Applications that connect to multiple DBEnvironments may encounter deadlocks that cannot

be detected and resolved by ALLBASE/SQL. An example follows:

Transaction 1: SET CONNECTION ’DBE1’;

UPDATE TABLEA SET COL1 = §5; Obtains X table lock.
Transaction 2: SET CONNECTION ’DBE2’;

UPDATE TABLEB SET COL1 = 7; Obtains X table lock.
Transaction 1: SET CONNECTION ’DBE2’;

SELECT * FROM TABLEB; Waits.
Transaction 2: SET CONNECTION ’DBE1’;

SELECT * FROM TABLEA; Waits— Undetectable Deadlock.

This kind of deadlock is called undetectable because ALLBASE/SQL can only detect a
deadlock within a single DBEnvironment session. It is your responsibility to coordinate your
system’s use of distributed transactions so as to prevent undetectable deadlock. You can
enable ALLBASE/SQL to identify and roll back what probably are undetectable deadlocks
by setting appropriate user timeout values for each DBEnvironment connection. For more
information refer to “Using Multiple Connections and Transactions with Timeouts” in the

chapter “Using ALLBASE/SQL.”

A similar condition known as an undetectable wait state can also arise when you are using
multi-connect functionality. An undetectable wait occurs when you connect more than once to
the same DBEnvironment from the same application in multi-transaction mode and attempt
to obtain resources held by your other connection. For example:

CONNECT TO ’DBE1’ AS ’>CONNECT1’;a

CONNECT TO °DBE1’ AS ’CONNECT2’;
SET CONNECTION ’CONNECT1’;

UPDATE TABLEA SET COL1 = 5; Obtains X table lock.
SET CONNECTION °CONNECT2’;
UPDATE TABLEA SET COL1 = 7; Waits— Undetectable watt.

In this instance, you are waiting on your own resources. To avoid situations like this, be sure
to set user timeout values when you use multi-connect functionality.

Monitoring Locking with SQLMON

SQLMON is an online diagnostic tool that monitors the activity of your DBEnvironment. In
addition to providing information on file capacity, I/0, logging, tables, and indexes, SQLMON
displays information on the locks currently held in your DBEnvironment. SQLMON is fully
documented in the ALLBASE/SQL Performance and Monitoring Guidelines.

MONITOR Authority

Users with DBA authority or who are granted MONITOR, authority can run SQLMON.
Use the GRANT MONITOR command to allow users to run SQLMON. Use the
REVOKE MONITOR command to revoke the authority. SYSTEM.SPECAUTH and
CATALOG.SPECAUTH identify users with MONITOR authority.

Concurrency Control through Locks and Isolation Levels 5-29

Monitoring Tasks

Table 5-5 summarizes the monitoring tasks related to locking you can perform with SQLMON:

Table 5-5. SQLMON Monitoring Tasks

Task Screens Fields
Determining Size of Overview RUNTIME CB %
Runtime Control Block Used Pages
Max Pages
Monitoring DBEnvironment Lock Load LOCK REQTS
Activity LOCK WAITS
LOCK WAIT %
Comparing Number of Locks by Lock TabSummary OWNER.TABLE
Table G
TOTAL LOCKS
Comparing Number of Locks by Lock Memory TABLE
Session PAGE
ROW
TOTAL
MAXTOTAL
Identifying Locks on a Table or Lock OWNER.TABLE[/CONSTRAINT]
Referential Constraint (PCR) G
PAGE/ROW ID
LOCK QUEUE
Determining Number of Sessions that | Lock LOCK QUEUE
are Accessing a Particular Lock
Determining Number of Transactions | Overview IMPEDE XACT
that are Waiting for Locks Load
Identifying Locks for which Sessions | Lock all fields
are Waiting
Identifying Sessions that have Lock Object GWC
Obtained a Particular Lock MOD
PIN
Identifying Sessions that are Lock Object GWC
Waiting to Obtain (or to Convert) MOD
a Particular Lock NEW
PIN
Identifying Lock Activity for Lock Session all fields
a Particular Session
Identifying Locks Obtained by a Lock Impede all fields
Particular Session that are
Causing Other Sessions to Wait
Detecting Deadlocks Load DEADLOCKS
Load Session
Load Program
Resolving Deadlocks Lock all fields

Lock Object
Lock Impede

5-30 Concurrency Control through Locks and Isolation Levels

Names

This chapter contains general rules for names used in ALLBASE/SQL commands.
Syntactically, names used in ALLBASE/SQL commands fall into several categories. This
chapter includes a section for each category as follows:

Basic Names

Native Language Object Names
DBEUserIDs

Owner Names

Authorization Names
Compound Identifiers

Host Variable Names

Local Variable Names
Parameter Names
DBEnvironment and DBECon File Names
DBEFile and Log File Identifiers
TempSpace Names

Special Names

Some programming languages define reserved words that cannot be defined as names by the
user.

Basic Names

The syntax rules in this chapter apply to most SQL names. Names that are required to
conform to the following rules can be classified as basic names:

m A basic name can be up to 20 bytes in length.

m A name can be made up of any combination of letters (A to Z), decimal digits (0 to 9), $,
#, @, or underscore (_). However, the first character cannot be an underscore or a decimal
digit.

m Lowercase letters (a to z) are automatically changed to the corresponding uppercase letters
(A to 7Z) unless enclosed in double quotation marks.

m You can use any combination of characters in a basic name if you enclose it in double
quotation marks. However, note that if you define a name using double quotes, you must
use double quotes when you use the name later. Moreover, if the context in which you are
using the name would itself require the use of double quotes, you must precede each of the
quotes around the basic name with a backslash, as in the following example:

UNLOAD TO EXTERNAL EParts FROM
"SELECT # FROM \"PurchDB\".PARTS";

Names 6-1

In addition, application programs must be capable of distinguishing double-quoted names.
To prevent any possible conflict, minimize the use of double-quoted basic names.

The following are classified as basic names:

Class names Log file names
Column names Module names
Constraint names Procedure names
Cursor names Rule names
DBEFile names Table names
DBEFileSet names TempSpace names
Group names View names

Index names

Native Language Object Names

All the object names in a DBEnvironment can be represented in the DBEnvironment language
or in NATIVE-3000. The following rules for object names are the same as for ASCII:

m The length of an object name is specified as a number of bytes. Note that this would mean
a maximum of 20 characters for a table name in English and 10 in Chinese, because Chinese
is represented in a two-byte character set.

m Table and view names can be qualified by prefixing the owner name followed by a period
(") The period serves as the delimiter and is thus a part of the syntax of SQL. It cannot be
represented by a native language delimiter but must be ASCII.

DBEUserIDs

A DBEUserlID is made up of a user’s MPE XL user and account names connected with the @
symbol. An example is WOLFGANG@DBMS, where Wolfgang is the user name, and DBMS

is the account name.

When a DBEnvironment is configured, ALLBASE/SQL grants DBA authority to the
DBEUserID of the DBECreator. You cannot revoke DBA authority from the DBECreator.

6-2 Names

Owner Names
Owner names can be one of the following:

m DBEUserID
m Group name
m Class name

Authorization Names

An authorization name identifies an owner name defined in the AUTHORIZATION clause
of the CREATE SCHEMA statement. Authorization names must be unique within the
DBEnvironment. There cannot be another owner, authorization group, or grantor with the
same name on the system when the CREATE SCHEMA statement is issued. Authorization
names can be one of the following:

m DBEUserID
m Group name
m Class name

Compound ldentifiers

Basic names and DBEUserIDs are considered simple names. In some cases, simple names are
combined to form a compound identifier, which consists of an owner name combined with one
or more basic names, with periods (.) between them.

Often you can abbreviate a compound identifier by omitting one of its parts. If you do this,

a default value is automatically used in place of the missing part. For example, you can omit
the owner name (and the period) when you refer to tables you own; ALLBASE/SQL generates
the owner name by using your logon name.

A complete compound identifier, including all of its parts, is called a fully qualified name. The
following are compound identifiers:

Authorization group identifier—[Owner.]GroupName
Column identifier— [[Owner.] Table Name.]ColumnName
Constraint identifier— [OQwner.]ConstraintName

Index identifier— [OQwner.]IndexName

Module identifier—[Quner.] Module Name

Procedure identifier— [OQuwner.] Procedure Name

Rule identifier—[Owner.]RuleName

Section identifier— [Owner.]Module Name(SectionNumber)
Table identifier— [Owner.] Table Name

View identifier— [Owner.] ViewName

Different owners can have modules, tables, or views by the same name; the fully qualified
name of these objects must be unique in the DBEnvironment. Group names, however, must
be unique in the DBEnvironment.

Names 6-3

Host Variable Names

Host variables are used to pass information between an application program and
ALLBASE/SQL. They are ordinary application program variables that happen to be used in
SQL commands.

A host variable name must be preceded by a colon (:) when used in an SQL command. When
used elsewhere in an application program, no colon should be used.

Host variable names must conform to ALLBASE/SQL’s rules for basic names; however, they
are allowed to be up to 30 bytes in length. In addition, host variable names must conform to
the rules of the language in which the application program is written.

Local Variable Names

Local variables are used to hold data within a procedure. A local variable is declared in a
DECLARE statement in the procedure, and it is prefixed with a colon (:) when used in any
other statement. Local variable names must conform to ALLBASE/SQL’s rules for basic
names.

Parameter Names

Parameters are used to pass information between the database and a procedure. A parameter
is identified in the parameter list of a CREATE PROCEDURE statement, and it is prefixed
with a colon (:) when used in the body of the procedure. Parameter names must conform to

ALLBASE/SQL’s rules for basic names.

DBEnvironment and DBECon File Names

The name of a DBEnvironment and the name of its DBECon file are identical. This name
uses the form shown here and follows MPE file naming conventions:

Filenamel.Group Namel.AccountNamel]

This name must always be enclosed in single quotation marks when specified in SQL
commands. If the group and account are not given, ALLBASE/SQL assumes the name
specified is in the current group and account.

6-4 Names

DBEFile and Log File Identifiers

DBEFiles and log files have logical names which conform to the rules for ALLBASE/SQL
basic names. DBEFile and log file names are stored in the system catalog.

In addition to logical names, the physical DBEFiles and log files are referred to in the SQL
syntax by system file names. If the group and account are not given, ALLBASE/SQL assumes
the name specified is in the current group and account. System file names are always enclosed
in single quotation marks in SQL commands.

TempSpace Names

A TempSpace name is a logical name for the area where temporary files are stored by
ALLBASE/SQL. This name conforms to the rules for ALLBASE/SQL basic names.

TempSpace names are stored in the system catalog.

Special Names

ALLBASE/SQL has several names with special meaning. You should not create objects with
these names as owner:

TEMP— Modules owned by TEMP are deleted when the transaction in which they are
created terminates.

CATALOG— This name is the owner of the catalog views.
SYSTEM— This name designates the owner of the system views.

HPRDBSS and STOREDSECT— These names designate the owners of the system tables.
STOREDSECT owns the tables used to store compiled sections and views; HPRDBSS owns
all other system tables.

PUBLIC— This name refers to all users and authorization groups who have been granted

CONNECT authority.
HPODBSS— This name is reserved.

SEMIPERM— This name is the owner of all semi-permanent sections.

Names 6-5

Data Types

Every value in SQL belongs to some data type. A data type is associated with each value
retrieved from a table, each constant, and each value computed in an expression.

This chapter discusses data types. The following sections are presented:

Type Specifications
Value Comparisons
Overflow and Truncation
Underflow

Type Conversion

Null Values

Decimal Operations
Date/Time Operations
Binary Operations
Long Operations
Native Language Data

A data type defines a set of values. Reference to a previously defined data type is a
convenient way of specifying the set of values that can occur in some context. For example,

in SQL the type INTEGER is defined as the set of integers from —2,147,483,648 through
+2,147,483,647, plus the special value NULL. If you define a column with type INTEGER,
each value stored in the column must be either an integer in the range —2,147,483,648 through
+2,147,483,647, or a null value (if NOT NULL is not specified).

Type Specifications

All the data in a column must be of the same type. Specify the data type for each column
when you create a table or when you add a column to an existing table. The ALLBASE/SQL
data types and the values you can specify for data of each type are shown in Table 7-1.

Data Types 7-1

Table 7-1. ALLBASE/SQL Data Types

Group Data Type Description
Alphanumeric | CHAR[ACTER][(n)] String of fixed length n, where n is an integer from 1 to 3996
bytes. The default size is CHAR (1). The keyword
CHARACTER is a synonym for CHAR.
VARCHAR(n) String of variable length no greater than n, where n must be
an integer from 1 to 3996 bytes.
Numeric DEC[IMAL][(p[,s])] Fixed-point packed decimal number with a precision

NUMERIC[(p[,5])]

FLOAT[(p)] or
DOUBLE PRECISION

FLOAT(p) or REAL

INT[EGER]

SMALLINT

(maximum number of digits excluding sign and decimal
point) no greater than p, where p is 1 through 27, and a
scale (number of digits to the right of the decimal) of s,
where s is from 0 through p. E (exponential) and L (Pascal
longreal) notation are not allowed in the specification of a
decimal value. Operations on data of type DECIMAL are
often much more precise than operations on data of type

FLOAT.

The default for NUMERIC and DECIMAL types is
DECIMAL (27,0). DEC and NUMERIC are synonyms for
DECIMAL.

Long (64-bit) floating point number. This is an approximate
numeric value consisting of an exponent and a mantissa.
The precision, p, is a positive integer that specifies the
number of significant binary digits in the mantissa. The
value of p can be from 25 to 53. The default is 53.

The range of negative numbers that can be represented is
—1.79769313486230E+308 to —2.22507385850721E—308.
The range of positive numbers that can be represented is
2.22507385850721E—308 to 1.79769313486230E+308. E
(exponential) or L (Pascal longreal) notation can be used to
specify FLOAT values.

DOUBLE PRECISION is a synonym for FLOAT(53).

Short (32-bit) floating point number. This is an approximate
numeric value consisting of an exponent and a mantissa.
The precision, p, is a positive integer that specifies the
number of significant binary digits in the mantissa. The
value of p can be from 1 to 24. The default (using REAL) is
24. The range of negative numbers that can be represented
1s —3.402823E438 to —1.175495E—38. The range of positive
numbers that can be represented is 3.402823E438 to
1.175495E—38.

REAL is a synonym for FLOAT (24).

Integer in the range —2147483648 (—23!) to 2147483647
(231—1). INT is a synonym for INTEGER.

Integer in the range —32768 (—21%) to 32767 (21°-1).

7-2 Data Types

Table 7-1. ALLBASE/SQL Data Types (continued)

Group Data Type Description

Date/Time DATE String of form "YYYY-MM-DD’, where YYYY represents

the calendar year, MM is the month, and DD is the day of
the month. DATE is in the range from ’0000-01-01" to
’9999-12-31".

TIME String of the form "HH:MI:SS: where HH represents hours,
MI is minutes, and SS is seconds. TIME is in the range from
’00:00:00” to '23:59:59".

DATETIME String of the form "YYYY-MM-DD HH:MIL:SS.FFF’ where
YYYY represents the calendar year, MM is the month, DD
is the day, HH the hour, MI the minute, SS the second, and
FFF thousandths of a second. The range is from ’000-01-01
00:00:00.000" to "9999-12-31 23:59:59.999".

INTERVAL String of the form 'DDDDDDD HH:MI:SS.FFF’, where
DDDDDDD is a number of days, HH a number of hours, MI
a number of minutes, SS a number of seconds, and FFF a
number of thousandths of a second. The range is from ’0

00:00:00.000" to 3652436 23:59:59.999".

Binary BINARY(n) Binary string of fixed length n, where n is an integer from 1

to 3996 bytes. Each byte stores 2 hexadecimal digits.

VARBINARY(n) Binary string of variable length no greater than n, where n
is an integer from 1 to 3996 bytes. Each byte stores 2
hexadecimal digits.

LONG BINARY(n) Binary string of fixed length n, where n is an integer from 1
to (231—1) bytes.

LONG VARBINARY(n) | Binary string of variable length no greater than n, where n
is an integer from 1 to (231—1) bytes.

Your choice of data types can affect the following:

How values are used in expressions. Some operations can be performed only with data of a
certain type. For example, arithmetic operations are limited to numeric and date/time data
types, such as INTEGER, SMALLINT, FLOAT, DECIMAL, DATE, TIME, DATETIME,
or INTERVAL. Pattern matching with the LIKE predicate can be performed only with
string data, that is, data of types CHAR or VARCHAR.

The result of operations combining data of different types. When comparisons and
expressions combining data of different but compatible types are evaluated, ALLBASE/SQL
performs type conversion, as described later in this chapter.

How values are transferred programmatically. When data is transferred between
ALLBASE/SQL and an application program in host variables, ALLBASE/SQL uses the
data type equivalencies described in the ALLBASE/SQL application programming guides.

Data Types 7-3

The following table contains the storage requirements of the various data types.

Table 7-2. Data Type Storage Requirements

Type Storage Required

CHAR (n) n bytes (where n must be an integer from 1 to 3996)

VARCHAR (n) n bytes (where n must be an integer from 1 to 3996)

DECIMAL (p[,s]) 4 bytes (where p <= T7) or 8 bytes (where 7 < p <= 15) or 12 bytes

(where 15 < p <= 23) or 16 bytes (where p > 23)

FLOAT 8 bytes

REAL 4 bytes

INTEGER 4 bytes. Integer values less than -2147483648 (-2**31) or larger than

2147483647 (2**31 - 1) up to 15 digits long are stored as decimals with
a precision of 15 and a scale of 0, i.e., equivalent to DECIMAL (15,0)

SMALLINT 2 bytes

DATE 16 bytes

TIME 16 bytes

DATETIME 16 bytes

INTERVAL 16 bytes

BINARY (n) n bytes (where n must be an integer from 1 to 3996)

VARBINARY (n) n bytes (where n must be an integer from 1 to 3996)

LONG BINARY (n) n bytes

where n must be an integer from 1 to 23! - 1)

(
(
(
(

LONG VARBINARY (n) n bytes (where n must be an integer from 1 to 23! - 1)

Value Comparisons

When you compare a CHAR and a VARCHAR string, ALLBASE/SQL pads the shorter
string with ASCII blanks to the length of the longer string. The two strings are equal if the
characters in the shorter string match those in the longer string and if the excess characters in
the longer string are all blank.

If a case sensitive CHAR column is compared to a CHAR column that is not case sensitive,
both columns are treated as case sensitive. If a string constant is compared to a column that
is not case sensitive, then the string constant is treated as not case sensitive.

Before comparing DECIMAL numbers having different scales, ALLBASE/SQL extends the
shorter scale with trailing zeroes to match the larger scale.

Items of type DATE, TIME, DATETIME, and INTERVAL can be compared only with items
of the same type, or with CHAR or VARCHAR strings in the correct format. All comparisons
are chronological, which means the point which is farthest from 0000-01-01 00:00:00.000” is

7-4 Data Types

the greatest value. ALLBASE/SQL attempts to convert CHAR or VARCHAR strings to the
default date/time format before performing the comparison.

When you compare a BINARY and a VARBINARY hexadecimal string, ALLBASE/SQL
pads the shorter binary string with binary zeroes to the length of the longer string. When
comparing two BINARY or VARBINARY hexadecimal strings having different lengths,
ALLBASE/SQL compares the excess binary digits of the longer binary string with binary
zeroes. The two strings are equal if the binary digits in the shorter string match those in the
longer string and if the excess binary digits in the longer string are all binary zero.

The chapter “Search Conditions” provides more information on comparison operations.

Overflow and Truncation

Some operations can result in data overflow or truncation. Overflow results in loss of data on
the left. Truncation results in loss of data on the right.

Overflow or truncation can occur in several instances as follows:

m During arithmetic operations, for example, when multiplication results in a number larger
than the maximum value allowable in its type. Arithmetic operations are defined in the
“Expressions” chapter.

m When using aggregate functions, for example, when the sum of several numbers exceeds
the maximum allowable size of the type involved. Aggregate functions are defined in the
“Expressions” chapter.

m During type conversion, as when an INTEGER value is converted to a SMALLINT value.
Type conversion is discussed later in this chapter.

Because large integers (less than —2147483648 (—231) or larger than 2147483647 (2°1—1) up
to 15 digits long) are stored as decimals, large integer overflow actually results in a DECIMAL
OVERFLOW message.

Overflow always causes an error.
Truncation can cause a warning for the following types of data:

m Alphanumeric data—A warning occurs if a string is truncated because it is too long for its
target location. No error is given if truncation occurs on input.

m Numeric data—No error or warning occurs when zeroes are dropped from the left or when
any digit is dropped from the fractional part of DECIMAL or FLOAT values. Otherwise,
truncation of numeric values causes an error.

m LONG data—A warning occurs if LONG column data is truncated because it is too long for
its target input file. The output file location is modified to fit the LONG column length, so
no truncation error occurs on LONG column output. If the file system fills up, or the limit
of shared memory is reached, a system error occurs.

Refer to the ALLBASE/SQL Message Manual for information on handling warnings and

eITors.

Data Types 7-5

Underflow

Underflow occurs when a FLOAT or a REAL value is too close to zero to be represented by

the hardware. Underflow always causes an error.

Type Conversion

ALLBASE/SQL converts the type of a value in the following situations:

m Including values of different types in the same expression.

m Moving data from a host variable to a column or a column to a host variable of a different

type.

The valid type combinations are shown in Table 7-3.

Table 7-3. Valid Type Combinations

Source Data Type

Target Data Type

CHAR or VARCHAR

CHAR or VARCHAR

BINARY or VARBINARY
BINARY or VARBINARY

CHAR or VARCHAR

DATE, TIME DATETIME, or
INTERVAL when CHAR value involved
in date/time math or inserted into or
compared to a date/time column

BINARY or VARBINARY (from host
variable/constant into a binary column
only)

BINARY or VARBINARY
CHAR or VARCHAR (from column

into host variable, or comparing a
binary column with a char column or
value)

DECIMAL, FLOAT, REAL, INTEGER, SMALLINT

Any numeric type

DATE, TIME, DATETIME, INTERVAL

CHAR or VARCHAR (except in LIKE
predicate)

In some cases, such as the following, data conversion can lead to overflow or truncation:

m Overflow can occur during these conversions:

FLOAT to DECIMAL, INTEGER or SMALLINT
FLOAT to REAL

REAL to DECIMAL, INTEGER, or SMALLINT
DECIMAL to DECIMAL, INTEGER, or SMALLINT
INTEGER to DECIMAL or SMALLINT

7-6 Data Types

SMALLINT to DECIMAL

m Overflow of the integer part and truncation of the fractional part of a number can occur
during a FLOAT-to-DECIMAL conversion, because ALLBASE/SQL aligns the decimal
points.

m Truncation of the fractional part of a value occurs during these conversions:

DECIMAL to SMALLINT or INTEGER
DECIMAL to DECIMAL when the target scale is smaller than the source scale
FLOAT to INTEGER, SMALLINT, DECIMAL, or REAL
REAL to INTEGER, SMALLINT, or DECIMAL

m Truncation can occur during these conversions if the target is too small:
DATE, TIME, to VARCHAR or CHAR
DATETIME or
INTERVAL
CHAR to VARCHAR, BINARY or VARBINARY
VARCHAR to CHAR, BINARY or VARBINARY
VARBINARY to BINARY, CHAR or VARCHAR
BINARY to VARBINARY, CHAR, or VARCHAR

When you use numeric data of different types in an expression or comparison operation, the
data type of the lesser type is converted to that of the greater type, and the result is expressed
in the greater type. Numeric types have the following precedence:

FLOAT

REAL, DECIMAL
INTEGER
SMALLINT

Comparison operations or expressions involving different numeric data types result in
conversion from one data type to another as explained in Table 7-4:

Table 7-4. Conversions from Combining Different Numeric Data Types

Operations containing: Result:

DECIMAL and INTEGER types only | All participating integers are converted to DECIMAL
quantities having a precision of 10 and a scale of 0.

DECIMAL and SMALLINT types only | All participating SMALLINT values are converted to
DECIMAL quantities having a precision of 5 and a scale of 0.

One item of type FLOAT All participating integer and decimal operands are converted
to FLOAT quantities and precision can be lost.

One item of type REAL All arithmetic involving REAL operands results in a type of
FLOAT. All participating integer and decimal operands are
converted to FLOAT quantities and precision can be lost.

Data Types 7-7

Null Values

A null value is a special value that indicates the absence of a value. Any column in a table or
parameter or local variable in a procedure, regardless of its data type, can contain null values
unless you specify NOT NULL for the column when you create the table or the procedure.
NULL is used as a placeholder for a value that is missing or unknown. These properties of
null values affect operations on rows or parameters or local variables containing the following
values:

m Null values always sort highest in a sequence of values.

m Two null values are not equal to each other except in a GROUP BY or SELECT
DISTINCT operation, or in a unique index.

m An expression containing a null value evaluates to null; for example, five minus null
evaluates to null.

Because of these properties, ALLBASE/SQL ignores columns or rows or parameters or local
variables containing null values in these situations:

m Evaluating comparisons

m Joining tables, if the join is on a column containing null values
m Executing aggregate functions

m Evaluating if/while conditions or assignment expressions

In several SQL predicates, described in the “Search Condition” chapter, you can explicitly test
for null values. In an application program, you can use indicator variables to handle input and
output null values.

Decimal Operations

The precision (p) and scale (s) of a DECIMAL result depend on the operation used to derive
it. The following rules define the precision and scale that result from arithmetic operations on
two decimal values having precisions p; and py and respective scales s; and sy. Rules are also
provided for the resulting precision and scale of aggregate functions that operate on a single
expression having a precision of p; and a scale of s;. Arithmetic operations and aggregate
functions are discussed further in the “Expressions” chapter.

7-8 Data Types

Addition and Subtraction

p = MIN(27, MAX (p1 — s1, p2 — s2) + MAX(sq1, 82)+ 1)
s = MAX (s1,82)

Multiplication

p = MIN (27, p1 + p2)

s = MIN (27, 51 + sg)

Division

p =27

s = 27 — MIN (27, p; — s1 + s2)

where py and sy describe the numerator operand, and py and sy describe the denominator
operand.

MAX and MIN Functions

pP="r
s = 8
SUM Function
p =27
s = 8
AVG Function
p =27

s =27 —p1 + s1

Date/Time Operations

DATE, TIME, DATETIME, or INTERVAL values may only be assigned to a column with a
matching data type or to a fixed or variable length character string column or host variable.
Otherwise an error condition is generated. All rules regarding assignment to a character string
are also true for date/time assignment to a character string variable or column.

Conversions of the individual fields of a date/time data type follow the rules given earlier in
this subsection for the corresponding data type.

Note The validity of dates prior to 1753 (transition of Julian to Gregorian calendar)
cannot be guaranteed.

DATE, TIME, DATETIME, and INTERVAL data types behave similar to character strings in
data manipulation statements. The examples below illustrate this.

Data Types 7-9

Examples
INSERT
DATETIME, DATE, TIME and INTERVAL values:

INSERT INTO ManufDB.TestData
(BatchStamp, TestDate, TestStart, TestEnd, LabTime, PassQty, TestQty)
VALUES (°1984-08-19 08:45:33.1237,
’1984-08-23,
’08:12:19°, 213:23:017,
’5 10:35:15.7007,
49, 50)

SELECT
DATE and TIME values:

SELECT TestDate, TestStart
FROM ManufDB.TestData
WHERE TestDate = ’1984-08-23’

DATETIME and INTERVAL values:

SELECT BatchStamp, LabTime
FROM ManufDB.TestData
WHERE TestDate = ’1984-08-23’

UPDATE
DATE and TIME values:

UPDATE ManufDB.TestData
SET TestDate = ’1984-08-25’, TestEnd = ’19:30:00’
WHERE BatchStamp = ’1984-08-19 08:45:33.123°

INTERVAL values:

UPDATE ManufDB.TestData
SET LabTime ’5 04:23:00.000°
WHERE TestEnd ’19:30:00°

Note that the radix of DATE and TIME data is seconds, whereas the radix of DATETIME

and INTERVAL data is milliseconds.

Date/time data types can also be converted to formats other than the default formats by the

date/time functions described in the “Expressions” chapter.

Use of Date/Time Data Types in Arithmetic Expressions

You can use a variety of operations to increment, decrement, add or subtract date, time,
datetime, and interval values. The following table shows the valid operations and the data

type of the result:

7-10 Data Types

Table 7-5. Arithmetic Operations on Date/Time Data Types

Operand 1 Operator Operand 2 Result Type
DATE +,— INTERVAL DATE
INTERVAL + DATE DATE
DATE - DATE INTERVAL
TIME +,— INTERVAL TIME
INTERVAL + TIME TIME
TIME - TIME INTERVAL
DATETIME +,— INTERVAL DATETIME
INTERVAL + DATETIME DATETIME
DATETIME - DATETIME INTERVAL
INTERVAL +,— INTERVAL INTERVAL
INTERVAL *, INTEGER INTERVAL
STRING! - DATE INTERVAL
STRING? + DATE DATE
DATE - STRING! INTERVAL
DATE + STRING? DATE
STRING3 - DATETIME INTERVAL
DATETIME - STRING3 INTERVAL
STRING? + DATETIME DATETIME
DATETIME + STRING? DATETIME
STRING* - TIME INTERVAL
STRING? + TIME TIME
TIME - STRING* INTERVAL
TIME + STRING* TIME
STRING? +,— INTERVAL INTERVAL
INTERVAL +,— STRING? INTERVAL

1 The format for string should be DATE.
2 The format for string should be INTERVAL.
3 The format for string should be DATETIME.
4 The format for string should be TIME.

These arithmetic operations obey the normal rules associated with dates and times. If a
date/time arithmetic operation results in an invalid value (for example, a date prior to
’0000-01-01’), an error is generated. If the format for the string does not match the above
default type, an error is generated. Another solution is to apply TO_DATE, TO_TIME,
TO_DATETIME, and TO_INTERVAL to the string so that the correct format is used.

Data Types 7-11

You can also use the Add Months function to add or subtract from the month portion of

the DATE or DATETIME column. In the result, the day portion is unaffected, only the
month and, if necessary, the year portions are affected. However, if the addition of the month
causes an invalid day (such as 89-02-30), then a warning message is generated and the value is
truncated to the last day of the month.

Use of Date/Time Data Types in Predicates

DATE, TIME, DATETIME, and INTERVAL data types can be used in all predicates except
the LIKE predicate. LIKE works only with CHAR or VARCHAR values and so requires the
use of the TO_CHAR conversion function to be used with a DATETIME column. Items of
type DATE, TIME, DATETIME, and INTERVAL can be compared with items of the same
type or with literals of type CHAR or VARCHAR. All comparisons are chronological, which
means that the point which is farthest from ’0000-01-01 00:00:00.000° is the greatest value.
String representations of each data type (in host variables or as literals) can also be compared
following normal string comparison rules. Some examples follow:

SELECT * FROM ManufDB.TestData

WHERE BatchStamp = ’1984-06-19 08:45:33.123"
AND TestDate = ’1984-06-27°

SELECT * FROM ManufDB.TestData
WHERE Testend - TestStart <= ’0 06:00:00.000°

Date/Time Data Types and Aggregate Functions

You can use the aggregate functions MIN, MAX, and COUNT in queries on columns of type
DATE, TIME, DATETIME, and INTERVAL. SUM and AVG can be done on INTERVAL
data types only.

Binary Operations

BINARY or VARBINARY values may be assigned to a column with a matching data type or
to a fixed or variable length character string host variable. All rules regarding assignment to a
character string are also true for binary assignment to a character string variable.

LONG BINARY and LONG VARBINARY values cannot be converted to any other type,
and cannot participate in any expressions except as assignments to long functions and string
functions.

Character (ASCII) or hexadecimal format is used when inserting BINARY and VARBINARY
data literals into a column. Hexadecimal format is preceded by the hexadecimal indicator 0x
when inserting data through ISQL, but not if you are inserting data through an application
program. The result of a SELECT statement on a BINARY or VARBINARY column is in
hexadecimal format.

You cannot insert BINARY literals (0’s and 1’s) into a CHAR column in ISQL; however, you
can insert them in an application program using a host variable.

7-12 Data Types

Long Operations

LONG columns in ALLBASE/SQL enable you to store a very large amount of binary
data in your database and to reference that data using a column name. You might use
LONG columns to store text files, software application code, voice data, graphics data,
facsimile data, or test vectors. Storing data in the database gives you the the advantages
of ALLBASE/SQL’s recoverability, concurrency control, locking strategies, and indexes on
related columns.

The concept of how LONG column data is stored and retrieved differs from that of
non-LONG columns. LONG data is not processed by ALLBASE/SQL. Any formatting,
viewing, or other processing must be accomplished by a preprocessed application program.
Refer to the ALLBASE/SQL application programming guides for information on accessing
LONG columns from a preprocessed application.

Like other column data types, the LONG column is defined with the CREATE TABLE or
ALTER TABLE statement. A LONG column descriptor, called the LONG column I/0 string,
describes where the LONG column input data is located and where the data is placed when a
SELECT or FETCH statement is executed. The LONG column /O string is specified as an
element in the VALUES clause of an INSERT or the SET clause of an UPDATE operation.
When you use the SELECT or FETCH statement, the LONG column descriptor is returned
to the ISQL display or the host variable and the long column data is placed either in the
operating system file or the heap address.

Defining LONG Column Data with CREATE TABLE or ALTER TABLE

Following is the syntax for specifying a column definition for a LONG column in either the
CREATE TABLE or ALTER TABLE statement. A maximum of 40 such LONG columns can
be defined for a single table.

(ColumnName LONG ColumnDataType [IN DBEFz'leSetName]
[LANG = ColuananguageName] [NOT NULL]) [y e]

The LONG data is stored in DBEFiles. These files can occupy up to 23! —1 bytes. For better
performance and storage considerations, specify a separate DBEFileSet when defining the
LONG column.

If IN DBEFileSetName is not specified for a LONG column, this column’s data is stored in
the same DBEFileSet as its related table. Do not specify the SYSTEM DBEFileSet as this
could severely impact database performance.

In the following example, LONG data for PartPicture is stored in the DBEFileSet
PartPictureSet, while data for columns PartName and PartNumber is stored in PartslllusSet:
CREATE TABLE PurchDB.PartsIllus

(PartName CHAR(16),

PartNumber INTEGER,

PartPicture LONG VARBINARY(1000000) IN PartPictureSet)

IN PartsIllusSet

The next statement specifies that data for the new LONG column, PartModule, will be stored
in PartPictureSet:

ALTER TABLE PurchDB.PartsIllus
ADD PartModule LONG VARBINARY(50000) IN PartPictureSet

Data Types 7-13

Since LONG data for PartMap will be stored in the same DBEFileSet as its related table,
Partslllus, it goes to PartslllusSet.

ALTER TABLE PurchDB.PartsIllus
ADD PartMap LONG VARBINARY(70000)

Defining Input and Output with the LONG Column 1/O String

The INSERT and UPDATE statements use the LONG column I/O string to define the various
input and output parameters for any LONG column. You need to understand this string in
order to input, change, or retrieve LONG data.

The LONG column I/O string has an input portion (indicated with <) and an output portion
(indicated with >). The input portion of the LONG column I/O string, also referred to as the
input device, specifies the location of data that you want written to the database. You can
indicate a file name or a heap address and heap length.

A variable length record file cannot be input to a LONG column.

The output portion of the LONG column I/O string (the output device) specifies

where you want LONG data to be placed when you execute the SELECT or FETCH
statement. You have the option of specifying a file name, part of a file name, or having
ALLBASE/SQL specify a file name. You also can direct output to the heap address (in
this case, ALLBASE/SQL will select the head address). Additional output parameters
allow you to append to or overwrite an existing file. The output device specification is
stored in the database table and is available to you when you use the OUTPUT_DEVICE
function or OUTPUT _NAME function together with a SELECT or FETCH statement.
For more information on the QOUTPUT _DEVICE and OUTPUT_NAME functions, see the
“Expressions” chapter in this document.

The examples in the following sections illustrate the use of the input and output portions
of the LONG column I/0 string. The complete syntax for the LONG column I/0O string is
presented under the INSERT, UPDATE, and UPDATE WHERE CURRENT statements.

It is important to note that files used for LONG column input and output are opened

and closed by ALLBASE/SQL. You do not need to open or close the files for use in the
DBEnvironment. ALLBASE/SQL does not control the input or output device files on the
operating system. That is, if there is a rollback work, ALLBASE/SQL will not remove the
physical operating system file generated by the SELECT statement.

Using INSERT with LONG Column Data

As with any column, you use the SQL INSERT statement or an ISQL INPUT command to
initially put data in a LONG column. The LONG column I/O string requires an input device,
but the output device is optional.

The following examples illustrate some of the options available to you.

Using INSERT with No Specified File Options

In this example, data from the file hammer.tools becomes the contents of the LONG column
PartPicture. The output device is the file hammer. If this file already exists when the
SELECT or FETCH statement is issued, it is not overwritten or appended to, and an error is
generated.

7-14 Data Types

INSERT INTO PurchDB.PartsIllus
VALUES (’hammer’

100,

’< hammer.tools >hammer’)

Using INSERT with the Overwrite Option

When you want to reuse an existing output device file when the inserted data is later selected
or fetched, specify the overwrite option. Here if file wrench already exists at INSERT time, it
is overwritten:
INSERT INTO PurchDB.PartsIllus
VALUES (’hammer’,

100,
’< hammer.tools >!wrench’)

Using INSERT with the Append Option

You can append LONG data to an existing file. If the file limit for the wrench file is
inadequate to hold the data that is to be appended, a warning is returned (DBWARN 2051),
but data up to the file limit is added to the file. In this example, when the LONG column
PartPicture is selected or fetched, output is appended at the end of the file wrench:
INSERT INTO PurchDB.PartsIllus
VALUES (’hammer’,

100,
’< hammer.tools >>wrench’)

Using INSERT with the Wildcard Option

Depending on your application, you may need to assign a specific, known name to the output
device. On the other hand, a partially generic name or a completely unknown name may be
desirable. In this example, the output device name begins with PRT and is followed by a
five-character, random wild card, for instance, 'PRT123AB:
INSERT INTO PurchDB.PartsIllus
VALUES (’hammer’

100,
’< hammer.tools >PRT$’)

Using INSERT with Heap Space Input and Output

You have the option of using a heap address to indicate the location of input data. Output
data may be directed to a heap address generated by ALLBASE/SQL at output time. In the
next example, 4000 bytes of data flow from heap address 1230 to the PartsIllus table, and
when this data is selected or fetched it goes to the heap address:
INSERT INTO PurchDB.PartsIllus
VALUES (’saw’

300,
7<%1230:4000 >%$°)

Data Types 7-15

Using SELECT with LONG Column Data

The concept of how data is retrieved differs from that of non-LONG columns. The output
portion of the LONG column I/O string (rather than the data itself) is obtained with the
SELECT or FETCH statement. The LONG data goes to a file or heap space.

In this example, the SELECT statement places the LONG data from the PartPicture column
in a file or in heap space, as specified in the LONG column I/O string when the PartPicture
column was inserted or updated. The SELECT statement puts the file name or heap space
address in the PartPicture LONG column descriptor. In an application, the contents of
the descriptor are placed in a host variable and may be parsed to extract the file name or
heap space address. When a long field column is selected using ISQL, the file name or heap
space address is displayed in the column whose heading is the long field name. Refer to the
“Programming with LONG Columns” chapter of the appropriate application programming
guide for information on the format of the LONG column descriptor.

SELECT PartPicture

FROM PurchDB.PartsIllus
WHERE PartName = ’saw’

Using UPDATE with LONG Column Data
When you issue an UPDATE on a LONG column, you have the following options:

m Change the stored data as well as the output device name and/or options.
m Change the stored data only.
m Change the output device name and/or options only.

You must specify either the input device, the output device, or both.

Examples
The following examples present a sampling of possible combinations.
Using UPDATE to Change Stored Data and Output Device Name

In this example, data from the file newhammer.tools is inserted into the LONG column
PartPicture replacing the previously stored data. The output device name is changed to
be the file newhammer. Should file newhammer already exist when the SELECT or FETCH
statement is issued, it is not overwritten, and an error is generated.

UPDATE PurchDB.PartsIllus
SET PartPicture = ’< newhammer.tools >newhammer’
WHERE PartName = ’hammer’

Using UPDATE to Change Stored Data Only

Here the stored data in LONG column PartPicture is replaced with data from the file
newhammer.tools. Assuming the original output device was named hammer, when you select
or fetch the PartPicture column, the updated output still goes to a file named hammer.

UPDATE PurchDB.PartsIllus
SET PartPicture = ’< newhammer.tools’
WHERE PartName = ’hammer’

Using UPDATE to Change the Output Device Name and Options

7-16 Data Types

You may want to change the output file name but not the LONG data associated with a
particular column. Here newhammer becomes the output device name. When LONG column
PartPicture is SELECTed or FETCHed, output is appended to the file newhammer.

UPDATE PurchDB.PartsIllus

SET PartPicture = ’>>newhammer’
WHERE PartName = ’hammer’

Using UPDATE with Heap Space Input and Output

You may decide to use heap space as your input device. Qutput data may be directed to a
heap address. In this example, LONG data flows from file newsaw to the PartsIllus table, and
when this data is selected or fetched, it goes to a heap address:

UPDATE PurchDB.PartsIllus
SET PartPicture = ’<newsaw >%$’
WHERE PartName = ’saw’

In the next example, 4000 bytes of data flow to the database from heap address 1000 and
when the LONG column is selected or fetched, data goes to the file newsaw:

UPDATE PurchDB.PartsIllus
SET PartPicture = ’<%1000:4000 >newsaw’
WHERE PartName = ’saw’

Using DELETE with LONG Column Data

DELETE and DELETE WHERE CURRENT syntax is unchanged when used with LONG
columns. It is limited in that a LONG column cannot be used in the WHERE clause.

In the following example, any rows in PurchDB.Partslllus with the PartName of hammer are

deleted:

DELETE FROM PurchDB.PartsIllus
WHERE PartName = ’hammer’

When LONG data is deleted, the space it occupied in the DBEnvironment is released when
your transaction ends. But the data files still exist on the operating system.

Data Types 7-17

Native Language Data

Character data in the DBEnvironment can be represented in the native language specified
by the DBEnvironment language. When native language character columns are created,
they follow the same rules as CHAR and VARCHAR columns. For character columns, size is
defined in bytes. Thus a column defined as CHAR (20) could hold 20 characters in ASCII or

10 characters in Japanese Kanji.
Numeric data must be in ASCII representation.

Pattern matching is in terms of conceptual characters rather than bytes. This is necessary for
languages in which there are both one-byte and two-byte characters frequently mixed in the
same string. An example is Japanese, in which the Kanji and Hiragana characters occupy 16
bits each, whereas the Katakana characters use only 8 bits. Conceptual character matching is
also necessary to establish a collating sequence that includes the one-byte ASCII character set
as a subset of a two-byte character set such as Chinese.

Truncation is done on a character basis. For example, imagine a column defined as CHAR
(20). If a string contains 11 Kanji characters, or 22 bytes, the last character is truncated

if you try to insert it into the column. In a case where a string contains both Kanji and
Katakana characters and is 21 bytes long, the truncation depends on the size of the last
character. If it is a 2-byte Kanji character, the data is truncated to 19 bytes; if it is a 1-byte
Katakana character, the data is truncated to 20 bytes.

An implicit type conversion occurs when an NATIVE-3000 string is compared to a native
language CHAR or VARCHAR type. The shorter string is padded with ASCII blanks before

the comparison is done.

When a case insensitive ASCII expression is compared to a case insensitive NLS expression,
the two expressions are compared using the NLS collation rules. The case insensitive NLS
comparison is done by using the NLSCANMOVE and NLCOLLATE intrinsics. The same
ASCII characters in upper and lower case are equivalent. The same accent characters
(extended characters) in upper and lower case are also equivalent. However, an accent
character may not be the same as its ASCII equivalent, depending on the specific language
collation table.

7-18 Data Types

Expressions

This chapter discusses value specification. The following sections are presented:

Fxpression

Add Months Function
Aggregate Functions
CAST Function
Constant

Current Functions
Date/Time Functions
Long Column Functions
String Functions

TID Function

An expression specifies a value to be obtained in one of the following ways:

From a column of a table

From a host variable in an application program

From a dynamic parameter

From a local variable or parameter in a procedure

From a constant

By adding, subtracting, multiplying, dividing, or negating values

By evaluating an aggregate function

By evaluating a date/time (conversion, current, or add months) function
By evaluating a long column or string function

By a combination of these methods

Expressions are used for several purposes including;:

m To identify columns. In the SELECT statement, expressions are used in the select list to
identify column values to be retrieved.

The SELECT statement is also part of the CREATE VIEW, DECLARE CURSOR, and
INSERT statements. The expressions in this case identify columns that qualify for the view,
the cursor, or the insert operation.

m To identify rows. In the search condition of the following statements, expressions help define
the set of rows to be operated on: SELECT, INSERT, UPDATE, DELETE, CREATE
VIEW, and DECLARE. Refer to the “Search Conditions” chapter for more information.

m To define a new column value. In the UPDATE statement, expressions define a new value
for a column in an existing row.

Expressions 8-1

Expression

An expression can consist of a primary or several primaries connected by arithmetic operators.
A primary is a signed or unsigned value derived from one of the items listed in the SQL
syntax below.

Scope
SQL Data Manipulation Statements

SQL Syntax

ColumnName
USER
: Host Variable [[INDICATOR] : Indicator Variable]
?
: Local Variable
: Procedure Parameter
: 2 Built-in Variable
. AddMonthsFunction
[] Aggregate Function
Constant
DateTimeFunction
Current Function
LongColumnFunction
StringFunction
CASTFunction
(Erpression)
TIDFunction
ColumnName
: Host Variable[[INDICATOR] : Indicator Variable]
?
: Local Variable
: Procedure Parameter
: 2 Built-in Variable
R AddMonthsFunction
[_] Aggregate Function [e]
Constant

+ N %

| Date TimeFunction
Current Function
LongColumnFunction
StringFunction

CASTFunction
(Erpression)

8-2 Expressions

Parameters

+7_

ColumnName

USER

HostVariable

LocalVariable

Expression

designate unary plus and unary minus. Unary plus assigns the
primary a positive value. Unary minus assigns the primary a
negative value. Default is positive.

is the name of a column from which a value is to be taken;
column names are defined in the “Names” chapter.

The keyword USER can be used as a character constant in several
locations as follows:

m In a WHERE clause predicate when comparing it to a character
string, for example:

WHERE Owner = USER
WHERE Owner IN (’ALLUSERS’, USER)

m In the VALUES clause of the INSERT statement, for example:

VALUES (USER)

m In a DEFAULT clause of a column definition, for example:

Owner CHAR(20) DEFAULT USER NOT NULL

m In a SELECT list, returning a character string, for example:
SELECT USER, columni
m In an UPDATE SET clause, assigning a value to a character
string, for example:

SET Owner = USER

USER evaluates to the current DBEUserID. In ISQL, it evaluates
to the logon name of the ISQL user. From an application
program, it evaluates to the logon name running the program.
USER behaves like a CHAR(20) constant, with trailing blanks if

the logon name has fewer than 20 characters.

Note that if a column in your table is named USER, it must be
preceded with the table name for column values to be selected.
The function USER takes precedence over any column named

USER.

contains a value in an application program being input to the
expression.

IndicatorVariable names an indicator variable, whose value
determines whether the associated host
variable contains a NULL value:

>=0 the value is not NULL

<0 the value is NULL (The value in the
host variable will be ignored.)

is a place holder for a dynamic parameter in a prepared SQL
statement in an application program. The value of the dynamic
parameter is supplied at run time.

contains a value in a procedure.

Expressions 8-3

Expression

Procedure Parameter

Built-in Variable

AddMonthsFunction
Aggregate Function

Constant

Date TimeFunction
CurrentFunction

LongColumnFunction
StringFunction

CASTFunction
(Erpression)

*

/

TIDFunction

8-4 Expressions

contains a value that is passed into or out of a procedure.
is one of the following built-in variables used for error handling:

::sqlcode
:sqlerrd?2
::sglwarn0
::isqlwarnl
zsqlwarn2
sgqlwarn6
;:activexact

The first six of these have the same meaning that they have

as fields in the SQLCA in application programs. Note that in
procedures, sqlerrd2 returns the number of rows processed for all
host languages. However, in application programs, sqlerrd3 is
used in COBOL, Fortran, and Pascal, while sqlerr2 is used in C.
iactivexact indicates whether a transaction is in progress or not.
For additional information, refer to the application programming
guides and to the chapter “Constraints, Procedures, and Rules.”

returns a value that represents a DATE or DATETIME value
with a certain number of months added to it.

is a computed value; aggregate functions are defined in this
chapter.

is a specific value; constants are defined in this chapter.

returns a value that is a conversion of a date/time data type into

an INTEGER or CHAR value, or from a CHAR value.

returns a value that represents the current DATE, TIME, or
DATETIME.

returns information from a long column descriptor.

returns a partial value or attribute of string data.

converts data from one data type to another.

is one or more of the above primaries, enclosed in parentheses.
multiplies two primaries.

divides two primaries.

adds two primaries.

subtracts two primaries.

concatenates two string operands.

returns the database address of a row (or rows for a BULK
SELECT) of a table or an updatable view. You cannot use
mathematical operators with this function except to compare it
(using = or <>) to a value, host variable, or dynamic parameter.

Expression

Description

m Arithmetic operators can be used between numeric values, that is, those with data types of
FLOAT, REAL, INTEGER, SMALLINT, or DECIMALL. Refer to the “Data Types” chapter

for rules governing the resulting precision and scale of DECIMAL operations.

m Arithmetic operators can also be used between DATE, TIME, DATETIME, and
INTERVAL values. Refer to the “Data Types” chapter for rules on the valid operations and
the resulting data types.

m Elements in an expression are evaluated in the following order:

1 Aggregate functions and expressions in parentheses are evaluated first.

7 Unary plusses and minuses are evaluated next.

5 The * and / operations are performed next.

o The + and — operations are then performed.

m You can enclose expressions in parentheses to control the order of their evaluation. For
example:

10 *x 2 — 1
10 * (2—1)

19, but
10

m TO_INTEGER is the only date/time function that can be used in arithmetic expressions.

m When two primaries have the same data type, the result is of that data type. For example,
when an INTEGER is divided by an INTEGER, the result is INTEGER. In such cases, the
result will be truncated.

m If either arithmetic operand is the NULL value, then the result is the NULL value.

m Arithmetic operators cannot be used to concatenate string values. Use || to concatenate
string operands.

m Both operands of concatenation operator should be one of the following: CHAR (or
VARCHAR, or Native CHAR, or Native VARCHAR), BINARY (or VARBINARY), but no
mix of CHAR and BINARY.

m If either concatenation operand is the NULL value, then the result of the concatenation is
the NULL value.

m If one concatenation operand is a variable length string (VARCHAR, Native VARCHAR,
VARBINARY), then the result data type of the concatenation is a variable length string.

m If both concatenation operands are fixed length string data type (CHAR, Native CHAR,
BINARY), then the result of the concatenation is fixed length string.

m The concatenation result will consist of the first operand followed by the second operand.
The trailing blanks of the string value are preserved by concatenation regardless of the
string’s data types. The resultant string may be truncated on the right, if the length
exceeds the maximum string length of 3996 bytes. If truncation occurs, a truncation
warning is sent.

m Type conversion, truncation, underflow, or overflow can occur when some expressions are
evaluated. For more information, refer to the chapter, “Data Types.”

m If the value of an indicator variable is less than zero, the value of the corresponding host
variable is considered to be NULL.

Expressions 8-5

Expression

Note To be consistent with the standard SQL and to support portability of code,
it is strongly recommended that you use a —1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

m The following expressions can evaluate to NULL:

o Host variable with an indicator variable
o Local variable

o Procedure parameter

o Column

o Add Months function

o DateTime function

0 Aggregate function

o CAST function

o String function

m A NULL value in an expression causes comparison operators and other predicates to
evaluate to unknown. Refer to the “Search Conditions” chapter for more information on
evaluation of comparison operators and predicates containing NULL values.

m The ? can be used as a host variable or dynamic parameter in an expression as shown in
the following examples:
0 In the WHERE clause of any SELECT statement:

SELECT *
FROM PurchDB.Orders
WHERE PartNumber = 7
AND OrderDate > 7
ORDER BY OrderDate

0 In the WHERE and SET clauses of an UPDATE statement:

UPDATE PurchDB.Parts
SET SalesPrice = 7
WHERE PartNumber = 7

0 In the WHERE clause of a DELETE statement:

DELETE FROM PurchDB.OrderItems
WHERE ItemDueDate
BETWEEN ? and 7

0 In the VALUES clause of an INSERT or a BULK INSERT statement. In this example
each 7 corresponds in sequential order to a column in the PurchDB.Orderltems table:

BULK INSERT INTO PurchDB.OrderItems VALUES (?,?,7,7?)

See the syntax descriptions for each DML statement, and for the PREPARE,
DESCRIBE, EXECUTE, and OPEN statements for details of dynamic parameter usage.

8-6 Expressions

Expression

Example
The result length of PartNumber || VendPartNumber is 32 in this example.

CREATE TABLE PurchDB.SupplyPrice
(Part Humber CHAR(16) NOT CASE SENSITVE not null unique,
Vendorlumber INTEGER
VendPartNumber CHAR(16) lang=german,

UnitPrice DECIMAL (10,2),
Delivery Days SMALLINT,
DiscountQty SMALLINT)

SELECT PartNumber || VendPartHumber, UnitPrice from PurchDB.SupplyPrice;

Expressions 8-7

Add Months Function

The Add Months function uses the keyword ADD_MONTHS to apply the addition operation
to a DATE or DATETIME expression. It is different from a simple addition operator in that
it adjusts the day field in the DATE or DATETIME value to the last day of the month if
adding the months creates an invalid date (such as ’1989-02-307).

Scope

SQL Data Manipulation Statements

SQL Syntax

ADD_MONTHS (DateFxpression,

Parameters

DateFxpression

HostVariable

LocalVariable

Procedure Parameter

8-8 Expressions

[i] Integer Value

: HostVariable HINDICATOR] : IndicatorVariable])
?

: Local Variable
: Procedure Parameter

is either a DATE or DATETIME expression. See the
“Expression” section of this chapter for details on the syntax.

is a host variable of type INTEGER. It can be positive or

negative. If negative, the absolute value is subtracted from
Valuel .

IndicatorVariable names an indicator variable, whose value
determines whether the associated host
variable contains a NULL value:

> =0 the value is not NULL

<0 the value is NULL (The value in the
host variable will be ignored.)

indicates a dynamic parameter in a prepared SQL statement. The
value of the parameter is supplied when the statement is executed.

contains a value within a procedure.

contains a value that is passed into or out of a procedure.

Add Months Function

Description

m The Add Months function adds a duration of months to a DATE or DATETIME expression.
Only the month portion of the value is affected, and, if necessary, the year portion. The
day portion of the date is unchanged unless the result would be invalid (for example,
’1989-02-31"). In this case, the day is set to the last day of the month for that year, and
ALLBASE/SQL generates a warning indicating the adjustment.

m If either parameter is NULL, ADD_MONTHS will evaluate to NULL also.

Example

In this example, rows are returned which comprise the batch stamp and test date that
have a pass quantity less than 48. A warning is generated because 7 months added to the
’1984-07-30" date results in an invalid date, "1985-02-30".

SELECT BatchStamp, ADD_MONTHS(TestDate,7)
FROM ManufDB.TestData
WHERE PassQty <= 48

ADD_MONTHS result adjusted to last day of month. (DBWARN 2042)

Expressions 8-9

Aggregate Functions

Aggregate functions specify a value computed using data described in an argument. The
argument, enclosed in parentheses, is an expression. The value of the expression is computed
using each row that satisfies a SELECT statement. Aggregate functions can be specified in
the select list and the HAVING clause. Refer to the explanation of the SELECT statement for
more details.

Scope
SQL SELECT Statements

SQL Syntax
Frpression
AVG (S [ALL])
| DISTINGT | ColumnName
Frpression
MAX (ALL ColumnName)
| DISTINCT |
Frpression
MIN ¢ ALL ColumnName)
| DISTINCT |
Frpression
SUM (ALL ColumnName)
| DISTINCT |
*
COUNT (ALL
[DISTINCT] ColumnName

Parameters

Expression specifies a value to be obtained.

AVG computes the arithmetic mean of the values in the argument;
NULL values are ignored. AVG can be applied only to numeric
data types and to the INTERVAL type. When applied to FLOAT
or REAL, the result is FLOAT. When applied to INTEGER or
SMALLINT, the result is INTEGER, and fractions are discarded.
When applied to DECIMAL, the result is DECIMAL. When
applied to INTERVAL, the result is INTERVAL.

MAX finds the largest of the values in the argument; NULL values are
ignored. MAX can be applied to numeric, alphanumeric, BINARY
(not LONG), and date/time data types; the result is the same
data type as that of the argument.

MIN finds the smallest of the values in the argument; NULL values are

ignored. MIN can be applied to numeric, alphanumeric, BINARY
(not LONG), and date/time data types; the result is the same
data type as that of the argument.

8-10 Expressions

Aggregate Functions

SUM finds the total of all values in the argument. NULL values
are ignored. SUM can be applied to numeric data types and
INTERVAL only. When applied to FLOAT or REAL, the result is
FLOAT. When applied to INTEGER or SMALLINT, the result is
INTEGER. When applied to DECIMAL, the result is DECIMAL.
When applied to INTERVAL, the result is INTERVAL.

COUNT * counts all rows in all columns, including rows containing NULL
values. The result is INTEGER.

COUNT ColumnName counts all rows in a specific column; rows containing NULL values
are not counted. The data type of the column cannot be LONG
BINARY or LONG VARBINARY. The result is INTEGER.

ALL includes any duplicate rows in the argument of an aggregate
function. If neither ALL nor DISTINCT is specified, ALL is
assumed.

DISTINCT eliminates duplicate column values from the argument of an

aggregate function.

Description

m If an aggregate function is computed over an empty, ungrouped table, results are as follows:

o COUNT returns 1; SQLCODE equals 0.
o AVG, SUM, MAX, and MIN return NULL; SQLCODE equals 0.

m If an aggregate function is computed over an empty group or an empty grouped table, all
aggregate functions return no row at all.

m Refer to the “Data Types” chapter for information on truncation and type conversion that
may occur during the evaluation of aggregate functions.

m Refer to the “Data Types” chapter for information on the resulting precision and scale of
aggregate functions involving DECIMAL arguments.

m A warning message is returned if a NULL is removed from the computation of an aggregate
function.

Example

The average price of each part with more than five rows in table PurchDB.SupplyPrice is
calculated.
SELECT PartHumber, AVG(UnitPrice)
FROM PurchDB.SupplyPrice

GROUP BY PartNumber
HAVING COUNT * > 5

Expressions 8-11

CAST Function

The CAST function converts data from one data type to another. The CAST function can
be used anywhere a general expression is allowed. CAST is supported inside functions that
support expressions including aggregate functions. CAST also takes general expressions
including nested functions as input.

Scope
SQL Data Manipulation Statements

SQL Syntax
Frpression AS
{ CAST ({ NULL }{ , }DataType[,FormatSpec]) }
Parameters
Ezpression is the value to be converted. See the “Expression” section in this
chapter for details on the syntax.
DataType ALLBASE/SQL data type: CHAR(n), VARCHAR(n),

DECIMAL(p[s]), FLOAT, REAL, INTEGER, SMALLINT,
DATE, TIME, DATETIME, INTERVAL, BINARY (n),
VARBINARY (n), TID.

The LONG BINARY(n) and LONG VARBINARY(n) cannot be
used in the CAST operations.

FormatSpec Format specification used for DATE, TIME, DATETIME,
INTERVAL conversions. FormatSpec is the same as that used in
the date/time conversion functions.

Description

The following table shows what data type conversions the CAST function supports. These are
the status codes used in the table:

m Y—is supported
m N—is not supported
m E—is an ALLBASE/SQL Extension (not a part of ANSI standard)

8-12 Expressions

CAST Function

Table 8-1. Data Types for CAST Function

Source Target Data Type

Datalype IpN1 AN’ VC CHARMm) B VB DATE TIME DT 1 TID
ENT Y3 ovd vt Y4 E* E* N N N N N
AN? Y3 ovd vt Y4 E* E* N N N N N
VARCHAR(n) Yt oyt v Y3 Y:ov: v Y3 ovy3 yd gt
CHAR(n) Yt oyt v Y3 Y:ov: v Y3 ovy3 yd gt
BINARY E* E* Y3 Y3 Y3 oy3 E4 E4 E* E* E4
VARBINARY (n) E* E* Y3 Y3 Y3 ovy®: B4 E E4 E* E
DATE E2 E® Y3 Y3 E* E* Y3 N
TIME E2 E® Y3 Y3 E* E* N Y3 N
DATETIME E2 E® Y3 Y3 E* E* N Y3
INTERVAL Y B3 VS Y3 E* E* N N N Y3 N
TID N N E* E4 E* E* N N Y3

1 EN—Exact Numeric (SMALLINT, INT[EGER], DEC[IMAL][(p[;s])], NUMERIC[(p[,s])])
2 AN—Approximate Numeric (FLOAT[(p)] or DOUBLE PRECISION, REAL)
3 Implicit conversion also supported

4 Conversion supported only with CAST

m [f input to CAST is NULL, then the result of the CAST operation is NULL.
s ALLBASE/SQL supports implicit data conversion between:

o Numeric data types to numeric data types

o1 Character data types to character data types

o Binary data types to binary data types

o Binary data types to character data types

o Character data types to binary data types

When CAST is used to do these conversions, all existing rules are applied.

m When a number is converted, if the number does not fit within the target precision, an
overflow error occurs.

m When converting from an approximate numeric to an exact numeric or from an exact
numeric to an exact numeric with less scale (integers have a scale of 0), the extra digits of
scale beyond the target scale are dropped without rounding the result.

m If both source and target data type are character strings, the language of the result string is
the same as the source.

m If the source data type is a character string and the target data type is a numeric, then the
source value must only contain a character representation of a number. The result of the
conversion is the numeric value that string represented.

Expressions 8-13

CAST Function

8-

If the source value is not a numeric string, an error occurs.

If the target data type is CHAR(n), and the source data type is an exact numeric, the result
is a character representation of that exact numeric. If the source value is less than zero, the
first character of the result is a minus sign. Otherwise, the first character is a number or a
decimal point.

If the length of the resulted string is less than n, then blanks are added on the right. If the
length of the resulted string is greater than n, an error occurs. The same algorithm applies
if the target data type is VARCHAR(n), except that there is no need to pad the numeric
string if its length is less than n.

If the target data type is CHAR(n) and the source data type is an approximate numeric,
then the number is converted to a character representation in scientific notation.

If the length of the resulted string is less than n, then blanks are added on the right. If the
length of the resulted string is greater than n, then an error occurs. The same algorithm
applies if the target data type is VARCHAR(n), except that there is no need to pad the
numeric string if its length is less than n.

Conversion between character and binary data types is supported implicity as well as
with CAST. The same rules still apply with CAST. If a target is shorter than the source,
truncation occurs. If the target is larger than the source, the target is zero-filled in the case

of BINARY(n), and blank-filled in the case of CHAR(n).

When converting a non-character data type to BINARY(n) or VARBINARY (n), the data
is not modified. Only the type changes so that the data is treated as binary data. The
size of the source and the target in bytes must be equal in the case of BINARY(n), and
the size of the source must be less than or equal to the size of the target in the case of

VARBINARY (n). Otherwise, an error occurs.

For decimal numbers, each digit of precision contributes 4 bits and 4 bits for the sign.
The overall size is rounded up to a 4-byte boundary. The storage size for DATE, TIME,
DATETIME, and INTERVAL is 16 bytes.

When converting from BINARY(n) or VARBINARY(n) into a non-character data type, the
data is not modified. Only the type changes so that the data is treated as a number of the
target data type. The actual size of the source and the target in bytes must be equal, or an
error occurs.

Conversion between binary data types and numeric data types is an ALLBASE extension
and is not allowed according to the ANSI SQL2 standard.

Converting a character string to a DATE, TIME, DATETIME or INTERVAL with
CAST is equivalent to using the respective date/time function, TO_DATE, TO_TIME,
TO_DATETIME, or TO_INTERVAL. All the same rules apply.

Using CAST to convert numeric types directly to date/time types is not allowed. This
should be done by nesting the CAST functions so that the numeric value is first converted
to a character string, and then converted to the date/time data type.

Converting a date/time data type to:

o A character type with CAST is equivalent to using the TO_CHAR date/time function.
All the same rules apply.

o An INTEGER is equivalent to using the TO_INTEGER date/time function. This
function converts date/time column value into an INTEGER value which represents a

14 Expressions

CAST Function

portion of the date/time column. If the source data type of CAST is date/time data
type, and the target data type is INTEGER, all rules for TO_INTEGER to convert
date/time into INTEGER will be applied. The FormatSpec must be used to specify a
single component of the date/time data type (i.e. HH, MM, SS, DAYS, etc.).

o Other numeric types are also allowed using CAST. In this case, the date/time data type
is first converted to an INTEGER applying all the TO_INTEGER rules, then is converted
from INTEGER to the target data type.

Examples
1. You will see the result has VendorNumber presented as: Vendor9000, Vendor9020,....

CREATE TABLE PurchDB.SupplyPrice
(PartNumber CHAR(16) NOT CASE SENSITIVE not null unique,
VendorNumber INTEGER,
VendPartNumber CHAR(16) lang=german NOT CASE SENSITIVE,
UnitPrice DECIMAL(10,2),
DeliveryDays CHAR(2),
DiscountQty SMALLINT)

SELECT Partllumber, ’Vendor’ || CAST(VendorHumber AS VARCHAR(4))
FROM PurchDB.SupplyPrice
WHERE VendorNumber BETWEEN 9000 AND 9020;

2. You will see the INTERVAL constant shown as: 0 23:00:00:000

SELECT PartNumber, CAST(CAST(23,CHAR(2)),INTERVAL,’HH’)
FROM PurchDB.SupplyPrice;

3. You will see the INTEGER constant shown as: 99

SELECT PartHNumber, CAST(’9999-12-31’°,INTEGER,’CC’)
FROM PurchDB.SupplyPrice;

4. SELECT SUM with CAST

SELECT SUM(CAST(DeliveryDays, SMALLINT))
FROM PurchDB.SupplyPrice
WHERE VendorNumber BETWEEN 9000 AND 9020;

5. EXEC SQL with CAST

EXEC SQL begin declare sectiom;
char hostvar1[16];
sqlbinary hostvar2[8];

EXEC SQL end declare section;

Assume there is only one row qualified for the following query.

EXEC SQL select Partllumber, CAST(UnitPrice,BINARY(S))
INTO :hostvarl, :hostvar2

FROM PurchDB.SupplyPrice

WHERE VendorNumber BETWEEN 9000 AND 9020;

6. You will see the DECIMAL constant shown as: 99.99

SELECT PartlNumber, CAST(99.99,VARCHAR(10))
FROM PurchDB.SupplyPrice;

Expressions 8-15

Constant

A constant is a specific numeric, character, or hexadecimal value.

Scope
SQL Data Manipulation Statements

SQL Syntax
Integer Value
FloatValue
FizedPoint Value
’CharacterString’
0x HezadecimalString
Parameters
Integer Value is a signed or unsigned whole number compatible with INTEGER
or SMALLINT data types, for example:
-16746
155
5
Float Value is a signed or unsigned floating point number compatible with the
FLOAT or REAL data types, for example:
.2E-4
FizedPoint Value is a signed or unsigned fixed-point number compatible with the
DECIMAL data type, for example:
-15.99
+1451.1
CharacterString is a character string compatible with CHAR, VARCHAR, DATE,
TIME, DATETIME, or INTERVAL data types. String constants
are delimited by single quotation marks, for example:
’DON’°’T JUMP!’
However, two single quotation marks in a row are interpreted as a
single quotation mark, not as string delimiters.
HezadecimalString is a string of hexadecimal digits 0 through 9 and A through F

(the lowercase a through f are also accepted) compatible with the
BINARY and VARBINARY data types. A HezadecimalString

constant must be prefaced with the characters 0x, for example:

OxFFFABO880088343330FFAATY
0x000V001231

8-16 Expressions

Current Functions

Current Functions

Current functions return a value that represents a current DATE, TIME, or DATETIME. The
value returned is a string with the format of a DATE, TIME, or DATETIME data type.

Scope
SQL Data Manipulation Statements

SQL Syntax

CURRENT _DATE
CURRENT_TIME
CURRENT _DATETIME

Description

m CURRENT _DATE returns the current date as a string of the form "YYYY-MM-DD’, where
YYYY represents the year, MM is the month, and DD is the day.

m CURRENT_TIME returns the current time as a string of the form "HH:MI:SS’, where HH
represents hours, MI is minutes, and SS is seconds.

m CURRENT _DATETIME returns the current date and time as a string of the form
YYYY-MM-DD HH:MI:SS.FFF’, where YYYY represents the year, MM is the month,
DD is the day, HH represents the hours, MI the minutes, SS the seconds, and FFF the
thousandths of a second.

Examples
Set a column to the current DATE.

UPDATE ManufDB.TestData
SET TestDate = CURRENT_DATE
WHERE BatchStamp = ’1984-07-25 10:15:58.159°

Set a column to the current DATETIME.

UPDATE ManufDB.SupplyBatches
SET BatchStamp = CURRENT_DATETIME
WHERE BatchStamp ’1984-07-25 10:15:58.159?

Expressions 8-17

Date/Time Functions
The following text describes the two types of date/time conversion functions:

m The input functions convert character values into date/time values. With TO_DATE,
TO_TIME, TO_DATETIME, and TO_INTERVAL you can enter date/time values in a
format other than the default format.

m The output functions convert date/time values out to integer or character values. With
TO_CHAR you can specify an output format for a date/time column value other than the
default format. With TO_INTEGER you can extract an element as an INTEGER, value.

Date/time columns are displayed in the default format.

Scope
SQL Data Manipulation Statements

SQL Syntax—Conversion Functions

TO_DATE
TO_TIME
TO_DATETIME
TO_INTERVAL
TO_CHAR (DateTlimeFxpression [,FormatSpeczﬁcation])
TO_INTEGER (DateTimeFxpression , FormatSpecification)

(StringFxpression [,FormatSpeczﬁcation])

Parameters—Conversion Functions
TO_DATE, TO_TIME, produce a result which is of the DATE, TIME, DATETIME,

TO_DATETIME, or INTERVAL type, respectively. Use these functions in any
TO_INTERVAL expression.
TO_CHAR produces the character string representation of the value in the

column named in the first parameter in the format specified in
the second parameter. The result type is VARCHAR with the
length as specified by the format specification. If a format is not
specified, the default format for the data type (and length) is
used. Use this output function in any expression.

TO_INTEGER produces an INTEGER value which represents a portion of the
date/time column. The format specification is not optional in
this case, and must consist of a single element (of the format
specification). Use this output function in any expression.

StringFxpression is a string expression. Refer to the “Expression” section in this
chapter for details on the syntax. The expression must be a

CHAR or VARCHAR data type.

Date TimeFxpression is a Date/Time expression. See the “Expression” section of this
chapter for more details on the syntax. The expression must be a

DATE, TIME, DATETIME, or INTERVAL data type.

8-18 Expressions

FormatSpecification

Date/Time Functions

specifies the format of ColumnName or CharacterValue. Refer to
the syntax for FormatSpecification later in this section. Format
elements are presented in the “Description” section below.

SQL Syntax—FormatSpecification

¢ FormatString’

?

: Local Variable

: : Built-in Variable

: HostVariable [[INDICATOR] :IndicatorVariable]

: Procedure Parameter

Parameters—FormatSpecification

FormatString

HostVariable

LocalVariable
Procedure Parameter

2 Built-in Variable

is a character string literal representing the format of

Date TimeFxpression or StringEzpression. It must be a string
literal, of maximum length 72 NATIVE-3000 characters. Format is
composed of one or more elements. Available format elements for
the date/time data types are described below. Only NATIVE-3000
characters are allowed in the FormatString. The syntax for the
format string follows:

{ FormatFElement { Punctuation or Blank} [.] }
The format elements are listed in the “Description” section.

identifies a host variable that contains the format specification which
determines how the Date TimeFxpression or StringFzpression is to be
converted.

IndicatorVariable names an indicator variable, whose value
determines whether the associated host variable
contains a NULL value:

>=0 the value is not NULL

<0 the value is NULL (The value in the
host variable will be ignored.)

is a place holder for a dynamic parameter in a prepared SQL
statement in an application program. The value of the dynamic
parameter is supplied at run time.

contains a value in a procedure.
contains a value that is passed into or out of a procedure.
is one of the following built-in variables used for error handling:

::sqlcode
:sqlerrd?2
::sqlwarn(
z:sqlwarnl
::isqlwarn2

Expressions 8-19

Date/Time Functions

m :sqlwarn6
m :activexact

The first six of these have the same meaning that they have

as fields in the SQLCA in application programs. ::activexact
indicates whether a transaction is in progress or not. For additional
information, refer to the application programming guides and to the
chapter “Constraints, Procedures, and Rules.”

Description

m If the format specification is optional and it is not supplied, the proper default format is
used. If a date/time column or string literal appears in an expression without a conversion
function, it is changed, if necessary, to the default format.

m Date format is used by the TO_DATE function and by the TO_CHAR function on DATE
expressions. The default format is "YYYY-MM-DD’.

Listed here are format elements made up of numeric characters (digits 0 through 9):

CcC Century (00 to 99)

YYYY Year (0000 to 9999)

YY Year of century (00 to 99)

ZYY YY with leading zeroes suppressed (0 to 99) (TO_CHAR only)

Q Quarter (1 to 4) (TO_CHAR only)

MM Month (01 to 12)

ZMM MM with leading zeroes suppressed (1 to 12) (TO_CHAR only)
DAYS Days since January 1, 0000 (0000000 to 3652436)

ZDAYS DAYS with leading zeroes suppressed (0 to 3652436) (TO_CHAR only)
DDD Day of year (001 to 366)

ZDDD DDD with leading zeroes suppressed (1 to 366) (TO_CHAR only)
DD Day of month (01 to 31)

ZDD DD with leading zeroes suppressed (1 to 31) (TO_CHAR only)

D Day of week (1 to 7) (TO_CHAR only)

The 7 prefix and Q and D are only allowed for the function TO_CHAR. If YY is used
without CC, the default CC is 19. The following elements are for representing alphabetic
characters:

MONTH Name of month

MON Abbreviated name of month

DAYOFWEEK Name of day

DAY Abbreviated name of day

-/ Punctuation marks reproduced in value (includes spaces)
“string” Quoted string reproduced in value

Delimiting punctuation marks must be the same in the value parameter and the format
specification parameter.

m Capitalization in alphabetic representations follows the capitalization of the corresponding
format element. Elements may be represented in uppercase, lowercase, or initial caps. Other
mixtures of uppercase and lowercase letters result in an error. For example:

8-20 Expressions

Date/Time Functions

’DAYOFWEEK’ ---p HONDAY
’Dayofweek’ ---p Honday
’dayofweek’ —---P monday
’dAy0fieEk’ ---P error condition

m Time format is used by the TO_TIME function and by the TO_CHAR functions on TIME
expressions. The default format is "HH:MI:SS".

Listed here are formats for elements made up of numeric characters:

HH or HH24 Hour of day (00 to 23)

ZHH or ZHH24 HH or HH24 with leading zeroes suppressed (0 to 23) (TO_CHAR
only)

HH12 Hour of day (00 to 12)

ZHH12 HH12 with leading zeroes suppressed (0 to 12) (TO_CHAR only)

MI Minute (00 to 59)

ZMI MI with leading zeroes suppressed (0 to 59) (TO_CHAR only)

SS Second (00 to 59)

7SS SS with leading zeroes suppressed (0 to 59) (TO_CHAR only)

SECONDS Seconds past midnight (00000 to 86399)

ZSECONDS SECONDS with leading zeroes suppressed (0 to 86399) (TO_CHAR
only)

7 is not allowed for the input functions. The following elements are for representing
alphabetic characters:

AM or PM AM/PM indicator (use capital letters)

A.M. or P.M. A.M./P.M. indicator with periods (use capital letters)
S Punctuation marks reproduced in value (includes spaces)
“string” Quoted string reproduced in value

Delimiting punctuation marks must be the same in the value parameter and the format
specification parameter.

m The TO_DATETIME function and the TO_CHAR function on TIME expressions use the
date/time default format "YYYY-MM-DD HH:MI:SS.FFI".

In addition to all formats shown for the date and time format specifications above, the
following are also allowed for date/time formats (made up of the numeric characters 0

through 9):

F Tenth of a second (.0 to .9)
FF Hundredth of a second (.00 to .99)
FFF Thousandth of a second (.000 to .999)

m The TO_INTERVAL function and the TO_CHAR function on INTERVAL expressions use
the interval default format "DAYS HH:MI:SS.FFF’.

The following formats are allowed in an interval format specification:

DAYS MI SECONDS FFF
ZDAYS ZMI ZSECONDS -/,

HH or HH24 S3 F "string"
ZHH or ZHH24 ZSS FF

These were described in the TIME and DATETIME format specifications above.

Expressions 8-21

Date/Time Functions

m Literals for date/time data types which do not specify all elements of the date/time value
are expanded and filled as described below:

o INTERVAL is zero filled on the left and the right.
o DATE, TIME, and DATETIME are left-filled with the current values from the system
clock, and right-filled with appropriate portions of the default *0000-01-01 00:00:00.000°.

m When YY is specified in the FormatSpecification and if its value in StringFzpression is less
than 50, then the century part of DATE and DATETIME defaults to 20, else it is set to 19.
This behavior can be overridden by setting the JCW HPSQLSPLITCENTURY to a value

between 0 and 100. If the YY part is less than the value of JCW HPSQLSPLITCENTURY
then the century part is set to 20, else it is set to 19.

m Output values are truncated, not rounded, to fit in the specified format.

m The TO_INTEGER format specification is not optional, and must consist of one of the
following single elements only:

cC MM DAYS SS

YYYY DDD HH or HH24 SECONDS

YY DD HH12 F, FF, or FFF
Q D MI

m ADD_MONTHS is a related function. ADD_MONTHS adds a duration of months to a
DATE or DATETIME column. Refer to the Add Months Function for further information.

Examples
1. Date format

In the example below, the format MM/DD/YY is used to enter a date instead of using the
default format, which is YYYY-MM-DD:

INSERT INTO ManufDB.TestData(batchstamp, testdate)
VALUES (TO_DATETIME (’07/02/89 03:20.000°, ’MM/DD/YY HH12:MI.FFF’),
TO_DATE(?10/02/84° ,>MH/DD/YY?))

To return the date entered in the above example, in a format other than the default
format, the desired format is specified in the second parameter of the TO_CHAR
conversion function:

SELECT TO_CHAR(testdate, ’Dayofweek, Month DD’)
FROM ManufDB.TestData
WHERE labtime < 0 05:00:00.000°
The value “Friday, July 13” is selected from TestData.

The following statement inserts different date values depending on the value of the JCW
HPSQLSPLITCENTURY, if it is set.

INSERT INTO ManufDB.TestData(testdata)
VALUES (TO_DATE (’30/107,°YY/MM’))

Case 1: HPSQLSPLITCENTURY is not set; inserts 2030-10-01
Case 2: HPSQLSPLITCENTURY is set to 0; inserts 1930-10-01

Case 3: HPSQLSPLITCENTURY is set to 70; inserts 2030-10-01

8-22 Expressions

Date/Time Functions

2. Time format

INSERT INTO ManufDB.TestData(teststart, batchstamp)
VALUES (TO_TIME(’01:53 a.m.’,’HH12:MI a.m.’),
TO_DATETIME(’12.01.84 02.12 AM’, ’DD.MM.YY HH12.MI AM’))

3. Datetime format

UPDATE ManufDB.TestData
SET batchstamp = TO_DATETIME(°12.01.84 02.12 AM’, °’DD.MM.YY HH12.MI AM’)
WHERE batchstamp = TO_DATETIME(°11.01.84 1.11 PM’, °’DD.MM.YY HH12.MI PM’)

4. Interval format

UPDATE ManufDB.TestData
SET labtime = TO_INTERVAL(’06 10:12:11.111°, ’DAYS HH:MI:SS.FFF’)
WHERE testdate = TO_DATE(’10.02.84’°,’MM.DD.YY?)

Expressions 8-23

Long Column Functions

Long column functions return information from the long column descriptor.

Scope
SQL Data Manipulation Statements

SQL Syntax

QUTPUT_DEVICE (LongColumnName)
QUTPUT_NAME (LongColumnName)

Parameters
OUTPUT_DEVICE returns an integer value indicating the output device type stored
in the long column descriptor for LongColumnName. The values
returned are shown in the table below:
Value Returned | Output Device Type
0 none specified
1 system file
3 heap space
QUTPUT_NAME returns the output device name stored in the long column
descriptor for LongColumnName. The string returned is a 44 byte
value.
LongColumnName is the name of the column that has a long data type (LONG
BINARY or LONG VARBINARY).
Description

m The long column functions can appear in the select list or search condition of an SQI data
manipulation statement.

m The long column functions are useful when you need information about the long column
descriptors, but do not want to fetch the data.

m For more information on long column data types, see the “Data Types” chapter.

m Referencing a LONG column in a LONG column function does not cause the LONG data to
be written out to the output device.

8-24 Expressions

Long Column Functions

Examples

1.

OUTPUT_DEVICE example

Change the PartPicture output device name to NewHammer in any row whose output
device type for PartPicture is a system file.
UPDATE PartsIllus

SET PartPicture = ’> NewHammer’
WHERE OUTPUT_DEVICE(PartPicture) = 1

. OUTPUT _NAME example

Select the output device name of the PartPicture column for any row with a PartNumber
of 100.

SELECT OUTPUT_NAME(PartPicture)
FROM PartsIllus
WHERE PartNumber = 100

Change all occurrences of the output device name of the PartPicture column to
NewHammer if the current output device name is Hammer.

UPDATE PartsIllus
SET PartPicture = ’> NewHammer’
WHERE OUTPUT_WAME(PartPicture) = ’Hammer’

Expressions 8-25

String Functions

String functions return partial values or attributes of character and BINARY (including

LONG) string data.

Scope
SQL Data Manipulation Statements

SQL Syntax
STRING_LENGTH (StringFzpression)
SUBSTRING (StringFxpression,StartPosition, Length)

Parameters

STRING_LENGTH returns an integer indicating the length of the parameter. If
StringFxpression is a fixed length string type, STRING_LENGTH will
return the fixed length. If Stringlapression is a variable length
string, the actual length of the string will be returned.

StringFxpression is an expression of a string type. See the “Expression” section in
this chapter for the syntax. The expression must be a CHAR,
VARCHAR, BINARY, VARBINARY, Long Binary, or Long
VARBINARY data type.

For example, the following are acceptable:
Vendorllame
’Applied Analysis’
SUBSTRING (VendorName,1,10)

SUBSTRING returns the portion of the SourceString parameter which begins at
StartPosition and is Length bytes long.

StartPosition is an integer constant or expression. See the “Expression” section
in this chapter for this syntax.

Length is an integer constant or expression. See the “Expression” section
in this chapter for this syntax. The following are examples of
acceptable lengths:

5
STRING_LENGTH(VendorName)-28
Description

m The string functions can appear in an expression, a select list, or a search condition of an
SQL data manipulation statement.

m The string functions can be applied to any string data type, including binary and long
column data types.

m The string returned by the SUBSTRING function is truncated if (StartPosition + Length -1)
is greater than the length of the StringFzpression. Only (Length - StartPosition +1) bytes
is returned, and a warning is issued.

8-26 Expressions

String Functions

m If Length is a simple constant, the substring returned has a maximum length equal to the
value of the constant. Otherwise, the length and data type returned by the SUBSTRING
function depend on the data type of StringFxpression, as shown in the following table:

Data Type Returned by SUBSTRING

StringExpression SUBSTRING SUBSTRING
Data Type Data Type Maximum Length

CHAR VARCHAR fixed length of
SourceString

VARCHAR VARCHAR maximum length of
SourceString

BINARY VARBINARY fixed length of
SourceString

VARBINARY VARBINARY maximum length of
SourceString

LONG BINARY VARBINARY 39961

LONG VARBINARY | VARBINARY 39961

1 3996 is the maximum length of a VARBINARY data type

Expressions 8-27

String Functions

Examples
1. STRING_LENGTH example

In the SELECT statement below, the Partslllus table is searched for any row whose
PartPicture contains more than 10000 bytes of data, and whose PartName is longer than
10 bytes.

CREATE TABLE PartsIllus
(PartName VARCHAR(16),
PartNumber INTEGER,
PartPicture LONG VARBINARY(1000000) in PartPictureSet)
IN PartsIllusSet

SELECT PartNumber, PartName
FROM PartsIllus

WHERE STRING_LENGTH(PartPicture) > 10000
AND STRING_LENGTH(PartName) > 10

2. SUBSTRING example

For every row in Partslllus, the PartNumber and the first 350 bytes of the PartPicture are
inserted into the DataBank table:
CREATE TABLE DataBank

(IdNumber INTEGER,
Data VARBINARY(1000))

INSERT INTO DataBank
SELECT PartNumber, SUBSTRING(PartPicture,1,350)
FROM PartsIllus

Display a substring of the PartPicture column in the Partslllus table if the Data column in
the DataBank table contains more than 133 bytes:

SELECT DATA
FROM DataBank
WHERE STRING_LENGTH(Data) > 133

8-28 Expressions

TID Function

TID Function

Used in a select list, the TID function returns the database address of a row (or rows for
BULK SELECT) of a table or an updatable view. Used in a WHERE clause, the TID
function takes a row address as input and allows direct access to a single row of a table or an
updatable view.

Scope
SQL Data Manipulation Statements

SQL Syntax

[Owner.] TableName
TID ([Owner.] ViewName |)
CorrelationName

Parameters

TID is an 8 byte value representing the database address of a row of a
table or an updatable view. A TID contains these elements:

Table 8-2. SQLTID Data Internal Format

Content Byte Range

Always = 0 |1 thru 2

File Number |3 thru 4

Page Number |5 thru 7

Slot 8

() indicates that the row address is to be obtained from the first
table or view specified (in the FROM clause of a SELECT
statement or in an UPDATE statement).

Owner indicates the owner of the table or view.

Table Name indicates the table from which to obtain the row address.
ViewName indicates the updatable view from which to obtain row address.
CorrelationName indicates the correlation name of the table or view from which to

obtain the row address.

Expressions 8-29

TID Function

Description

m The TID function can be used with user tables and updatable views and with system base
tables and system views. It cannot be used with non-updatable views (those containing
JOIN, UNION, GROUP BY, HAVING, or aggregate functions) nor on system pseudotables.

m In order to assure optimization (through the use of TID access) the expressions in the
WHERE clause of a single query block must be ANDed together. No OR is allowed. In
addition, only the following TID expressions can be optimized:

[Owner. | TableName
TID ([Owner.] ViewName |) =
CorrelationName

Constant
HostVariableName [[INDICATOR] : IndicatorVariable]

?

: Local Variable
: Procedure Variable

m Only equal and not equal comparison operators are supported.
m The TID function cannot appear in an arithmetic expression.

m The TID function can be used in a restricted set of SELECT statements. A valid SELECT
statement must not specify the following:

7 An ORDER BY or GROUP BY on the TID function.

7 A HAVING clause containing the TID function.

7 The TID function in the select list when a GROUP BY or HAVING clause is used.
7 An aggregate function on the TID function.

7 Any TID function along with an aggregate function in the select list.

8-30 Expressions

TID Function

Example

isql=> SELECT tid(), PartNumber
> FROM PurchDB.Parts;

select tid(), Partlumber from PurchDB.Parts;
_______________________ e
TID | PARTHUMBER
_______________________ e
:0]1123-P-01
:1]1133-P-01
:2]1143-P-01
:3|1153-P-01
:4]1223-MU-01
:5]1233-MU-01
:6]1243-1MU-01
:711323-D-01
:811333-D-01
:9]1343-D-01
:10]1353-D-01
:11]1423-1-01
:12]1433-1-01
:13]1523-K-01
:1411623-TD-01
:15]1723-AD-01

WWwwwwowwwwow
WWwwwwowwwwow

First 16 rows have been selected.
Ulpl, dlownl], 1[eft], r[ight], t[opl, blottom], prlint] <n>, or e[nd] >

Expressions 8-31

9

Search Conditions

This chapter discusses search condition clauses and the predicates used in them. The following
sections are presented:

Search Condition
BETWEEN Predicate
Comparison Predicate
EXISTS Predicate

IN Predicate

LIKE Predicate
NULL Predicate
Quantified Predicate

A search condition specifies criteria for choosing rows to select, update, delete, insert, permit
in a table, or fire rules on. Search conditions are parameters in the following statements:

m [n the SELECT statement, search conditions are used for two purposes as follows:

o In the WHERE clause, to determine rows to retrieve for further processing. The only
expressions not valid in this clause are aggregate functions and expressions containing
LONG columns that are not in long column functions.

o In the HAVING clause, to specify a test to apply to each group of rows surviving the
GROUP BY clause test(s). If a GROUP BY clause is not used, the test is applied to all
the rows meeting the WHERLE clause conditions. References in a HAVING clause to
non-grouping columns must be from within aggregate functions. Grouping columns can
be referred to by name or with an aggregate function.

m [n the UPDATE statement, search conditions in the WHERE clause identify rows that
qualify for updating.

m In the DELETE statement, search conditions in the WHERE clause identify rows that
qualify for deletion.

m In the INSERT statement, search conditions in the embedded SELECT statement identify
rows to copy from one or more tables or views into a table.

m In the DECLARE CURSOR statement, search conditions in the embedded SELECT

statement identify rows and columns to be processed with a cursor.

m [n the CREATE VIEW statement, search conditions in the embedded SELECT statement
identify rows and columns that qualify for the view.

m In table CHECK constraints, the search condition identifies valid rows that a table may
contain.

m In rule firing conditions, search conditions identify conditions that will cause rules to fire.

Search Conditions 9-1

Search Condition

A search condition is a single predicate or several predicates connected by the logical

operators AND or OR. A predicate is a comparison of expressions that evaluates to a value of
TRUE, FALSE, or unknown. If a predicate evaluates to TRUE for a row, the row qualifies for
the select, update, or delete operation. If the predicate evaluates to FALSE or unknown for a

row, the row is not operated on.

Scope

SQL Data Manipulation Statements

SQL Syntax
BetweenPredicate BetweenPredicate
ComparisonPredicate ComparisonPredicate
FExistsPredicate FExistsPredicate
InPredicate AND InPredicate

NOT NOT
[] LikePredicate { OR } [] LikePredicate

NullPredicate NullPredicate
Quantified Predicate Quantified Predicate
(SearchCondition) (SearchCondition)

Parameters

NOT, AND, OR

BetweenPredicate

ComparisonPredicate
FExistsPredicate
InPredicate

LikePredicate

NullPredicate
Quantified Predicate

(SearchCondition)

9-2 Search Conditions

are logical operators with the following functions:

NOT reverses the value of the predicate that follows it.

AND evaluates predicates it joins to TRUE if they are both
TRUE.

OR evaluates predicates it joins to TRUE if either or both
are TRUE.

determines whether an expression is within a certain range of
values.

compares two expressions.
determines whether a subquery returns any non-null values.

determines whether an expression matches an element within a
specified set.

determines whether an expression contains a particular character
string pattern.

determines whether a value is null.

determines whether an expression bears a particular relationship
to a specified set.

is one of the above predicates, enclosed in parentheses.

Search Condition

Description
m Predicates in a search condition are evaluated as follows:

o Predicates in parentheses are evaluated first.

7 NOT is applied to each predicate.

7 AND is applied next, left to right.

7 OR is applied last, left to right.

m When a predicate contains an expression that is null, the value of the predicate is unknown.
Logical operations on such a predicate result in the following values, where a question mark
(?7) represents the unknown value:

AND | T F o2 OR | T Foo? NOT |

T T F o2 T |lT T T T | F
F F F F F T F o2 F T
? ? F 2 ? T ?2 2 ?2 |2

LG200188_027

Figure 9-1. Logical Operations on Predicates Containing NULL Values

When the search condition for a row evaluates to unknown, the row does not satisfy the
search condition and the row is not operated on. Check constraints are an exception; see the

section on CREATE TABLE or CREATE VIEW.

m You can compare only compatible data types. INTEGER, SMALLINT, DECIMAL,
FLOAT, and REAL are compatible. CHAR and VARCHAR are compatible, regardless
of length. You can compare items of type DATE, TIME, DATETIME, and INTERVAL
to literals of type CHAR or VARCHAR. ALLBASE/SQL converts the literal before the
comparison. BINARY and VARBINARY are compatible, regardless of length.

m You cannot include a LONG BINARY or LONG VARBINARY data type in a predicate

except within a long column function.
m A SubQuery expression cannot appear on the left-hand side of a predicate.

m Refer to the “Data Types” and “Expressions” chapters for information concerning value
extensions and type conversion during comparison operations.

Search Conditions 9-3

BETWEEN Predicate

A BETWEEN predicate determines whether a value is equal to or greater than a second value
and equal to or less than a third value. The predicate evaluates to true if a value falls within
the specified range. If the NOT option is used, the predicate evaluates to true if a value does
not fall within the specified range.

Note that the second value must be less than or equal to the third value for BETWEEN to
possibly be TRUE and for NOT BETWEEN to possibly be FALSE.

Scope
SQL Data Manipulation Statements

SQL Syntax

Frpressionl [NOT]BETWEEN Ezpression? AND Ezpressiond

Parameters

Ezpressionl, 2, 3 specify values used to identify columns, screen rows, or define
new column values. The syntax for expressions is defined in
the “Expressions” chapter. Both numeric and non-numeric
expressions are allowed in BETWEEN predicates.

NOT is a logical operator and reverses the value of the predicate that
follows it.

Description

m Frpression? and Frpressiond constitute a range of possible values for which Fzpression2
is the lowest possible value and Fzpressiond is the highest possible value. In the BETWEEN
predicate, the low value must come before the high value. Also in the BETWEEN predicate,
subqueries are not allowed.

m Comparisons are conducted as described under “Comparison Predicates” later in this
chapter.

Example
Parts sold for under $250.00 and over $1500.00 are discounted by 25 percent.

UPDATE PurchDB.Parts SET SalesPrice = SalesPrice * .75
WHERE SalesPrice NOT BETWEEN 250.00 AND 1500.00

9-4 Search Conditions

Comparison Predicate

Comparison Predicate

A comparison predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression is related to the second expression as
specified in the comparison operator.

Scope
SQL Data Manipulation Statements

SQL Syntax
<>
I) > Frpression
Tpression
P >= SubQuery
<
<=

Parameters

Expression specifies a value used to identify columns, screen rows, or define
new column values. The syntax of expressions is defined in
the “Expressions” chapter. Both numeric and non-numeric
expressions are allowed in comparison predicates. Predicates
cannot include LONG columns.

SubQuery is a QueryExpression whose result is used in evaluating another
query. The syntax of QueryExpression is presented in the
description of the SELECT statement.

= is equal to. A comparison predicate using = is also known as an
EQUAL predicate.

<> is not equal to.

> is greater than.

>= is greater than or equal to.

< is less than.

<= is less than or equal to.

Search Conditions 9-5

Comparison Predicate

Description

m Character strings are compared according to the HP eight-bit ASCII collating sequence
for ASCII data, or the collation rules for the native language of the DBEnvironment for
NLS data. Column data would either be ASCII data or NLS data depending on how the
column was declared upon its creation. Constants are ASCII data or NLS data depending
on whether you are using NLS or not.

If a case insensitive ASCII expression is compared to a case insensitive NLS expression,

the two expressions are compared using the NLS collation rules. The case insensitive NLS
comparison is done by using the NLSCANMOVE and NLSCOLLATE intrinsics. The same
ASCII characters in upper and lower case are equivalent. Accent characters (extended
character) in upper and lower case are also equivalent. However, an accent character may
not be the same as its ASCII equivalent, depending on the specific language collation table.

Extended upper and lower case characters are not equivalent to the ASCII expression. They
are compared to the NLS collation table.

If a case sensitive character column is compared to a character column that is not case
sensitive, both columns are treated as case sensitive. If a string constant is compared to a
column that is not case sensitive, then the string constant is treated as not case sensitive.

m Refer to the “Data Types” chapter for type conversion that ALLBASE/SQL performs when
you compare values of different types.

For purposes of the Comparison Predicate, a NULL value on either or both sides of the
predicate causes it to evaluate to unknown. Thus, two NULL values on either side of an
equals predicate will not result in a TRUE result but rather in unknown.

m A NULL value in an expression causes comparison operators to evaluate to unknown. Refer
to the “Search Condition” section at the beginning of this chapter for more information on
evaluation of operators.

m A subquery must return a single value (one column of one row). If the subquery returns
more than one value, an error is given. If the subquery returns no rows, the predicate
evaluates to unknown.

Example

The part numbers of parts that require fewer than 20 days for delivery are retrieved.

SELECT PartlNumber
FROM PurchDB.SupplyPrice
WHERE DeliveryDays < 20

9-6 Search Conditions

EXISTS Predicate

EXISTS Predicate

An EXISTS predicate tests for the existence of a row satisfying the search condition of a
subquery. The predicate evaluates to TRUE if at least one row satisfies the search condition
of the subquery.

Scope
SQL Data Manipulation Statements

SQL Syntax

EXISTS SubQuery

Parameters

SubQuery A subquery is a nested query. The syntax of subqueries is
presented in the description of the SELECT statement in the
“SQL Statements” chapter.

Description

Unlike other places in which subqueries occur, the EXISTS predicate allows the subquery to
specify more than one column in its select list.

Example

Get supplier names for suppliers who provide at least one part.

SELECT S.SNAME
FROM S
WHERE EXISTS (SELECT * FROM SP
WHERE SP.SNO = S.SHO);

Search Conditions 9-7

IN Predicate

An IN predicate compares an expression with a list of specified values or a list of values
derived from a subquery. The predicate evaluates to TRUE if the expression is equal to one
of the values in the list. If the NOT option is used, the predicate evaluates to TRUE if the
expression is not equal to any of the values in the list.

Scope
SQL Data Manipulation Statements

SQL Syntax
. SubQuery
E. NOT |IN .
rpression [NOT] { (ValueList)
Parameters
Expression An expression specifies a value to be obtained. The syntax of expressions
is presented in the “Expressions” chapter. Both numeric and non-numeric
expressions are allowed in quantified predicates. The expression may not
include subqueries or LONG columns.
NOT reverses the value of the predicate that follows it.
SubQuery A subquery is a nested query. The syntax of subqueries is presented in the
description of the SELECT statement in the “SQL Statements” chapter.
ValueList defines a list of values to be compared against the expression’s value. The

syntax for ValueList is:

USER
Current Function
. Integer
[_] Float
Decimal
> CharacterString’
0x HezadecimalString
: HostVariable [[INDICATOR] :IndicatorVariable] [P]
?
: Local Variable
: Procedure Parameter
: 2 Built-in Variable
LongColumnFunction

StringFunction

9-8 Search Conditions

USER

CurrentFunction

Integer

Float
Decimal

CharacterString

HezadecimalString

HostVariable

Indicator Variable

LocalVariable

Procedure Parameter

IN Predicate

USER evaluates to the DBEUserID. In ISQL,

it evaluates to the DBEUserID of the ISQL

user. From an application program, it evaluates
DBEUserID of the individual running the program.
USER behaves like a CHAR(20) constant, with
trailing blanks if the login name has fewer than 20
characters.

indicates the value of the current DATE, TIME, or
DATETIME.

indicates a value of type INTEGER, or
SMALLINT.

indicates a value of type FLOAT.
indicates a value of type DECIMAL.

specifies a CHAR, VARCHAR, DATE, TIME,
DATETIME, or INTERVAL value. Whichever is
shorter—the string or the expression value—is
padded with blanks before the comparison is made.

specifies a BINARY or VARBINARY value. If
the string is shorter than the target column, it is
padded with binary zeroes; if it is longer than the
target column, the string is truncated.

contains a value in an application program being
input to the expression.

names an indicator variable, whose value
determines whether the associated host variable
contains a NULL value:

>=0 the value is not NULL

<0 the value is NULL (The value in the host
variable will be ignored.)

is a place holder for a dynamic parameter in a
prepared SQL statement in an application program.
The value of the dynamic parameter is supplied at
run time.

contains a value in a procedure.

contains a value that is passed into or out of a
procedure.

Search Conditions 9-9

IN Predicate

Built-in Variable is one of the following built-in variables used for
error handling:

::sqlcode
:sqlerrd?2
::sglwarn0
::isqlwarnl
zsqlwarn2
sgqlwarn6
;:activexact

The first six of these have the same meaning

that they have as fields in the SQLCA in
application programs. Note that in procedures,
sqlerrd2 returns the number of rows processed

for all host languages. However, in application
programs, sqlerrd3 is used in COBOL, Fortran,
and Pascal, while sqlerr2 is used in C. ::activexact
indicates whether a transaction is in progress

or not. For additional information, refer to the
application programming guides and to the chapter
“Constraints, Procedures, and Rules.”

StringFunction returns partial values or attributes of character and
binary (including LONG) string data.

LongColumnFunction returns information from the long column
descriptor.

Description

m If X is the value of Ezpression and (a,b, ... , z) represent the result of a SubQuery or the
elements in a ValuelList, then the following are true:

o X IN (a,b, ... ,z) is equivalent to X = ANY (a,b, ... ,2)
o X IN (a,b, ... ,z) is equivalent to X =a ORX=b0R... ORX =2z
o X NOT IN (a,b, ... ,z) is equivalent to NOT (X IN (a,b, ... ,z))

m Refer to the “Data Types” chapter for information about the type conversions that
ALLBASE/SQL performs when you compare values of different types.

m You can use host variables in the ValueList. If an indicator variable is used and contains
a value less than zero, the value in the corresponding host variable is considered to be
unknown.

Note To be consistent with the standard SQL and to support portability of code,
it is strongly recommended that you use a —1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

m If all values in the ValueList are NULL, the predicate evaluates to unknown.

9-10 Search Conditions

IN Predicate

Example

Get part numbers of parts whose weight is 12, 16, or 17.

SELECT P.PHNO
FROM P
WHERE P .WEIGHT IN (12, 16, 17)

Get the names of suppliers who supply part number "P2’.

SELECT S.SNAME
FROM S
WHERE S.SNO IN (SELECT SP.SNO FROM SP
WHERE SP.SNO = ’P2’)

If the indicator variable is >= 0 and PartNumber is one of '1123-P-01’, ’1733-AD-01’, or
:PartNumber, then the predicate evaluates to true.

If the indicator variable is < 0, the rows containing the part numbers 1123-P-01 and
1733-AD-01 are selected; but no rows will be selected based upon the value in :PartNumber.
EXEC SQL SELECT PartNumber
FROM PurchDB.Parts

WHERE PartNumber
IN (°1123-P-01?, °1733-AD-01°, :PartHumber :PartInd)

Search Conditions 9-11

LIKE Predicate

A LIKE predicate determines whether an expression contains a given pattern. The predicate
evaluates to TRUE if an expression contains the pattern. If the NOT option is used, the
predicate evaluates to TRUE if the expression does not contain the pattern.

Scope
SQL Data Manipulation Statements

SQL Syntax

’PatternString’
: HostVariablel [[INDICATOR] : IndicatorVariablel]
Frpression [NOT]LIKE 7
: Local Variablel
: Procedure Parameterl
’EscapeChar’
: HostVariable?2 [[INDICATOR] :Indz’catorVarz’able?]
ESCAPE ¢ 7
: Local Variable?2
: Procedure Parameter?

Parameters

Expression specifies a value used to identify columns, screen rows, or define
new column values. The syntax of expressions is presented in the
“Expressions” chapter. Only CHAR and VARCHAR expressions
are valid in LIKE predicates. Date/time columns cannot be
referred to directly; however, they can be placed inside the
conversion function TO_CHAR and be converted to a CHAR
value. Fzxpression cannot be a subquery.

NOT reverses the value of the predicate.
PatternString describes what you are searching for in the expression.

The pattern can consist of characters only (including digits). For
example, NAME LIKE ’Annie’ evaluates to true only for a name
of Annie. Uppercase and lowercase are significant.

You can also use the predicate to test for the existence of a partial
match, by using the following symbols in the pattern:

_ represents any single character; for example, BOB and
TOM both satisfy the predicate NAME LIKE *_ O _’.

% represents any string of zero or more characters;
for example, THOMAS and TOM both satisfy the
predicate NAME LIKE "%0%".

The _ and % symbols can be used multiple times and in any
combination in a pattern. You cannot use these symbols literally

9-12 Search Conditions

HostVariablel

FEscapeChar

HostVariable2

LocalVariable?2

Procedure Parameter?2

Description

LIKE Predicate

within a pattern unless the ESCAPE clause appears, and the
escape character precedes them. Note that they must be ASCII
and not your local representations.

identifies the host variable in which the pattern is stored.

IndicatorVariable1 names an indicator variable, an input
host variable whose value determines
whether the associated host variable
contains a NULL value:

>= (0 the value is not NULL
<0 thevalueis NULL

describes an optional escape character which can be used to
include the symbols _ and % in the pattern.

The escape character must be a single character, although it
can be a one- or two-byte NLS character. When it appears in
the pattern, it must be followed by the escaped character, host
variable or, _, or %. Each such pair represents a single literal
occurrence of the second character in the pattern. The escape
character is always case sensitive. All other characters are
interpreted as described before.

identifies the host variable containing the escape character.

IndicatorVariable2 names an indicator variable, an input
host variable whose value determines
whether the associated host variable
contains a NULL value:

>=0 the value is not NULL
<0 thevalueis NULL

If the escape character is NULL, the predicate evaluates to
unknown.

contains the escape character.

contains the escape character that is passed into or out of a
procedure.

indicates a dynamic parameter in a prepared SQL statement. The
value of the parameter is supplied when the statement is executed.

m If an escape character is not specified, then the _ or % in the pattern continues to act as a
wildcard. No default escape character is available. If an escape character is specified, then
the wildcard or escape character which follows an escape character is treated as a constant.
If the character following an escape character is not a wildcard or the escape character, an

error results.

m If the value of the expression, the pattern, or the escape character is NULL, then the LIKE
predicate evaluates to unknown.

Search Conditions 9-13

LIKE Predicate

Example

Vendors located in states beginning with an A are identified.

SELECT VendorName FROM PurchDB.Vendors
WHERE VendorState LIKE ’A%’

Vendors whose names begin with ACME_ are identified.

SELECT VendorName FROM PurchDB.Vendors
WHERE VendorName LIKE ’ACME!_%> ESCAPE 7!’

9-14 Search Conditions

NULL Predicate

NULL Predicate

A NULL predicate determines whether a primary has the value NULL. The predicate
evaluates to true if the primary is NULL. If the NOT option is used, the predicate evaluates
to true if the primary is not NULL.

Scope

SQL Data Manipulation Statements

SQL Syntax
ColumnName

?

: Local Variable

: HostVariable [[INDICATOR] : IndicatorVariable]

: Procedure Parameter
: 2 Built-in Variable
AddMonthsFunction
Aggregate Function
Constant
ConversionFunction
Current Function
LongColumnFunction

StringFunction
TIDFunction
(Erpression)

Parameters

ColumnName

HostVariable

LocalVariable

Procedure Parameter

IS [NOT |NULL

is the name of a column from which a value is to be taken;
column names are defined in the “Names” chapter.

contains a value in an application program being input to the
expression.

IndicatorVariable names an indicator variable, whose value
determines whether the associated host
variable contains a NULL value:

>=0 the value is not NULL

<0 the value is NULL (The value in the
host variable will be ignored.)

is a place holder for a dynamic parameter in a prepared SQL
statement in an application program. The value of the dynamic
parameter is supplied at run time.

contains a value in a procedure.

contains a value that is passed into or out of a procedure.

Search Conditions 9-15

NULL Predicate

Built-in Variable

is one of the following built-in variables used for error handling:

::sqlcode
:sqlerrd?2
::sglwarn0
::isqlwarnl
zsqlwarn2
sgqlwarn6
;:activexact

The first six of these have the same meaning that they have

as fields in the SQLCA in application programs. Note that in
procedures, sqlerrd2 returns the number of rows processed for all
host languages. However, in application programs, sqlerrd3 is
used in COBOL, Fortran, and Pascal, while sqlerr2 is used in C.
iactivexact indicates whether a transaction is in progress or not.
For additional information, refer to the application programming
guides and to the chapter “Constraints, Procedures, and Rules.”

AddMonthsFunction returns a value that represents a DATE or DATETIME value
with a certain number of months added to it.

Aggregate Function is a computed value; aggregate functions are defined in this
chapter.

Constant is a specific value; constants are defined later in this chapter.

ConversionFunction returns a value that is a conversion of a date/time data type into
an INTEGER or CHAR value, or from a CHAR value.

Current Function returns a value that represents the current DATE, TIME, or

LongColumnFunction

DATETIME.

returns information from a long column descriptor.

StringFunction returns a partial value or attribute of string data.

TIDFunction returns the database address of a row (or rows for a BULK
SELECT) of a table or an updatable view. You cannot use
mathematical operators with this function except to compare it to
a value, host variable, or dynamic parameter (using =, or <>) .

(Erpression) is one or more of the above primaries, enclosed in parentheses.

NOT reverses the value of the predicate that follows it.

Description

The primary may be of any data type except LONG BINARY or LONG VARBINARY.

Example

Vendors with no personal contact named are identified.

SELECT *
FROM PurchDB.Vendors
WHERE ContactName IS NULL

9-16 Search Conditions

Quantified Predicate

Quantified Predicate

A quantified predicate compares an expression with a list of specified values or a list of values
derived from a subquery. The predicate evaluates to true if the expression is related to the
value list as specified by the comparison operator and the quantifier.

Scope
SQL Data Manipulation Statements

SQL Syntax
© ALL
) > SubQuery
Frpression e ANY (ValueList)
SOME
<
<=

Parameters

Expression An expression specifies a value to be obtained. The syntax of
expressions is presented in the “Expressions” chapter.

= is equal to.

<> is not equal to.

> is greater than.

>= is greater than or equal to.

< is less than.

<= is less than or equal to.

ALL, ANY, SOME are quantifiers which indicate how many of the values from the
ValueList or SubQuery must relate to the expression as indicated
by the comparison operator in order for the predicate to be true.
Each quantifier is explained below:

ALL the predicate is true if all the values in the ValueList
or returned by the SubQuery relate to the expression
as indicated by the comparison operator.

ANY the predicate is true if any of the values in the
ValueList or returned by the SubQuery relate to the
expression as indicated by the comparison operator.

SOME a synonym for ANY.

SubQuery A subquery is a nested query. Subqueries are presented fully in

the description of the SELECT statement.

Search Conditions 9-17

Quantified Predicate

Valuel ist

9-18 Search Conditions

defines a list of values to be compared against the expression’s
value. The syntax for Valuelist is:

USER

?

USER

CurrentFunction

Integer

Float
Decimal

CharacterString

Hezxadecimal-
String

Current Function
. Integer
[_] Float
Decimal
> CharacterString’

: Local Variable

: Procedure Parameter
: 2 Built-in Variable
LongColumnFunction
StringFunction

Ox HezxadecimalString []
: Host Variable [[INDICATOR] :Indicator] T

USER evaluates to logon name. In ISQL, it
evaluates to the logon name of the ISQL user.
From an application program, it evaluates to
the login name of the individual running the
program. USER behaves like a CHAR(20)
constant, with trailing blanks if the logon
name has fewer than 20 characters.

indicates the value of the current DATE,
TIME, or DATETIME.

indicates a value of type INTEGER or
SMALLINT.

indicates a value of type FLOAT.
indicates a value of type DECIMAL.

specifies a CHAR, VARCHAR, DATE, TIME,
DATETIME, or INTERVAL value. Whichever
is shorter—the string or the expression value—
is padded with blanks before the comparison is
made.

specifies a BINARY or VARBINARY value. If
the string is shorter than the target column,

it is padded with binary zeroes; if it is longer
than the target column, it is truncated.

Quantified Predicate

HostVariable identifies the host variable containing the
column value.

IndicatorVariable1 names an indicator variable, an input
host variable whose value determines
whether the associated host variable
contains a NULL value:

>= (0 the value is not NULL
<0 thevalueis NULL

LocalVariable contains a value in a procedure.
Procedure Parameter contains a value that is passed into or out of a procedure.
? indicates a dynamic parameter in a prepared SQL statement. The

value of the parameter is supplied when the statement is executed.

Description

m If X is the value of Fpression, and (a,b, ... , z) represent the result of a SubQuery or the
elements in a ValuelList, and OP is a comparison operator, then the following are true:

o X OP ANY (a,b, ... ,z) is equivalent to X 0P a ORX0Pb OR ... ORX QP z
o X 0P ALL (a,b, ... ,z) is equivalent to X OP a AND X OP b AND ... AND X OP z

m Character strings are compared according to the HP 8-bit ASCII collating sequence for
ASCII data, or the collation rules for the native language of the DBEnvironment for NLS
data. Column data would either be ASCII data or NLS data depending on how the column
was declared upon its creation. Constants will be ASCII data or NLS data depending
on whether the user is using NLS or not. If an ASCII expression is compared to an NLS
expression, the two expressions are compared using the NLS collation rules.

m Refer to the “Data Types” chapter for information about the type conversions that
ALLBASE/SQL performs when you compare values of different types.

m [f any value of any element in the value list is a NULL value, then that value is not
considered a part of the ValueList.

Note To be consistent with the standard SQL and to support portability of code,
it is strongly recommended that you use a —1 to indicate a NULL value.
However, ALLBASE/SQL interprets all negative indicator variable values as
indicating a NULL value in the corresponding host variable.

Search Conditions 9-19

Quantified Predicate

Example

Get supplier numbers for suppliers who supply at least one part in a quantity greater than
every quantity in which supplier S1 supplies a part.

SELECT DISTINCT SP.SHO
FROM SP
WHERE SP.QTY > ALL (SELECT SP.QTY
FROM SP
WHERE SP.SNO = ’S1°)

An alternative, possibly faster form of the query is:

SELECT DISTINCT SP.SHO
FROM SP
WHERE SP.QTY > (SELECT MAX(SP.QTY)
FROM SP
WHERE SP.SHNO = ’S1°)

9-20 Search Conditions

10

SQL Statements

This chapter describes all the SQI. statements in alphabetical order, giving syntax,
parameters, descriptions, authorization requirements, and examples for each statement.
Examples often consist of groups of statements so you can see how each statement is related
to other statements functionally.

SQL Statement Summary

SQL statements fall into four groups. General-purpose statements are used programmatically,
interactively, and in procedures. Application programming statements are used in application
programs. Database administration statements are usually used interactively. Procedure,
control flow, and status statements are used only in procedures. Within each of these groups,
the SQL statements fall into categories, as shown in Table 10-1.

Table 10-1. SQL Statement Summary

Group Category Statement Statement Use
General-purpose DBEnvironment CONNECT Begins a DBEnvironment session.
statements session management

DISCONNECT Terminates a connection to a
DBEnvironment, or all
connections.

SET CONNECTION | Sets the current connection
within the currently connected
set of DBEnvironments.

SET MULTI- Switches between
TRANSACTION single-transaction mode and
multi-transaction mode.

RELEASE Terminates a DBEnvironment
session.

SQL Statements 10-1

Table 10-1. SQL Statement Summary (continued)

Group Category

Statement

Statement Use

General-purpose Data definition

statements
(continued)

Databases

Indexes

Tables

Views

Rules

Groups,
DBEFileSets,
DBEFiles

Procedures

CREATE SCHEMA

CREATE INDEX

DROP INDEX
ALTER TABLE

RENAME COLUMN

RENAME TABLE

CREATE TABLE

TRUNCATE
TABLE

DROP TABLE

CREATE VIEW

DROP VIEW

CREATE RULE

DROP RULE

Refer to the database
administration
statements.

CREATE
PROCEDURE

DROP
PROCEDURE

Defines a database and associates
1t with an authorization name.

Defines an index for a table based
on one or more of its columns.

Deletes an index.

Adds to a table new columns and
constraints, or drops constraints
from a table, and assigns a table
to a partition or removes it from
a partition.

Defines a new name for an
existing column.

Defines a new name for an
existing table.

Defines a table and assigns it to a
partition.

Deletes all rows from a table.

Deletes a table and any
authorities, indexes, rules, and
views based on it.

Defines a view based on a table,
another view, or a combination of
tables and views.

Deletes the definition of a view as
well as authorities or views based
on the view.

Defines a rule for a table and
associates it with INSERTS,
UPDATES, and/or DELETES.

Deletes a rule.

Defines a procedure for storage in
the DBEnvironment.

Deletes a procedure.

10-2 SQL Statements

Table 10-1. SQL Statement Summary (continued)

Group Category Statement Statement Use
General-purpose Partitions CREATE Defines a partition for audit
statements PARTITION logging in the DBEnvironment.
(continued)

Data manipulation

Transaction
management

DROP PARTITION
DELETE

INSERT

SELECT

UPDATE

DROP MODULE
EXECUTE

EXECUTE
IMMEDIATE

PREPARE

BEGIN WORK

COMMIT WORK

ROLLBACK WORK

SAVEPOINT

SET DML
ATOMICITY

SET
CONSTRAINTS

Deletes a partition.

Deletes one or more rows from a
single table or view.

Adds a row to a single table or
view.

Retrieves data from one or more
tables or views.

Changes the values of one or
more columns in all rows of a
specific table or view that satisfy
a search condition.

Deletes a preprocessed module.

Executes dynamically
preprocessed statements.

Defines and executes dynamic
statements.

Dynamically preprocesses
statements, storing them as a
module if issued interactively.

Begins a transaction and
optionally sets its isolation level
and priority.

Ends a transaction and makes
permanent any changes it made
to the DBEnvironment.

Ends a transaction and undoes
changes made to the
DBEnvironment during the whole
transaction or back to a
savepoint within the transaction.

Defines a point within a
transaction back to which you
can roll back work.

Sets the general error checking
level.

Sets the level of constraint error
checking.

SQL Statements 10-3

Table 10-1. SQL Statement Summary (continued)

Group Category Statement Statement Use
General-purpose SET SESSION Sets transaction attributes for a
statements session.

(continued)

SET Sets execution attributes for a

TRANSACTION transaction.

Executing EXECUTE Invokes a procedure.

procedures PROCEDURE

Other RAISE ERROR Causes a user-defined error to
occur and specifies the error
number and text to be raised.

Concurrency CREATE TABLE Defines the automatic locking
strategy and implicit authority
grants used for a table.

LOCK TABLE Locks a table, explicitly
overriding ALLBASE/SQL’s
automatic locking strategy.

START DBE Defines the maximum number of
transactions that can execute
concurrently, when used with the
TRANSACTION= parameter.

Module maintenance | DROP MODULE Deletes a module from the system
catalog, optionally retaining
authorization information.

GENPLAN Places optimizer’s access plan in
SYSTEM.PLAN (from ISQL
only).

SETOPT Modifies access optimization plan
used by queries.

VALIDATE Validates modules and
procedures.

Application Single row data FETCH Retrieves a single row from an
programming manipulations active set associated with a
statements CUTSOT.

INSERT Inserts a single row into a table.

SELECT Retrieves a single row not

assoclated with a cursor.

10-4 SQL Statements

Table 10-1. SQL Statement Summary (continued)

Group Category Statement Statement Use
Application Bulk manipulations |BULK FETCH Retrieves multiple rows from an
programming active set associated with a
statements cursor. (See FETCH.)
(continued)

Cursor management

Preprocessor
directives

BULK INSERT

BULK SELECT

ADVANCE

CLOSE

DECLARE
CURSOR

DELETE WHERE

CURRENT
FETCH

REFETCH

OPEN

UPDATE WHERE
CURRENT

BEGIN DECLARE
SECTION

END DECLARE
SECTION

INCLUDE

Inserts multiple rows into a single

table. (See INSERT.)

Retrieves multiple rows not
associated with a cursor. (See

SELECT.)
Advances a procedure cursor.

Closes a cursor currently in the
open state.

Assoclates a cursor with a
specific SELECT or EXECUTE
PROCEDURE statement.

Deletes the current row of an
active set.

Advances the position of an open
cursor to the next row of the
active set and copies columns
into host variables.

Copies columns from the current
cursor position in the active set
into host variables. Used with the
RU and RC isolation levels to
verify the continued existence of
data and to obtain stronger locks
prior to updating.

Makes an active set available to
manipulation statements.

Changes columns in the current
row of the active set.

Indicates the beginning of the
host variable declarations in an
application program.

Indicates the end of the host
variable declarations in an
application program.

Includes declarations for
structures used to pass
information between

ALLBASE/SQL and a program.

SQL Statements 10-5

Table 10-1. SQL Statement Summary (continued)

Group Category Statement Statement Use
Application
programming
statements
(continued)
WHENEVER Specifies an action to be taken
depending on the outcome of an
SQL statement.
Dynamically DESCRIBE Obtains information about the
preprocessed queries results of a dynamic statement.
EXECUTE Refer to general-purpose
EXECUTE IMME- | statements.
DIATE
PREPARE
Status messages SQLEXPLAIN Retrieves a message describing
the status of SQL statement
execution.
Database Authorization GRANT Grants authorities to all users,
administration specific users, or groups.
statements
REVOKE Revokes authorities from all
users, specific users, or groups.
TRANSFER Makes a different user or
OWNERSHIP authorization group the owner of

Authorization groups

DBEnvironment
configuration and use

ADD TO GROUP

CREATE GROUP

DROP GROUP

REMOVE FROM
GROUP

START DBE NEW

START DBE

a table, view, authorization
group, or procedure.

Adds one or more users or groups
to an authorization group.

Defines an authorization group.

Removes the definition of an
authorization group from the
system catalog.

Removes one or more users or
groups from an authorization

group.

Configures a new
DBEnvironment.

Makes a DBEnvironment
available in a mode different from
that defined in the DBECon file;
also starts up a DBEnvironment
when the autostart flag is off.

10-6 SQL Statements

Table 10-1. SQL Statement Summary (continued)

Group

Category

Statement

Statement Use

Database
administration
statements
(continued)

STOP DBE

DBEnvironment
settings

Space management

DBEFiles

Terminates all DBE
sessions and causes a
checkpoint to be
taken, recovering log
file space 1f
nonarchive logging is
in effect.

TERMINATE
QUERY

TERMINATE
TRANSACTION
TERMINATE USER
ENABLE RULES

DISABLE RULES

SET PRINTRULES

SET USER
TIMEOUT

ADD DBEFILE

ALTER DBEFILE

CREATE DBEFILE

DROP DBEFILE

REMOVE DBEFILE

Terminates a running Query.

Stops the transaction.

Stops the DBE session for a
specific user.

Turns rule checking on for the
current DBEnvironment session.

Turns rule checking off for the
current DBEnvironment session.

Specifies whether rule names and
statement types are to be issued
as messages when the rules are
fired during a DBEnvironment
session.

Specifies the amount of time the
user waits if requested database
resource is unavailable.

Assoclates a DBEFile with a
DBEFileSet.

Changes the type attribute of a
DBEFile.

Defines and creates a DBEFile,
optionally specifying a group
name and volume.

Removes the definition of an
empty DBEFile not associated
with a DBEFileSet.

Disassociates a DBEFile from a
DBEFileSet.

SQL Statements 10-7

Table 10-1. SQL Statement Summary (continued)

Group Category Statement Statement Use
Database DBEFileSets CREATE Defines a DBEFileSet.
administration DBEFILESET
statements
(continued)

DBEFileSets SET DEFAULT Sets a default DBEFileSet.

Temporary sort
space

Logging

Recovery of log
space

DBEFILESET
DROP
DBEFILESET
CREATE
TEMPSPACE

DROP
TEMPSPACE

BEGIN ARCHIVE
COMMIT ARCHIVE

CHECKPOINT

START DBE
NEWLOG

START DBE

STOP DBE

Removes the definition of a
DBEFileSet from the system
catalog.

Defines and creates a temporary
storage space.

Removes the definition of a
temporary storage space from the
system catalog.

Starts a new archive log file
before a DBEnvironment is back

up.

Causes an ALLBASE/SQL
system checkpoint to be taken. A
system checkpoint causes data
and log buffers to be written to
disk and makes old log space,
occupied by completed
transactions, available for reuse if
nonarchive logging is in effect.
Returns values in host variable.

Reinitializes log file(s) when you
need to change the size. Makes
audit logging effective when used

with AUDIT LOG option.

Initiates the first DBE session if
the DBE is not in autostart mode
and causes a checkpoint to be
taken, recovering log file space if
nonarchive logging is in effect.

Terminates all DBE sessions and
causes a checkpoint to be taken,
recovering log file space if
nonarchive logging is in effect.

10-8 SQL Statements

Table 10-1. SQL Statement Summary (continued)

Group Category Statement Statement Use
Database Dual logging START DBE NEW | Causes ALLBASE/SQL to
administration maintain two separate, identical
statements logs, when used with the DUAL
(continued) LOG option. Makes audit logging

Audit logging

Log comment

Recovery

Rollback

Rollforward

DBEnvironment
statistics

DISABLE AUDIT
LOGGING

LOG COMMENT
ENABLE AUDIT
LOGGING
START DBE

TERMINATE USER

STOP DBE

BEGIN ARCHIVE
COMMIT ARCHIVE

RESET

UPDATE
STATISTICS

effective when used with AUDIT
LOG option.

Disables current audit logging for
a session.

Enters a user comment in the log

file.

Enables audit logging for a
session after being disabled.

Rolls back transactions that were
incomplete the last time the
DBEnvironment was shut down.

Ends a user’s transactions,
backing out any work not
committed.

Terminates all DBE sessions and
causes a checkpoint to be taken,

Creates an archive record in the
rollforward log(s) and initiates
archive mode logging.

Resets ALLBASE/SQL
accounting and statistical data
activity management.

Updates system catalog
information used to optimize
data access operations on a per
table basis.

SQL Statements 10-9

Table 10-1. SQL Statement Summary (continued)

Group Category Statement Statement Use
Procedure General statements | Assignment (=) Assigns a value to a local variable
statements or parameter in a procedure.

Control flow
statements

DECLARE Variable

PRINT

BEGIN

GOTO

Label

IF

RETURN

WHILE

Defines a local variable within a
procedure.

Stores information to be
displayed by ISQL or an
application program.

Begins a single statement or
group of statements within a
procedure.

Permits a jump to a labeled
statement within a procedure.

Labels a statement in a
procedure.

Allows conditional execution of
one or more statements within a
procedure.

Permits an exit from a procedure
with an optional return code.

Allows looping within a
procedure.

10-10 SQL Statements

ADD DBEFILE

ADD DBEFILE

The ADD DBEFILE statement updates a row in SYSTEM.DBEFile to show the DBEFileSet
with which the file is associated.

Scope

ISQL or Application Program

SQL Syntax

ADD DBEFILE DBFEFile Name TO DBEFILESET DBFFileSetName

Parameters

DBEFileName is the name of a DBEFile previously defined and created by the
CREATE DBEFILE statement.

DBEFileSetName is the name of a previously defined DBEFileSet. You can use the
CREATE DBEFILESET statement to define DBEFileSets.

Description

m You cannot insert any rows or create any indexes for a table or put any non-null values in a
LONG column until the DBEFileSet it is located in has DBEFiles associated with it.

m You can add DBEFiles to the SYSTEM DBEFileSet.

m Before a DBEFile can be added to the SYSTEM DBEFileSet, other users’ transactions
must complete. Other users must wait until the transaction that is adding the DBEFile to
SYSTEM has completed.

m ADD DBEFILE increases the number of files associated with the DBEFileSet shown in the
DBEFSNDBEFILES column of SYSTEM.DBEFileSet by one.

Authorization

You must have DBA authority to use this statement.

Example

CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
NAME = ’ThisFile’, TYPE = TABLE

CREATE DBEFILESET Miscellaneous

ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, a DBEFile
to store rows of the index is created:

CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
NAME = ’ThatFile’, TYPE = INDEX

ADD DBEFILE ThatDBEFile TO DBEFILESET Miscellaneous

SQL Statements 10-11

ADD DBEFILE

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM
ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

All rows are later deleted from the table, so you can reclaim file space.

REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous
DROP DBEFILE ThisDBEFile
The DBEFileSet definition can now be dropped.

DROP DBEFILESET Miscellaneous

10-12 SQL Statements

ADD TO GROUP

ADD TO GROUP

The ADD TO GROUP statement adds one or more users or groups, or a combination of users
and groups, to an authorization group.

Scope

ISQL or Application Program

SQL Syntax
DBEUserlD
ADD { GroupName [,]TO GROUP TargetGroupName
ClassName
Parameters
DBEUserlD identifies a user to be added. You cannot specify the name of the
DBECreator.
GroupName identifies a group to be added.
ClassName identifies a class to be added.
TargetGroupName is the name of the authorization group to which the specified
users, groups, and classes are to be added.
Description

m You can specify a single parameter chosen from the available types. You can also specify
multiple parameters (using the same or multiple types) separating them with commas.

m Two authorization groups cannot be members of each other, that is group membership
cannot follow a circular chain. If, for example, group3 is a member of group2, and group?2 is
a member of groupl, groupl cannot be a member of group2 or groups3.

m You cannot add an authorization group to itself.

m When you specify several users or groups in one ADD TO GROUP statement,
ALLBASE/SQL ignores any invalid names, but processes the valid names.

Authorization

You can use this statement if you have OWNER authority for the authorization group or if
you have DBA authority.

SQL Statements 10-13

ADD TO GROUP

Example

CREATE GROUP Warehse
GRANT CONNECT TO Warehse

GRANT SELECT,
UPDATE (BinNumber,QtyOnHand,LastCountDate)
ON PurchDB.Inventory
TO Warehse

These two users will be able to start DBE sessions on PartsDBE, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

ADD CLEMOTHOMAS, GEORGEGCRAMMER TO GROUP Warehse
Clem will no longer have any of the authorities associated with group Warehse.
REMOVE CLEMQTHOMAS FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

DROP GROUP Warehse

10-14 SQL Statements

ADVANCE

ADVANCE

The ADVANCE statement is a procedure cursor manipulation statement. It is used in
conjunction with procedures having one or more multiple row result sets to advance the
position of an opened procedure cursor to the first or next query result set and to initialize
information in the associated sqlda_type and sqlformat_type data structures.

Scope

Application Programs Only

SQL Syntax

SQLDA
ADVANCE CursorName |USING [SQL]DESCRIPTOR
AreaName

Parameters

CursorName identifies a procedure cursor. The procedure cursor’s current
active query result set, the procedure’s statements, and the
values of any procedure input parameters, determine the format
information to be returned by each successive ADVANCE
statement.

USING [SQL] DESCRIPTOR defines where to place the data format information of a query
result for an EXECUTE PROCEDURE statement on which a
procedure cursor has been defined. Specify a location that does
not conflict with that of another SQL statement such as OPEN,
CLOSE, DESCRIBE, EXECUTE, or any FETCH that is not
associated with this ADVANCE statement.

SQLDA specifies that a data structure of sqlda_type named SQLDA is to
be used to pass information about the next result set between the

application and ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of sqlda_type
that is to be used to pass information about the next result set
between the application and ALLBASE/SQL.

Description

m The query result set to which the procedure cursor points is called the active result set. You
use the information in the associated sqlda_type and sqlformat_type data structures to
process the query result set via FETCH statements.

SQL Statements 10-15

ADVANCE

m For a procedure that returns multiple row results of a single format, if the procedure was
created with the WITH RESULT clause, it is unnecessary to issue an ADVANCE statement
to get format information for each result set, since the format is already known from the

DESCRIBE RESULT statement.

m The ADVANCE statement cancels any current, active query result set. It can be used
as an eflicient way to throw away any unread rows resulting from the most recently
executed multiple row result set SELECT statement in the procedure. The execution of the
procedure continues with the next statement. Control returns to the application when the
next multiple row result set statement is executed, or when procedure execution terminates.

m Refer to the ALLBASE/SQL Advanced Application Programming Guide for further
explanation and examples of how to use the ADVANCE statement.

Authorization
You do not need authorization to use the ADVANCE statement.

Example

Refer to the ALLBASE/SQL Advanced Application Programming Guide for a pseudocode
example of procedure cursor usage.

10-16 SQL Statements

ALTER DBEFILE

ALTER DBEFILE
The ALTER DBEFILE statement changes the TYPE attribute of a DBEFile.

Scope

ISQL or Application Program

SQL Syntax
TABLE
ALTER DBEFILE DBFFileName SET TYPE = ¢ INDEX
MIXED
Parameters
DBEFileName specifies the DBEFile to be altered.
TYPE = specifies the new setting of the DBEFile’s TYPE attribute. The
following are valid settings:
TABLE Only data (table, LONG column, or HASH) pages
can be stored in the DBEFile.
INDEX Only index pages can be stored in the DBEFile.
MIXED A mixture of data and index pages can be stored in
the DBEFile.
Description

m The type of an empty DBEFile, that is, a DBEFile in which no table or index entries exist,
can be changed without restriction.

m The type of a nonempty DBEFile can be changed from TABLE or INDEX to MIXED; no
other changes are allowed.

m Once a DBEFile contains primary pages for a HASH table, no other nonhash table, index,
or LONG data can be placed in that DBEFile.

m Before you can alter the type of a DBEFile in the SYSTEM DBEFileSet, other users’
transactions must complete. Other users must wait until the transaction that is altering the
DBEFile has completed.

Authorization

You must have DBA authority to use this statement.

SQL Statements 10-17

ALTER DBEFILE

Example

CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
NAME = ’ThisFile’, TYPE = TABLE

CREATE DBEFILESET Miscellaneous

ADD DBEFILE ThisDBEFile
TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs a DBEFile in which
to store an index, one is created as follows:

CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
NAME = ’ThatFile’, TYPE = INDEX

ADD DBEFILE ThatDBEFile
TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous

ADD DBEFILE ThatDBEFile
TO DBEFILESET SYSTEM

ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

All rows are later deleted from the table, so you can reclaim file space.

REMOVE DBEFILE ThisDBEFile
FROM DBEFILESET Miscellaneous

DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

DROP DBEFILESET Miscellaneous

10-18 SQL Statements

ALTER TABLE

ALTER TABLE

The ALTER TABLE statement is used to add one or more new columns or constraints, to
drop one or more constraints, or to reassign the table audit partition. This statement is also
used to change the type of table access, updatability, and locking strategies. New columns are
appended following already existing columns of a table. New column definitions must either
allow null values or provide default values if the table is not empty. Added columns may
specify constraints.

Scope

ISQL or Application Programs

SQL Syntax

AddColumnSpecification

AddConstraintSpecification
ALTER TABLE [Owner.] TableName { DropConstraintSpecification

Set TypeSpecification

Set PartitionSpecification

Parameters—ALTER TABLE
[Owner.] Table Name designates the table to be altered.

AddColumnSpecification allows a new column to be added to an existing table. This
parameter is discussed in a separate section below.

AddConstraintSpecification allows a new constraint to be added to an existing table. This
parameter is discussed in a separate section below.

DropConstraintSpecifica- allows an existing constraint to be dropped from an existing table.
tion This parameter is discussed in a separate section below.
Set TypeSpecification allows the locking mode of the table and related authorities to be

changed. This parameter is discussed in a separate section below.

Set PartitionSpecification allows a table or DBEnvironment partition to be changed.

SQL Syntax—AddColumnSpecification

ADD (ColumnDefinition [s e
Column Definition

P } [CLUSTERING ON CONSTRAINT | ConstraintID| |

SQL Statements 10-19

ALTER TABLE

Parameters—AddColumnSpecification

ColumnDefinition The syntax of ColumnDefinition is presented under the CREATE
TABLE statement.

CLUSTERING ON specifies that the named unique or referential constraint specified

CONSTRAINT within the Column Definition be managed through a clustered

index structure rather than nonclustered. The unique constraint’s
unique column list, or referential constraint’s referencing column
list, becomes the clustered key.

ConstraintID specifies the unique or referential constraint on which clustering
is to be applied. If not specified, the primary key of the table is
agsumed. The ConstraintID must be for a constraint being added
with the ALTER TABLE statement.

SQL Syntax—AddConstraintSpecification

UniqueConstraint

ADD CONSTRAINT (¢ ReferentialConstraint 3|, ... |)
CheckConstraint

[CLUSTERING ON CONSTRAINT | ConstraintID1] |

Parameters—AddConstraintSpecification

UniqueConstraint defines a unique constraint being added. This parameter is
described under the CREATE TABLE statement.

ReferentialConstraint defines a referential constraint being added. This parameter is
described under the CREATE TABLE statement.

CheckConstraint defines a check constraint being added. This parameter is
described under the CREATE TABLE statement.

CLUSTERING ON specifies that the named unique or referential constraint be

CONSTRAINT managed through a clustered index structure rather than
nonclustered. The unique constraint’s unique column list, or
referential constraint’s referencing column list, becomes the
clustered key.

ConstraintID1 specifies the unique or referential constraint name on which
clustering is to be applied. If not specified, the primary key of the
table is assumed. ConstraintID1 must be for a constraint being

added with the ALTER TABLE statement.

10-20 SOQL Statements

ALTER TABLE

SQL Syntax—DropConstraintSpecification

(ConstraintlD [,])
DROP CONSTRAINT .
ConstraintlD

Parameters—DropConstraintSpecification

ConstraintID is the name of the constraint optionally defined when the
constraint was defined.

SQL Syntax—SetTypeSpecification

PRIVATE

PUBLICREAD RESET AUTHORITY
SET TYPE

PUBLIC PRESERVE AUTHORITY

PUBLICROW

Parameters—SetTypeSpecification

PRIVATE enables the table to be used by only one transaction at a
time. Locks are applied at the table level. This is the most
efficient option for tables that do not need to be shared because
ALLBASE/SQL spends less time managing locks.

If RESET AUTHORITY is specified, the option automatically
revokes all authorities on the table from PUBLIC. Otherwise, the
authority on the table remains unchanged.

PUBLICREAD enables the table to be read by concurrent transactions, but
allows no more than one transaction at a time to update the
table. Locks are applied at the table level.

If RESET AUTHORITY is specified, the option automatically
issues GRANT SELECT on Quwner. Table Name to PUBLIC,
and revokes all other authorities on the table from PUBLIC.
Otherwise, the authority on the table remains unchanged.

PUBLIC enables the table to be read and updated by concurrent
transactions. The locking unit is a page. A transaction locks a
page in share mode before reading it and in exclusive mode before
updating it.

If RESET AUTHORITY is specified, the option automatically
issues GRANT ALL on Owner.TableName to PUBLIC.

Otherwise, the authority on the table remains unchanged.

PUBLICROW enables the table to be read and updated by concurrent
transactions. The locking unit is a row. A transaction locks a
row in share mode before reading it and in exclusive mode before
updating it.

SQL Statements 10-21

ALTER TABLE

If RESET AUTHORITY is specified, the option automatically
issues GRANT ALL on Owner.TableName to PUBLIC.

Otherwise, the authority on the table remains unchanged.

RESET AUTHORITY is used to indicate that the authority on the table should be

changed to reflect the new table type. If not specified, the
authority on the table remains unchanged.

PRESERVE AUTHORITY is used to indicate that the authority currently in effect on the

table should be preserved. This is the default.

SQL Syntax—SetPartitionSpecification

PartitionName
SET PARTITION DEFAULT
NONE

Parameters—SetPartitionSpecification

PartitionName specifies the new partition of the table.

DEFAULT specifies the new partition of the table to be the default partition

of the DBEnvironment. If the default partition number is later
changed, that change will automatically be recorded the next time
an INSERT, UPDATE, or DELETE operation is executed on the
table. If the default partition is NONE at that time, audit logging
of the operation is not done.

NONE specifies that the table is no longer in any partition. No further

audit logging will be done on the table.

Description

Unless the table is currently empty, you cannot specify the NOT NULL attribute for any
new columns unless you specify a default value.

If no DEFAULT clause is given for an added column, an implicit DEFAULT NULL is
assumed. Any INSERT statement which does not include a column for which a default has
been declared causes the default value to be inserted into that column for all rows inserted.

All rows currently in the table are updated with the default value for any new column which
specifies default values.

The ALTER TABLE statement can invalidate stored sections.
Character strings are accepted as date/time default values.

If an added constraint is violated when it is defined, an error message is immediately issued
and the ALTER TABLE statement has no effect.

A unique constraint referenced by a FOREIGN KEY cannot be dropped without first
dropping the referential constraint.

Constraints being added in AddConstraintSpecification must be on existing columns of the
table.

10-22 SQL Statements

ALTER TABLE

The ALTER TABLE statement can be used to change the type of an existing table.
Changing the type of a table redefines the locking strategy that ALLBASE/SQL uses when
the table is accessed. You can decide whether to use page or row level locking for your
applications.

No other transaction can access the table until the transaction that issued the ALTER
TABLE statement has committed.

The type of a table is changed permanently when you issue a COMMIT WORK statement.

When altering the type of an existing table, you can also specify the option to preserve
existing authority on the table or change the authority to the default for the new table type.
If you specify RESET AUTHORITY, the following changes are made to the table authority:

Table 10-2. Changes to Table Authority in ALTER TABLE

Old Table Type New Table Type Changes to Authority
PRIVATE PUBLIC Grant ALL to PUBLIC
PUBLICROW Grant ALL to PUBLIC
PUBLICREAD Grant SELECT to PUBLIC
PUBLICREAD PUBLIC Grant ALL to PUBLIC
PUBLICROW Grant ALL to PUBLIC
PRIVATE Revoke ALL from PUBLIC
PUBLIC PUBLICROW No change
PUBLICREAD Revoke ALL from PUBLIC
Grant SELECT to PUBLIC
PRIVATE Revoke ALL from PUBLIC
PUBLICROW PUBLIC No change
PUBLICREAD Revoke ALL from PUBLIC
Grant SELECT to PUBLIC
PRIVATE Revoke ALL from PUBLIC

To indicate that a table is in no partition, the partition NONE can be specified.

The PartitionName specified must be one previously defined in a CREATE PARTITION
statement, must be the DEFAULT partition, or must be specified as NONE.

Changing the partition number of the table causes all future audit logging on the table to
use the new partition number. Past audit log records will not be altered to reflect a change
in a table’s partition number; that is, the effect of this statement is not retroactively applied
to existing log records. If NONE was specified, there will be no more audit logging done

on this table (until another ALTER TABLE SET PARTITION statement is issued on the
table).

When specifiyving CLUSTERING ON CONSTRAINT, an error is returned if the table is

already clustered on a constraint or index or if the table is hashed.

Adding a clustered constraint does not affect the physical placement of rows already in the
table.

See syntax for the CREATE TABLE and CREATE INDEX statements for more
information on clustering.

SQL Statements 10-23

ALTER TABLE

Authorization

You can issue this statement if you have ALTER or OWNER authority for the table or if you
have DBA authority.

To define added referential constraints, the table owner must have REFERENCES authority
on the referenced table and referenced columns, own the referenced table, or have DBA
authority.

To specify a DBEFileSetName for a long column, the table owner must have TABLESPACE
authority on the referenced DBEFileSet.

To specify a DBEFileSetName for a check constraint, the section owner must have
SECTIONSPACE authority on the referenced DBEFileSet.

Examples
Two new columns, ShippingWeight and PartDescription, are added to table PurchDB.Parts.
ShippingWeight must be greater than 0.

ALTER TABLE PurchDB.Parts
ADD (ShippingWeight DECIMAL(6,3) CHECK (ShippingWeight > 0)
CONSTRAINT Check Weight,
PartDescription CHAR(40))

A constraint is added to table PurchDB.Parts to ensure that the sales price is greater than

$100.
ALTER TABLE PurchDB.Parts
ADD CONSTRATNT GHECK (SalesPrice > 100.) CONSTRAINT Check Price
A column named DiscountPercent is added to table PurchDB.Orderltems, with a default value
of 0 percent.
ALTER TABLE PurchDB.OrderItems
ADD (DiscountPercent FLOAT DEFAULT 0)
The constraint named Check Price is dropped.
ALTER TABLE PurchDB.Parts
DROP CONSTRAINT Check Price
The type of a table is changed:
ALTER TABLE PurchDB.OrderItems
SET TYPE PUBLICROW
The table’s partition is modified to be partition PartsPart2.
ALTER TABLE PurchDB.Parts
SET: PARTITION PartsPart2;
No more audit logging will be done on the table.

ALTER TABLE PurchDB.Parts
SET PARTITION NONE;

10-24 SQL Statements

Assignment (=)

Assignment (=)

The assignment statement is used in a procedure to assign a value to a local variable or
procedure parameter.

Scope

Procedures only

SQL Syntax

{ : Local Variable

= Fxpression;
: Procedure Parameter } P ’

Parameters

Local Variable identifies the local variable to which a value is being assigned.
The variable name has a : prefix. Local variables are declared
in the procedure definition using the DECLARE statement.

Procedure Parameter identifies the procedure parameter to which a value is being
assigned. The procedure parameter has a : prefix. Parameters
are declared in parentheses following the procedure name in
the procedure definition.

Expression identifies an expression whose value is assigned to the local
variable. The Fzpression may include anything that is allowed
in an SQL expression except host variables, subqueries, column
references, dynamic parameters, aggregate functions, date/time
functions involving column references, string functions, TID
functions, and long column functions. Local variables, built-in
variables, and procedure parameters may be included. See the
“Expressions” chapter for more information.

Description

m Host variables are not allowed anywhere in procedures, including Fzpressions assigned to
local variables or parameters. However, local variables, built-in variables, and parameters
may be used in an Ezpression anywhere a host variable would be allowed in an application
program.

m The data type of the expression result must be compatible with that of the parameter or
variable to which it is being assigned.

SQL Statements 10-25

Assignment (=)

Authorization

Anyone can use the assignment statement in a procedure definition.

Example

:msg = ’Vendor number found in "Orders" table.’;
:SalesPrice = :01dPrice;

:NewPrice = :SalesPrice*.80;

:nrows = ::sqlerrd2;

10-26 SQL Statements

BEGIN

BEGIN

The BEGIN statement is a compound statement and defines a group of statements within a
procedure.

Scope

Procedures only

SQL Syntax

BEGIN [Statement;][... |END;

Parameters

Statement is the statement or statements between the begin and end of the
statement.

Description

m This statement can be used to improve readability.

Authorization

Anyone can use the BEGIN statement.

Example

CREATE PROCEDURE PurchDB.DiscountPart(PartHumber CHAR(16))
AS BEGIN
DECLARE SalesPrice DECTMAL(6,2) ;

SELECT SalesPrice INTO :SalesPrice
FROM PurchDB.Parts
WHERE PartNumber = :PartHumber;

IF ::sqlcode = O THEN
IF :SalesPrice > 100. THEN
BEGIN
:SalesPrice = :SalesPrice*.80;
INSERT INTO PurchDB.Discounts
VALUES (:Partllumber, :SalesPrice);
END
ENDIF;
ENDIF;
END;

SQL Statements 10-27

BEGIN ARCHIVE

If you do not have TURBO STORE and must do a static backup of your DBEnvironment,
you can use the BEGIN ARCHIVE statement in conjunction with and immediately prior to
the COMMIT ARCHIVE statement to start a new archive log file before a DBEnvironment
is backed up. However, if you have TURBO STORE, the recommended approach to initiate
archive logging is to use the SQLUtil STOREONLINE command, or to use the ARCHIVE
option with the START DBE NEWLOG statement.

Scope

ISQL or Application Programs

SQL Syntax

BEGIN ARCHIVE

Description

You can turn archive mode off only by using the START DBE NEWLOG statement.

A backup copy of a DBEnvironment and an archive log file can be used for rollforward
recovery when database files are physically damaged. In this type of recovery, you load
a backup copy of the DBEnvironment, then issue the SQLUtil SETUPRECOVERY,
RECOVERLOG, and ENDRECOVERY commands. You may also need to use
RESCUELOG.

Use the following method to create a new archive log and a static backup of the
DBEnvironment:

0 Issue the BEGIN ARCHIVE statement, then the COMMIT ARCHIVE statement, to
write an archive record in the rollforward log. The archive record indicates the point from
which rollforward recovery can begin.

0 Use the SQLUtl STORE command to make a static backup copy of the DBEnvironment.
The DBEnvironment must be stopped and remain stopped while you are making the
static backup copy if you are using STORE. This procedure does not turn the archive flag
in the DBECon file on or off. You cannot use STORE from an application program, since
it is an SQLUtil command.

Refer to the ALLBASE/SQL Database Administration Guide for detailed backup and recovery
procedures and recommended practices.

Authorization

You must have DBA authority to use this statement.

10-28 SQL Statements

BEGIN ARCHIVE

Example

A single-user DBE session is established.

START DBE ’PartsDBE.SomeGrp.SomeAcct’

Note Always use these two statements together in sequence.

BEGIHN ARCHIVE
COMMIT ARCHIVE

ALLBASE/SQL creates an archive record.

The DBEnvironment is shut down. Then the SQLUtil STORE command is used to make an
archival copy of the DBEnvironment.

STOP DBE

SQL Statements 10-29

BEGIN DECLARE SECTION

The BEGIN DECLARE SECTION preprocessor directive indicates the beginning of the host
variable declaration section in an application program.

Scope

Application Programs Only

SQL Syntax

BEGIN DECLARE SECTION

Description

m This directive cannot be used interactively.

m Use this directive in conjunction with the END DECLARE SECTION directive.

Authorization
You do not need authorization to use the BEGIN DECLARE SECTION statement.

Example
You define host variables here, including indicator variables, if any.

BEGIN DECLARE SECTION

END DECLARE SECTION

10-30 SQL Statements

BEGIN WORK

BEGIN WORK

The BEGIN WORK statement begins a transaction and, optionally, sets one or more
transaction attributes.

Scope

ISQL, Application Programs, or Procedures

SQL Syntax

RR

.| cs * LabelString’ PARALLEL
BEGIN WORK [Priority| LABEL : FILL
RC : Host Variable N0

RU

Parameters

Priority is an integer from 0 to 255 specifying the priority of the
transaction. Priority 127 is assigned if you do not specify a
priority. ALLBASE/SQL uses the priority to resolve a deadlock.
The transaction with the largest priority number is aborted to
remove the deadlock.

For example, if a priority-0 transaction and a priority-1
transaction are deadlocked, the priority-1 transaction is aborted.
If two transactions involved in a deadlock have the same priority,
the deadlock is resolved by aborting the newer transaction (the
last transaction begun, either implicitly or with a BEGIN WORK
statement).

RR Repeatable Read. Means that the transaction uses locking
strategies to guarantee repeatable reads.

RR is the default isolation level.

CS Cursor Stability. Means that your transaction uses locking
strategies to assure cursor-level stability only.

RC Read Committed. Means that your transaction uses locking
strategies to ensure that you retrieve only rows that have been
committed by some transaction.

RU Read Uncommitted. Means that the transaction can read
uncommitted changes from other transactions. Reading data with
RU does not place any locks on the table being read.

LabelString is a user defined character string of up to 8 characters. The
default is a blank string.

The label is visible in the SYSTEM.TRANSACTION
pseudo-table and also in SQLMON. Transaction labels can

be useful for troubleshooting and performance tuning. Each
transaction in an application program can be marked uniquely,

SQL Statements 10-31

BEGIN WORK

allowing the DBA to easily identify the transaction being
executed by any user at any moment.

HostVariable
FILL

PARALLEL FILL

is a host variable containing the LabelString.

is used to optimize 1/O performance when loading data and
creating indexes.

is used to optimize 1/O performance for multiple, concurrent loads

to the same table. The PARALLEL FILL option must be in effect

for each load.

NO FILL

turns off the FILL or PARALLEL FILL option for the duration of

the transaction. This is the default fill option.

Description

m Detailed information about isolation levels is presented in the “Concurrency Control

through Locks and Isolation Levels” chapter.

m When you use most SQL statements, ISQL or the preprocessor automatically issues the
BEGIN WORK statement on your behalf, unless a transaction is already in progress.
However, to clearly delimit transaction boundaries and to set attributes for a transaction
(isolation level, priority, transaction label, and fill options), you can use explicit BEGIN

WORK statements.

The following statements do not force an automatic BEGIN WORK to be processed:

ASSIGH BEGIN ARCHIVE
BEGIN WORK CHECKPOINT
COMMIT WORK CONNECT

DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING

ASSIGH BEGIN ARCHIVE
BEGIN WORK CHECKPOINT
COMMIT WORK CONNECT

DISABLE AUDIT LOGGING ENABLE AUDIT LOGGING

GOTO IF

PRINT RAISE ERROR
RESET RETURN
ROLLBACK WORK SET SESSION
SET TRANSACTION START DBE

SQLEXPLAIN TERMINATE USER

WHILE

BEGIN DECLARE SECTION
COMMIT ARCHIVE
DECLARE VARIABLE

END DECLARE SECTION
BEGIN DECLARE SECTION
COMMIT ARCHIVE
DECLARE VARIABLE

END DECLARE SECTION
INCLUDE

RELEASE

ROLLBACK TO SAVEPOINT
SET TIMEOUT

STOP DBE

WHENEVER

m See the “Using ALLBASE/SQL” chapter, “Scoping of Transaction and Session Attributes”
section for information about statements used to set transaction attributes.

m Within a given transaction, the isolation level, priority, and label can be changed by issuing
a SET TRANSACTION statement. Attributes specified in a SET TRANSACTION
statement within a transaction override any attributes set by a BEGIN WORK statement

for the same transaction.

m An application or ISQL can have one or more active transactions at a time. Refer to the
SET MULTITRANSACTION statement syntax in this chapter.

m The following sequences of statements must be in the same transaction in a program:

PREPARE and EXECUTE

PREPARE, DESCRIBE, OPEN, FETCH USING DESCRIPTOR, EXECUTE, and CLOSE

OPEN, FETCH, DELETE WHERE CURRENT, UPDATE WHERE CURRENT, and CLOSE (unless KEEP CURSOR is used)

10-32 SQL Statements

BEGIN WORK

m To end your transaction, you must issue a COMMIT WORK or ROLLBACK WORK
statement. Otherwise, locks set by your transaction are held until a STOP DBE,
DISCONNECT, RELEASE, or TERMINATE USER statement is processed.

m If the maximum number of concurrent DBEnvironment transactions has been reached, the
application is placed on a wait queue. If the application times out while waiting, an error
occurs. Default and maximum timeout values are specified at the DBEnvironment level.

To set a timeout for a session or transaction, use the SET USER TIMEOUT statement.
Refer to the “Using ALLBASE/SQL” chapter, “Setting Timeout Values” section for further
information.

m To avoid lock contention in a given DBEnvironment, do not allow simultaneous transactions
when performing data definition operations.

m When using RC or RU, you should verify the existence of a row before you issue an
UPDATE statement. In application programs that employ cursors, you can use the
REFETCH statement prior to updating. REFETCH is not available in ISQL. Therefore,
you should use caution in employing RC and RU in ISQL if you are doing updates.

m If the FILL or PARALLEL FILL option has already been set for the session with a SET
SESSION statement, and you do not want either of these options in effect for a given
transaction, specify NO FILL in the transaction’s BEGIN WORK statement.

Authorization
You do not need authorization to use the BEGIN WORK statement.

Examples
1. BEGIN WORK and ROLLBACK WORK
Transaction begins:

BEGIN WORK CS
statement-1

SAVEPOINT :MyVariable
statement-2

statement-3

Work of statements 2 and 3 is undone:

ROLLBACK WORK TO :MyVariable

Work of statement-1 is committed and the transaction ends:

COMMTT WORK
2. BEGIN WORK and set attributes
Begin the transaction and set priority, isolation level, label name, and fill option:

BEGIN WORK 32 €S LABEL ’xactl’ FILL

Erecute SQL statements.

Work is committed and the transaction ends.

COMMIT WORK

SQL Statements 10-33

BEGIN WORK

Begin another transaction and set priority, isolation level, and label name. Note that since
a fill option is not specified, the default (NO FILL) is in effect.

BEGIN WORK 64 RC LABEL ’xact2’

Erecute SQL statements.

Work is committed and the transaction ends.

COMMIT WORK;

10-34 SQL Statements

CHECKPOINT

CHECKPOINT
The CHECKPOINT statement causes an ALLBASE/SQL system checkpoint to be taken.

Scope

ISQL or Application Programs

SQL Syntax
: Host Variable
CHECKPOINT | : LocalVariable
: Procedure Parameter
Parameters
HostVariable identifies an output host variable used to communicate the
amount of log space available for use. The host variable is an
integer.
LocalVariable contains a value in a procedure.
Procedure Parameter contains a value that is passed into or out of a procedure.
Description

m Specifying a host variable with CHECKPOINT statement in an application allows you to
determine how much free space is available in the log file.

m The LocalVariable parameter is used in the stored procedure for obtaining free log space.

m When you can use the host variable in a CHECKPOINT statement in an application
program or procedure, the host variable can be omitted if you don’t need to know the
number of free blocks available.

m When you enter a CHECKPOINT statement interactively in ISQL, you cannot specify a
host variable. Returned information is displayed on the screen.

m Checkpoint processing is as follows:

o Contents of the log buffers are written to the log files(s).

Data buffers containing changed pages are written to DBEFiles.

A checkpoint record containing a list of the transactions currently in progress is written in
the log.

When nonarchive logging is in effect, space containing log records written prior to the
beginning of the oldest incomplete transaction is made available for reuse. When archive
logging is in effect, however, this step is skipped and no log file space is recovered by
checkpoints.

For a brief interval while a checkpoint is being taken, SQL statements that modify
the DBEnvironment continue to be accepted but their processing is temporarily
suspended. This suspension occurs for the amount of time needed to write the log buffers

SQL Statements 10-35

CHECKPOINT

and changed pages to permanent storage. Retrieval from the DBEnvironment is not
suspended during a checkpoint.

m Contents of the log buffer are also written to the log file(s) when a COMMIT WORK is
executed.

m When you submit a START DBE statement, ALLBASE/SQL processes all log records
created since the last checkpoint record. Therefore taking a checkpoint just before stopping
the DBE reduces the amount of time that is needed when a DBEnvironment is started up.

m ALLBASE/SQL automatically takes a checkpoint when the log file is full, when the data
buffer is full, and when the STOP DBE and COMMIT ARCHIVE statements are processed.
When the START DBE statement is processed, ALLBASE/SQL writes a checkpoint record.

m Submitting a CHECKPOINT statement allows you to determine how much free space is
available in the log file.

Authorization

You must have DBA authority to use this statement.

Example
A stored procedure retrieves the number of free blocks of log space available. Create a stored
procedure with an output parameter.

EXEC SQL create procedure cp (freeblock integer OUTPUT) as
begin
checkpoint :freeblock;
end;

Pass the host variable as an output parameter to procedure.

EXEC SQL execute procedure cp (hstfblk output);

writeln(’free log space available’, hstfblk);
if hstfblk <= TOOLOW then
writeln(’Add new log files ’);

A log block is a 512-byte allocation of storage. When you submit the CHECKPOINT
statement interactively, ISQL displays the amount of log space available for use.

isql=> CHECKPOINT;
Humber of free log blocks is 240
isql=>

ISQL assigns and displays the free log space.

A program retrieves the number of free blocks of log space available. In a Pascal application
program, declare a host variable.

EXEC SQL begin declare sectiom;
hstfblk : integer;
EXEC SQL end declare section;

Submit a checkpoint with host variable to obtain free log space available.

EXEC SQL checkpoint :hstfblk;

writeln(’free log space: ’,hstfblk);
if hstfblk <= TOOLOW then
writeln(’Add new log files ’);

10-36 SQL Statements

CLOSE

CLOSE

The CLOSE statement is used to close an open cursor.

Scope

Application Programs or Procedures

SQL Syntax

CLOSE CursorName

Parameters
CursorName

USING

HostVariable

Indicator

DESCRIPTOR

SQLDA

AreaName

USING

AreaName
: Host Variable [[INDICATOR] :Indicator] [Y e]

[SQL | DESCRIPTOR { SLDA }

designates the open cursor to be closed.

defines where to place return status and output parameters after
closing a dynamic procedure cursor.

identifies a host variable for holding return status and output
parameters after closing a dynamic procedure cursor. These must
be specified in the same order as in the associated EXECUTE
PROCEDURE statement.

names the indicator variable, an output host variable whose value
depends on whether the host variable contains a null value. The
following integer values are valid:

0 meaning the output parameter’s value is not null

-1 meaning the output parameter’s value is null

>0 meaning the output parameter’s value is truncated
(for CHAR, VARCHAR, BINARY, and VARBINARY
columns)

defines where to place return status and output parameters after
closing a procedure cursor. Specify the same location (SQLDA,
area name, or host variable) as you specified in the DESCRIBE
OUTPUT statement.

specifies that a data structure of sqlda_type named SQLDA is
to be used to pass information about the prepared statement
between the application and ALLBASE/SQL.

specifies the user defined name of a data structure of sqlda_type
that is to be used to pass information about the prepared
statement.

SQL Statements 10-37

CLOSE

Description

When it applies to a select cursor (one that is declared for a SELECT statement), the
CLOSE statement can be issued in an application program or in a procedure.

When it applies to a procedure cursor (one that is declared for an EXECUTE
PROCEDURE statement), the CLOSE statement can be issued only in an application
program.

The CLOSE statement cannot be used in ISQL.
CLOSE returns an error if the cursor is not in the open state.

The COMMIT WORK and ROLLBACK WORK statements automatically close all cursors
not opened with the KEEP CURSOR option.

To close a select cursor opened with the KEEP CURSOR option, you must perform an
explicit CLOSE followed by a COMMIT WORK.

When you close a select cursor, its active set becomes undefined, and it can no longer be
used in DELETE, FETCH, or UPDATE statements. To use the cursor again you must
reopen it by issuing an OPEN statement.

When you close a procedure cursor, its active result set becomes undefined, and it can no
longer be used in FETCH statements. To use the procedure cursor again you must reopen it
by issuing an OPEN statement.

When used with a procedure cursor, CLOSE discards any pending rows or result sets from
the procedure. Execution of the procedure continues with the next statement. Control
returns to the application when the procedure terminates.

Note that following processing of the last multiple row result set, procedure execution
cannot continue until you close or advance the procedure cursor in the application.

Upon execution of the CLOSE statement used with a procedure cursor, return status
and output parameter values are available to the application in either the SQLDA or the
HostVariableSpecification of the USING clause or in any host variables specified in the
related DECLARE CURSOR statement.

The USING clause is allowed only for dynamic procedure cursors.

Authorization

You do not need authorization to use the CLOSE statement.

10-38 SOQL Statements

CLOSE

Examples

Declare and open a cursor for use in updating values in column QtyOnHand.

DECLARE New(QtyCursor CURSOR FOR
SELECT PartHlumber,QtyOnHand FROM PurchDB.Inventory
FOR UPDATE OF QtyOnHand

OPEN NewQtyCursor

Statements setting up a FETCH-UPDATE loop appear next.

FETCH NewQtyCursor INTO :HNum :Numnul, :Qty :Qtynul

Statements for displaying a row to a user and accepting a new QtyOnHand value go here. The
new value is stored in :NewQty.

UPDATE PurchDB.Inventory
SET QtyOnHand = :NewQty
WHERE CURRENT OF HNewQtyCursor

CLOSE NewltyCursor USING sqldaout

SQL Statements 10-39

COMMIT ARCHIVE

If you do not have TURBO STORE and you must do a static backup, you can use the
COMMIT ARCHIVE statement following the BEGIN ARCHIVE statement to start a new
archive log file before a DBEnvironment is backed up. However if you have TURBO STORE,
the recommended approach to initiate archive logging is to use the SQLUtl STOREONLINE
command or to use the ARCHIVE option with the START DBE NEWLOG statement.

Scope

ISQL or Application Programs

SQL Syntax

COMMIT ARCHIVE

Description

You can turn archive mode off only by using the START DBE NEWLOG statement.

A backup copy of a DBEnvironment and an archive log file can be used for rollforward
recovery when database files are physically damaged. In this type of recovery, you load
a backup copy of the DBEnvironment, then issue the SQLUtil SETUPRECOVERY,
RECOVERLOG, and ENDRECOVERY commands. You may also need to use
RESCUELOG.

Use the following procedure to create a new archive log and a static backup of the
DBEnvironment:

]

Issue the BEGIN ARCHIVE statement, then the COMMIT ARCHIVE statement, to
write an archive record in the rollforward log. The archive record indicates the point from
which rollforward recovery can begin.

Use the SQLUtil STORE command to make a static backup copy of the DBEnvironment.
The DBEnvironment must be stopped and remain stopped while you are making the
static backup copy if you are using STORE. This procedure does not turn the archive flag
in the DBECon file on or off. You cannot use STORE from an application program, since
it is an SQLUtil command.

m If a procedure invoked by a rule executes a COMMIT ARCHIVE statement, an error
oceurs.

Refer to the ALLBASE/SQL Database Administration Guide for detailed backup and recovery
procedures and recommended practices.

10-40 SQL Statements

COMMIT ARCHIVE

Authorization

You must have DBA authority to use this statement.

Example

A single-user DBE session is established.

START DBE ’PartsDBE.SomeGrp.SomeAcct’

ALLBASE/SQL creates an archive record.

Note Always use these two statements together in sequence.

BEGIN ARCHIVE
COMMIT ARCHIVE

STOP DBE

The DBEnvironment is shut down. Then the SQLUtil STORE command is used to make an
archival copy of the DBEnvironment.

SQL Statements 10-41

COMMIT WORK

The COMMIT WORK statement ends the current transaction. All changes made during the
transaction are committed (made permanent).

Scope

ISQL or Application Programs

SQL Syntax

COMMIT WORK [RELEASE |

Parameters

RELEASE terminates your DBE session after the changes made during the
transaction are committed. Specifying RELEASE has the same
effect as issuing a COMMIT WORK statement followed by a
RELEASE statement.

Description

The COMMIT WORK statement has no effect if you do not have a transaction in progress.

The COMMIT WORK statement releases all locks held by the transaction, except those
associated with a kept cursor in an application program.

In an application program, the COMMIT WORK statement closes all cursors opened
without the KEEP CURSOR option in the current transaction.

For cursors opened with the KEEP CURSOR option, the COMMIT WORK statement
(but not the COMMIT WORK RELEASE statement) implicitly starts a new transaction
that maintains the current cursor position and inherits the isolation level. Whether or not
locks on data objects pointed to by these cursors are released depends on the use of the

WITH LOCKS or WITH NOLOCKS option in the OPEN statement.
If a procedure invoked by a rule executes a COMMIT WORK statement, an error occurs.

If a commit is done while constraints are deferred, and constraint errors exist, the system
will roll back the transaction and report that constraint errors exist.

Short transactions (frequent COMMIT WORK statements) are recommended to improve
concurrency.

If RELEASE is used, all cursors are closed and the current connection is terminated

The RELEASE option is not allowed within a procedure.

10-42 SQL Statements

COMMIT WORK

Authorization
You do not need authorization to use the COMMIT WORK statement.

Example

Transaction begins.

BEGIN WORK
statement-1
SAVEPOINT :MyVariable
statement-2

statement-3

Work of statements 2 and 3 is undone.

ROLLBACK WORK TO :MyVariable

Work of statement 1 is committed; the transaction ends.

COMMIT WORK

SQL Statements 10-43

CONNECT

The CONNECT statement initiates a connection with a given DBEnvironment. This
connection is the current connection. Any SQL statements issued apply to the current
connection.

Scope

ISQL or Application Programs

SQL Syntax
CONNECT TO > DBEnvironment Name’ > ConnectionName’
: HostVariable1 : HostVariable2
* UserlD’
USER . USING : HostVariable
[{ :HostVarzableS’} [4]]

Parameters

DBEnvironment Name identifies the DBEnvironment to be used. DBFEnvironmentName
cannot exceed 36 bytes.

HostVariable 1 is a character string host variable containing the name of a
DBEnvironment.

ConnectionName is a string literal identifying the name associated with this
connection. This name must be unique for each DBEnvironment
connection within an application or an ISQL session. If a
ConnectionName is not specified, DBFEnvironmentName is the
default. ConnectionName cannot exceed 128 bytes.

HostVariable? is a character string host variable containing the ConnectionName
associated with this connection.

UserlD is a string literal identifying the user associated with this
connection. UserlID cannot exceed 64 bytes.

HostVariable3 is a character string host variable containing the UserlD
associated with this connection.

HostVariable4 is a character string host variable containing the connection

password associated with the specified user identifier. The
connection password assigned to HostVariable/ cannot exceed 64
bytes.

10-44 SQL Statements

CONNECT

Description

m ALLBASE/SQL creates an implicit, brief transaction when the CONNECT statement is
issued.

m When the value of the autostart flag is ON, the CONNECT statement initiates a single-user
DBE session if the DBECon file user mode is currently set to single and no other user is
accessing the DBEnvironment. A multiuser DBIE session is established if the DBIECon file
user mode is currently set to MULTI.

m If the value of the autostart flag is OFF, the CONNECT statement is used to initiate a
multiuser session after a START DBE statement has been processed.

m When more than one CONNECT statement is issued, the application (or ISQL) is currently
connected to the DBEnvironment specified by the most recent CONNECT statement. The
current connection can be changed with the SET CONNECTION statement.

m The USER and USING clauses are implementation-defined features intended for use in
determining if a CONNECT statement should be accepted or rejected. They are not
currently used by ALLBASE/SQL as criteria for accepting or rejecting a CONNECT
statement. However, other database products in a network environment may require them
in order to granulize authorization to a connection level.

Authorization

You can use this statement if you have CONNECT or DBA authority for the specified
DBEnvironment.

Example

A user begins a multiuser DB session; autostart mode is ON. The PartsDBE
DBEnvironment is currently configured to operate in multiuser mode, so other users can also
initiate DBE sessions.

CONNECT TO ’PartsDBE.SomeGrp.Acct’

A second user starts a DBE session with a file equation.

FILE DBE = PartsDBE.SomeGrp.Acct
CONNECT TO ’+DBE’
Specifying a connection name

Partsl is the connection name to be used with multi-connect functionality.

CONNECT TO ’PartsDBE.SomeGrp.Acct’ AS ’Partsl’

SQL Statements 10-45

CREATE DBEFILE

The CREATE DBEFILE statement defines and creates a DBEFile and places a row describing
the file in SYSTEM.DBEFile. A DBEVFile is a file that stores tables, indexes, hash structures,
and/or LONG data.

Scope

ISQL or Application Programs

SQL Syntax

CREATE DBEFILE DBEFilename WITH PAGES = DBFVFileSize, NAME = °SystemFileName’
[, INCREMENT = DBEFilelncrSize| , MAXPAGES = DBEFileMaxSize] |
TABLE
,TYPE = ¢ INDEX ¢ | [,DEVICE = volume; |
MIXED

Parameters

DBEFileName is the logical name to be assigned to the new DBEFile. Two
DBEFiles in one DBEnvironment cannot have the same logical
name.

DBFEFileSize specifies the number of 4096-byte pages in the new DBEFile. The
minimum DBEFile size is 2 pages. The maximum DBEVFile size is
524,287 pages.

SystemFile Name identifies how the DBEFile is known to the operating system.
The system file name is in the format of the FileName and
GroupName portion of a file identifier. The DBEFile is created
in the group and account where the DBECon file resides, unless
the GroupName is specified in other than the group on which the
DBECon file resides. The maximum length for SystemFile Name is
17 bytes.

DBEFilelncrSize is a number you must supply with the INCREMENT clause when
you want to expand the DBEFILE. The DBEFileIncrSize should
be 8 pages or greater but it cannot exceed 65,535. No system
default is provided by ALLBASE/SQL; if this number is omitted,
no DBEFile expansion takes place.

DBEFileMaxSize is a number that you can supply with the MAXPAGES
clause if you have already specified a DBFEFileIncrSize. If the
DBEFileMazSize is not a multiple of DBEFilelncrSize, the
number may be rounded up or down as follows: The smallest
higher multiple is tried first. If the smallest higher multiple is
not a valid size, the largest lower multiple is used. A warning
message is returned to let you know that the DBEFileMaxSize is
rounded based on the DBEFilelncrSize provided. If you omit the
MAXPAGES clause, the value defaults to the ALLBASE/SQL

DBEFile maximum size.

10-46 SQL Statements

CREATE DBEFILE

TYPE = specifies the setting of the DBEFile’s TYPE attribute. The
following are valid settings:
TABLE Only data pages (table, HASH, or LONG) can be
stored in the DBEFile.
INDEX Only index pages can be stored in the DBEFile.
MIXED A mixture of data and index pages can be stored in

the DBEFile.

Volume identifies the volume where the DBEFile will reside.
Description
m You use this statement to create all DBEFiles except DBEFile0, which is created when a

START DBE NEW statement is processed.

The CREATE DBEFILE statement formats the DBEFile. The name and characteristics of
the DBEFile are stored in the system catalog.

Specifying a group name when you create a DBEFile allows you to create the DBEFile on
a volume set different from the DBECon file. It also makes partial backup and recovery
possible.

Specifying a volume at creation time allows you to create DBEFile on a particular volume.

To use a DBEFile for storing a table, LONG data, and/or an index, you add it to

a DBEFileSet with the ADD DBEFILE statement, then reference the name of the
DBEFileSet in the CREATE TABLE statement. You may add a DBEFile to the SYSTEM
DBEFileSet.

To delete the row describing a DBEFile from SYSTEM.DBEFile, use the DROP DBEFILE
statement.

INCREMENT and MAXPAGES are optional clauses. If they are omitted, no DBEFile
expansion takes place.

It is highly recommended that you provide the DBEFile MaxSize along with the
DBEFilelnerSize. Not specifying the DBFEFileMazSize causes it to be set to the system
maximum. This results in a high value for the ratio for this file. The DBEFileMaxSize

is stored internally as an integer multiple of the DBEFilelncrSize; if the DBEFile MaxSize
is not a multiple of DBEFileIncrSize, rounding can occur. Refer to the description of
DBEFileMazSize in the previous section for information on the rounding process.

The DBFEFileMazSize, after rounding, should be equal to or greater than the DBEFileSize.
It should not exceed the maximum DBEFile size of 524,287 pages.

The optimal DBFFilelncrSize depends on the expected rate of expansion for the file. Refer
to the section “Calculating Storage for Database Objects” in the ALLBASE/SQL Database
Administration Guide for information about estimating size requirements for tables and
indexes.

Expandable DBEFiles do not expand dynamically during the creation of hash tables.

DBEFiles that contain hash tables are not expanded even though they were specified as
expandable when created.

SQL Statements 10-47

CREATE DBEFILE

Authorization

You must have DBA authority to use this statement.

Example

Create a DBEFile on a specific volume with a different group name than the DBECon resides
on.

CREATE DBEFILE ThisDBEFile
WITH PAGES = 4, NAME = ’ThisFile.Othergrp’ ,
TYPE = TABLE, DEVICE = member3d ;

CREATE DBEFILE ThisDBEFile
WITH PAGES = 4, WAME = ’ThisFile’, TYPE = TABLE

CREATE DBEFILESET Miscellaneous

ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, a DBEFile
is created to store an index:

CREATE DBEFILE ThatDBEFile
WITH PAGES = 4, NAME = ’ThatFile’, TYPE = TNDEX

ADD DBEFILE ThatDBEFile TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous
ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM
ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

All rows are later deleted from the table, so you can reclaim file space.

REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

DROP DBEFILESET Miscellaneous

CREATE DBEFILE WewDBEFile
WITH PAGES = 4, NAME = ’ThatFile’, TYPE = TNDEX

ADD DBEFILE NewDBEFile TO DBEFILESET SYSTEM

10-48 SQL Statements

CREATE DBEFILESET

CREATE DBEFILESET

The CREATE DBEFILESET statement defines a DBEFileSet. A DBEFileSet is a group of
related DBEVFiles; as such, it serves as a mechanism for allocating and deallocating file space
for tables.

Scope

ISQL or Application Programs

SQL Syntax

CREATE DBEFILESET DBEFileSetName

Parameters

DBEFileSetName specifies the name to be given to the new DBEFileSet. Two
DBEFileSets in the same DBEnvironment cannot have the same
name.

Description

m The CREATE DBEFILESET statement records the new DBEFileSet name in the system
catalog with an indication that no physical storage is associated with the DBEFileSet.

m You associate physical storage with a DBEFileSet by associating DBEFiles with the
DBEFileSet, using the ADD DBEFILE statement. Then you can associate a table and its
indexes with the DBEFileSet by using the CREATE TABLE statement. ALLBASE/SQL
allocates all data and index pages for a table to DBEFiles in the DBEFileSet named in the
IN clause of the CREATE TABLE statement. If automatic DBEFile expansion is not being
used when you need more space for a table, you add another DBEFile to the DBEFileSet
associated with the table when the CREATE TABLE statement was issued.

m To remove a DBEFile from a DBEFileSet, you use the REMOVE DBEFILE statement.

m If a LONG column uses the IN DBFEFileSet clause, ALLBASE/SQL allocates all LONG
data pages for that column in DBEFiles in the DBEFileSet specified. If automatic DBEFile
expansion is not being used when more space is needed for the LONG column, you add
another DBEFile to the DBEFileSet associated with the LONG column when the column
was defined.

m To delete the definition of a DBEFileSet, use the DROP DBEFILESET statement.

m One DBEFileSet is created automatically when the START DBE NEW statement
is issued—the SYSTEM DBLEFileSet. The system catalog resides in the SYSTEM
DBEFileSet. Those parts of the system catalog that are needed to start up a
DBEnvironment reside in DBEFile0. You may add a DBEFile to the SYSTEM DBEFileSet.

SQL Statements 10-49

CREATE DBEFILESET

Authorization

You must have DBA authority to use this statement.

Example

The DBEFile is used to store rows of a new table.

CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
NAME = ’ThisFile’, TYPE = TABLE

CREATE DBEFILESET Miscellaneous

ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

When the table needs a DBEFile to hold an index, one is created as follows:

CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
NAME = ’ThatFile’, TYPE = INDEX

ADD DBEFILE ThatDBEFile TO DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another

DBEFileSet.

REMOVE DBEFILE ThatDBEFile
FROM DBEFILESET Miscellaneous

ADD DBEFILE ThatDBEFile
TO DBEFILESET SomethingElse

ALTER DBEFILE ThisDBEFile SET TYPE = MIXED
Now you can use this DBEFile to store an index later if you need one.

All rows are later deleted from the table, so you can reclaim file space.

REMOVE DBEFILE ThisDBEFile
FROM DBEFILESET Miscellaneous

DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

DROP DBEFILESET Miscellaneous
CREATE DBEFILE NewDBEFile

ADD DBEFILE NewDBEFile
TO DBEFILESET SYSTEM

10-50 SQL Statements

CREATE GROUP

CREATE GROUP

The CREATE GROUP statement defines a new authorization group.

Scope

ISQL or Application Programs

SQL Syntax

CREATE GROUP [Owner.] GroupName

Parameters

LOwner.] GroupName

specifies the group name to be assigned to the new authorization
group. The group name must conform to the syntax rules for
basic names, described in the “Names” chapter.

You can specify the owner of the new group if you have DBA
authority. Non-DBA users can specify as owner the name of any
group of which they are a member. If you do not specify the
owner name, your logon name becomes the owner of the new
group.

Although the owner name can be specified as a prefix to the
group name in this statement, the owner name is not actually
considered a part of the group identifier. The group name by
itself uniquely identifies a group within the database.

The group name you specify cannot be the same as any of the
following names:

m Name of an existing authorization group.

m Owner name of an existing table, view, module, or
authorization group.

m DBEUserlD existing in the authorization tables of the system
catalog.

m DBEUserID associated with any DBE session currently in
progress.

m Special names PUBLIC, SYSTEM, CATALOG, HPRDBSS,
STOREDSECT, SEMIPERM, HPODBSS, and TEMP.

SQL Statements 10-51

CREATE GROUP

Description

m When you create an authorization group, its owner name and group name are entered into
the system catalog. You can then refer to the group in the ADD TO GROUP,
REMOVE FROM GROUP, GRANT, REVOKE, TRANSFER OWNERSHIP,
and DROP GROUP statements.

Authorization
You must have RESOURCE or DBA authority to use this statement.

Example
CREATE GROUP Warehse
GRANT CONNECT TO Warehse

GRANT SELECT,
UPDATE (BinNumber,QtyOnHand,LastCountDate)
ON PurchDB.Inventory
TO Warehse

These two users will be able to start DBE sessions for PartsDBE, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

ADD CLEMQTHOMAS, GEORGEQCRAMMER TO GROUP Warehse
Clem will no longer have any of the authorities associated with group Warehse.

REMOVE CLEM@THOMAS FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

DROP GROUP Warehse

10-52 SQL Statements

CREATE INDEX

CREATE INDEX

The CREATE INDEX statement creates an index on one or more columns of a table and
assigns a name to the new index.

Scope

ISQL or Application Programs

SQL Syntax

CREATE [UNIQUE | [CLUSTERING |INDEX [Owner. | IndexName ON

[Owner.] TableName ({ ColumnName [g:gc] }[y e])

Parameters

UNIQUE prohibits duplicates in the index. If UNIQUE is specified, each
possible combination of index key column values can occur in only
one row of the table. If UNIQUE is omitted, duplicate values are
allowed. Because all null values are equivalent, a unique index
allows only one row with a null value in an indexed column.
When you create a unique index, all existing rows must have
unique values in the indexed column(s).

CLUSTERING can increase the efficiency of sequential processing.
If CLUSTERING is specified, rows added to the table after

the index is created are placed physically near other rows with
similar key values whenever space is available in the page. If
CLUSTERING is omitted, the key values in a newly inserted row
do not necessarily have any relationship with the row’s physical
placement in the database.

No more than one index for a table can have the CLUSTERING
attribute.

If the table was declared to use a HASH structure, no clustering
indexes may be defined upon it. See the CREATE TABLE
statement for information on HASH structures.

LOwner.] IndexName is the name to be assigned to the new index. A table cannot have
two indexes with the same name. If the owner is specified, it must
be the same as the owner of the table. The default owner name
is the owner name of the table it is being defined on. The usual
default owner rules do not apply here.

[Owner.] Table Name designates the table for which an index is to be created.

ColumnName is the name of a column to be used as an index key. You can
specify up to 16 columns in order from major index key to minor
index key. The data type of the column cannot be a LONG data

type.

SQL Statements 10-53

CREATE INDEX

ASC | DESC specifies the order of the index to be either ascending or
descending, respectively. The default is ascending. Specifying
DESC does not create a descending index. It is the same index as
ascending. Therefore, SELECT statements that require data to be
retrieved in descending order must specify ORDER BY columnliID
DESC.

Description

m [f the table does not contain any rows, the CREATE INDEX statement enters the definition
of the index in the system catalog and allocates a root page for it. If the table has rows, the
CREATE INDEX statement enters the definition in the system catalog and builds an index
on the existing data.

If the UNIQUE option is specified and the table already contains rows having duplicate
values in the index key columns, the CREATE INDEX statement is rejected.

The CLUSTERING option does not affect the physical placement of rows that are already
in the table when the CREATE INDEX statement is issued.

m The new index is maintained automatically by ALLBASE/SQL until the index is deleted by
a DROP INDEX statement or until the table it is associated with is dropped.

m The following equation determines the maximum key size for a B-tree or hash index:
(NumberOfIndexColumns + 2)*2 + SumKeyLengths + 8 <= 1024

If the index contains only one column, the maximum length that column can be is 1010
bytes. At compile time, SumKeyLengths is computed assuming columns of NULL and
VARCHAR columns contain no data. At run time, the actual data lengths are assumed.

At most 16 columns are allowed in a user-defined index.
m Indexes cannot be created for views, including the system views and pseudotables.

m Index entries are sorted in ascending order. Null compares higher than other values for
sorting.

m An index is automatically stored in the same DBEFileSet as its table.

m The CREATE INDEX statement can invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

m The CREATE INDEX statement allocates file space for sorting under any available
TempSpace location, or in the default sort space. The default sort space is in the current
logon group and account. After the index has been created, this file space is deallocated.

m Indexes created with the CREATE INDEX statement are not associated with referential or
unique constraints in any manner, and are not used to support any constraints. So a unique
index created with the CREATE INDEX statement cannot be referenced as a primary key
in a referential constraint.

Authorization

You can issue this statement if you have INDEX or OWNER, authority for the table or if you
have DBA authority.

10-54 SQL Statements

CREATE INDEX

Example

This unique index ensures that all part numbers are unique.

CREATE UNIQUE INDEX PurchDB.PartNumIndex
ON PurchDB.Parts (PartNumber)

This clustering index causes rows for order items associated with one order to be stored
physically close together.

CREATE CLUSTERING INDEX OrderItemIndex
Ol PurchDB.OrderItems (OrderHumber)

SQL Statements 10-55

CREATE PARTITION

The CREATE PARTITION statement defines a partition to be used for audit logging
purposes.

Scope

ISQL or Application Programs

SQL Syntax

CREATE PARTITION PartitionName WITH ID = PartitionNumber

Parameters

PartitionName specifies the logical name to be given to the new partition. Two
partitions in the same DBEnvironment cannot have the same
name. PartitionName may not be DEFAULT or NONE.

PartitionNumber is an integer specifying the partition number. It must be a
positive integer in the range 1 to 32767. The partition number
identifies the partition in the audit log record.

Description

m The CREATE PARTITION statement creates a new audit partition, which is a unit of data

logging for an audit DBEnvironment.

The partition number may already be assigned to another partition, including the default
partition. For example, several partitions with different partition names may have the same
partition number in the audit log file. This allows the Audit Tool to gather statistics for

all of these partitions as one unit while preserving the ability to manipulate each partition
separately.

Creation of a partition does not cause a check against the maximum number of partitions.
Only creation of audit log records in a partition checks if the maximum number of partitions
is exceeded. The process of determining the number of partitions in a DBEnvironment is
described under the START DBE NEW statement.

One data partition can be defined with the START DBE NEW or START DBE NEWLOG
statements — the DEFAULT partition. Before tables are assigned to a particular partition,
they are placed in the DEFAULT partition.

To put a table in a partition, use the CREATE TABLE or ALTER TABLE SET
PARTITION statement.

To remove a table from a partition, or change the partition it is in, use the ALTER TABLE
SET PARTITION statement.

To delete the definition of a partition, use the DROP PARTITION statement.

Partitions can be created and tables placed in them without audit logging being enabled for
a DBEnvironment. However, the partition information is only used in audit log records.
Thus, partition information will not be utilized in logging until the DBEnvironment has
audit logging enabled.

10-56 SQL Statements

CREATE PARTITION

m Data partition information (including the default partition) appears in the system view
SYSTEM.PARTITION. If the default partition is set to NONE, or is never defined, no row
appears in SYSTEM.PARTITION for it.

m The DROP PARTITION and CREATE PARTITION statements are used to change the
partition number assigned to a partition other than the default partition. The START DBE
NEWLOG statement is used to change the partition number of the default partition.

m The partition number, not the partition name, is used in audit logging. A partition name is
used in the CREATE TABLE and ALTER TABLE statements to associate a table with a
partition.

Authorization

You must have DBA authority to use this statement.

Example
To create a partition containing tables, first create the partition.
CREATE PARTITION PartsPart WITH ID = 10;

Then assign tables(s) to the partition.

ALTER TABLE PurchDB.Parts SET PARTITION PartsPart;

To drop a partition, first assign all tables in the partition to the NONE partition.

ALTER TABLE PurchDB.Parts SET PARTITION NONE;

Then drop the partition.

DROP PARTITION PartsPart;

SQL Statements 10-57

CREATE PROCEDURE

The CREATE PROCEDURE statement defines a procedure for storage in a DBEnvironment.
A procedure may subsequently be executed through the firing of a rule by an INSERT,
UPDATE, or DELETE statement, or by using the EXECUTE PROCEDURE statement or a
procedure cursor.

Scope

ISQL or Application Programs

SQL Syntax

CREATE PROCEDURE [Ouwner. | ProcedureName |LANG = ProcLangName |
[(ParameterDeclaration [, ParameterDeclaration] [])]

[WITH RESULT ResultDeclaration [, ResultDeclaration] []]

AS BEGIN [ProcedureStatement] []END [IN DBEFz'leSetName]

Parameters

[Owner.] Procedure Name specifies the owner and the name of the procedure. If an owner
name is not specified, the owner is the current user’s DBEUserlD
or the schema’s authorization name, or the ISQL SET OWNER
value. You can specify the owner of the new procedure if you
have DBA authority. If you do not have DBA authority, you
can specify as owner the name of any group of which you are
a member. Two procedures cannot have the same owner and
procedure name.

ProcLangName is the name of the default language used within the procedure for
parameters and local variables. This language may be either the
language of the DBEnvironment or NATIVE-3000. The default is
the language of the DBEnvironment.

ParameterDeclaration specifies the attributes of parameter data to be passed to or from
the procedure. The syntax of ParameterDeclaration is presented
separately below.

ResultDeclaration specifies the attributes of a result column in a multiple row result
set or sets returned from a procedure to an application or ISQL.
The syntax of ResultDeclaration is presented separately below.

10-58 SQL Statements

ProcedureStatement

DBEFileSetName

CREATE PROCEDURE

Specifies a statement in the procedure body. The statement may
be any one of the following:

m Local variable declaration (see DECLARE Variable).

m Parameter or local variable assignment (see Assignment).

m Compound statement. A compound statement has the following
syntax:

BEGIN [Statement;]1 [...]1 END;
m Control flow and status statements
o IF ... THEN ... ELSEIF ... ELSE ... ENDIF
o WHILE ... DO ... ENDWHILE
o Jump statement (GOTO, GO TO, or RETURN)
o PRINT
m any SQL statement allowed in an application except the
following;:

ADVANCE

BEGIN DECLARE SECTION

BULK statements

CLOSE (when the USING clause is specified)
COMMIT WORK RELEASE

CONNECT

CREATE PROCEDURE (including inside CREATE SCHEMA)
DECLARE CURSOR (when declaring a cursor for an EXECUTE PROCEDURE statement)
DESCRIBE

DISCONNECT

END DECLARE SECTION

EXECUTE

EXECUTE IMMEDIATE

EXECUTE PROCEDURE

GENPLAN

INCLUDE

OPEN CURSOR USING DESCRIPTOR

OPEN CURSOR USING HostVariableList
PREPARE

RELEASE

ROLLBACK WORK RELEASE

SET CONNECTION

SET DML ATOMICITY

SET MULTITRANSACTION

SET SESSION

SET TRANSACTION

SQLEXPLAIN

START DBE

STOP DBE

A ProcedureStatement must be terminated by a semicolon.

identifies the DBEFileSet in which ALLBASE/SQL is to store
sections associated with the procedure. If not specified, the

SECTIONSPACE DBEFileSet is used.

SQL Statements 10-59

CREATE PROCEDURE

SQL Syntax—ParameterDeclaration

ParameterName ParameterType [LANG = PammeterLanguage]
| DEFAULT Default Value | [NOT NULL | [OUTPUT [ONLY] |

Parameters—ParameterDeclaration

ParameterName

ParameterType

ParameterLanguage

Default Value

NOT NULL

OUTPUT

ONLY

10-60 SQL Statements

is the name assigned to a parameter in the procedure. No two
parameters in the procedure can be given the same name. You
can define no more than 1023 parameters in a procedure.

indicates what type of data the parameter will contain. The
ParameterType cannot be a LONG data type. For a list of data
types, refer to the “Data Types” chapter.

specifies the language for the parameter. A LANG may only
be specified for a parameter with a character data type. This
language may be either the language of the procedure or

NATIVE-3000. The default is the language of the procedure.

specifies the default value for the parameter. The default can be a
constant, NULL, or a date/time current function. The data type
of the default value must be compatible with the data type of the
column.

means that the parameter cannot contain null values. If NOT
NULL is specified, any statement that attempts to place a null
value in the parameter is rejected.

specifies that the parameter can be used for procedure output
as well as input (the default). If OUTPUT is not specified, the
parameter can only be used for input to the procedure.

If procedure output is required, OUTPUT must also be
specified for any corresponding parameter in the EXECUTE
PROCEDURE statement.

specifies that the parameter can be used for procedure output
only. ONLY should be used, when applicable, to avoid
unnecessary initialization of procedure parameters.

You must also specify OUTPUT for any corresponding parameter
in the EXECUTE PROCEDURE statement.

The DEFAULT option cannot be specified for OUTPUT ONLY
parameters.

CREATE PROCEDURE
SQL Syntax—ResultDeclaration

ResultType [LANG = ResultLanguage] [NOT NULL]

Parameters—ResultDeclaration

ResultType indicates the data type of a result column in a query result for a
query or queries in the procedure. The “Data Types” chapter
describes the data types available in ALLBASE/SQL.

ResultLanguage specifies the language of the result column. A LANG may only
be specified for a result column with a character data type.
This language may be either the language of the procedure or
NATIVE-3000. The default is the language of the procedure.

NOT NULL indicates that the result column cannot contain null values.

Description
m A procedure may be created through ISQL or through an application program.

m A procedure result set is the set of rows returned by a procedure SELECT, FETCH, or
REFETCH statement.

m A select cursor (one declared for a SELECT statement) opened in an application program
(i.e, outside the procedure) cannot be accessed within the procedure. However, a procedure
can open and access its own select cursors.

m A procedure cursor (one declared for an EXECUTE PROCEDURE statement) must be
opened and accessed outside of the specified procedure, in an application program. An
application can open more than one procedure cursor.

m A procedure with multiple row result sets is a procedure containing one or more SELECT
statements with no INTO clause. In order to retrieve one or more multiple row result
sets from a procedure, you must execute the procedure using a procedure cursor. The
application can then either process data from a result (by issuing the FETCH statement
within the application) or advance past the result set (by issuing the ADVANCE or the
CLOSE statement within the application).

If you execute a procedure without using a procedure cursor in the above case, a warning is
returned to the application, no result set data is returned, and any return status and output
parameters are returned as usual.

m Transaction statements (COMMIT WORK, ROLLBACK WORK, WHENEVER .. STOP)

executed have the usual effect on non-KEEP cursors, i.e. such cursors are closed.

A procedure executing transaction statements can close a cursor defined on itself.
Therefore, transaction statements must be used with care in procedures containing
statements returning multiple row result sets.

m Procedures may reference the following set of built-in variables in non-SQL statements only:

o :sqlcode

o ::sqlerrd?2
o sqlwarn0
o sqlwarnl

SQL Statements 10-61

CREATE PROCEDURE

O :sqlwarn2
0 :sglwarn6
O :activexact

The first six of these have the same meaning that they have as fields in the SQLCA in
application programs. Note that in procedures, sqlerrd2 returns the number of rows
processed for all host languages. However, in application programs, sqlerrd(3) is used in
COBOL and Fortran, sqlerrd[3] is used in Pascal, and sqlerr[2] is used in C. :activexact
indicates whether a transaction is in progress or not. For additional information, refer to
the application programming guides and to the chapter “Constraints, Procedures, and

Rules.”

m Built-in variables cannot be referenced in any SQL statement. They may be referenced
in ASSIGNMENT, 1F, WHILE, RETURN, and PRINT statements. Refer to the section
“Using Procedures” in the chapter “Constraints, Procedures, and Rules” for more
explanation of built-in variables.

m Control flow and status statements, local variable declarations, parameter or local variable
assignments, and labeled statements are allowed only within procedures.

m Fach ProcedureStatement must be terminated with a semicolon.

m A label may appear only at the start of a ProcedureStatement that is not a compound
statement, a local variable declaration, or a WHENEVER directive.

m Host variables cannot be accessed within a procedure.

m No more than 1024 result columns can be defined in a procedure result set.

m Within a procedure, any SELECT, FETCH, or REFETCH statement with an INTO clause
specifying parameters and/or local variables returns at most a one row result.

m A procedure with single format multiple row result sets is a procedure having one or more
multiple row result sets, whose result format is defined in the WITH RESULT clause.
Each SELECT statement with no INTO clause must return rows of a format compatible
with this defined result format. When using the WITH RESULT clause, all such result
sets in the procedure must return the same number of columns. The corresponding result
columns of each result set must be compatible in data type, language and nullability. The
corresponding result columns of each result set must be no longer than defined in the WITH
RESULT clause. (For more information about data type compatibility, refer to chapter 7,
“Data Types.”)

m The WITH RESULT clause is used to describe the data format of a procedure’s multiple
row result sets. Since, by definition, all single format multiple row result sets have the same
format, there is no distinction made between result sets. There is no need to issue any
ADVANCE statement in the application. Use the WITH RESULT clause only when you do
not need to know the boundary between result sets.

ALLBASE/SQL attempts to verify compatibility of each result set format with the format
defined in the WITH RESULT clause at the time the procedure is created. In addition,
since verification is not always possible at procedure creation time (sections may be created
as invalid), compatibility is also verified at procedure execution time for each procedure
result set. If incompatibility is detected during procedure creation, the create statement
returns a warning. If incompatibility is detected during procedure execution, the execution
of the procedure result set statement fails with an error, and no more data is returned (For
an ADVANCE or CLOSE, procedure execution continues with the next statement).

10-62 SQL Statements

CREATE PROCEDURE

m An attempt to execute a CREATE PROCEDURE statement containing a WITH RESULT
clause but no multiple row result set causes an error and the procedure is not created.

m When a procedure with single format multiple row result sets is created using the WITH
RESULT clause, the format specified in this clause is stored in the system catalog
PROCRESULT table. This format information can be returned after defining a cursor on
a procedure (at procedure execution time) with a DESCRIBE RESULT statement before
(opening and fetching) from the cursor.

m Indicator variables are not allowed or needed inside procedures. However, you can include
an indicator variable with a host variable in supplying a value to a parameter in EXECUTE

PROCEDURE, DECLARE CURSOR, OPEN, or CLOSE statements.

Indicator variables specified for output host variables in CLOSE, DECLARE CURSOR, or
EXECUTE PROCEDURE statements are set by ALLBASE/SQL.

m Syntactic errors are returned along with an indication of the location of the error inside the

CREATE PROCEDURE statement.
m Statements that support dynamic processing are not allowed within a procedure.

m Within a procedure, a single row SELECT statement (one having an INTO clause) that
returns multiple rows will assign the first row to output host variables or procedure
parameters, and a warning is issued. In an application, this case would generate an error.

m If the IN DBEFileSetName clause is specified, but the procedure owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead.

Authorization

You must have RESOURCE or DBA authority to create a procedure. If you do not have

all appropriate authorities on the objects referenced by the procedure when you create the
procedure, warnings are returned. If you do not have the appropriate authorities at execution
time, errors are returned but (except in a rule) the execution of the rest of the procedure does
not stop. The procedure owner becomes the owner of any object created by the procedure
with no owner explicitly specified. A user granted authority to execute a procedure need not
have any direct authority on the objects accessed by the procedure.

To specify a DBEFileSetName, the procedure owner must have SECTIONSPACE authority
on the referenced DBEFileSet.

SQL Statements 10-63

CREATE PROCEDURE

Examples

1. DELETE
CREATE PROCEDURE ManufDB.RemoveBatchStamp (BatchStamp DATETIME NOT NULL)
AS
BEGIN

DELETE FROM ManufDB.TestData WHERE BatchStamp = :BatchStamp;
IF ::sqlcode < > O THEN
PRINT ’Delete failed.’;
ENDIF;
END;

2. INSERT

CREATE PROCEDURE PurchDB.ReportMonitor (Name CHAR(20) NOT NULL,
Owner CHAR(20) NOT NULL, Type CHAR(10) NOT NULL)
As
BEGIN
INSERT INTO PurchDB.ReportMonitor
VALUES (:Type, CURRENT_DATETIME,
USER, :Name, :0Owner);
RETURN ::sqlcode;
IN PurchFS;
END

3. SELECT (multiple row and single row)

CREATE PROCEDURE ReportOrder (OrderNumber INTEGER,
TotalPrice DECIMAL (10,2) OUTPUT) AS
BEGIN

Multiple row result set is returned to the application for processing using a procedure
cursor.

SELECT ItemNumber, OrderQty, PurchasePrice
FROM PurchDB.OrderItems
WHERE OrderNumber = :0rderNumber;

Single row result set value is returned to the application via an OUTPUT parameter.

SELECT SUM (OrderQty #* PurchasePrice)
INTO :TotalPrice
FROM PurchDB.OrderItems
WHERE OrderNumber = :0rderNumber;
END;

10-64 SQL Statements

CREATE RULE

CREATE RULE

The CREATE RULE statement defines a rule and associates it with specific kinds of data
manipulation on a particular table. The rule definition specifies the name of a procedure to be
executed when the rule fires.

Scope

ISQL or Application Programs

SQL Syntax
CREATE RULE [Owner. | RuleName AFTER
oN
s T oF 0 TableN
tatementlype [,] FROM [wner]. ableName
INTO

OLD AS OldCorrelationName
REFERENCING [.

NEW AS NewCorrelationName
EXECUTE PROCEDURE [OwnerName.]PmcedureName [(ParameterValue [y e])]
[IN DBEFz'leSetName]

.]] [WHERE Fz'rz'ngCondz'tz'on]

Parameters

[Owner.] RuleName is the name of the new rule. Two rules cannot have the same owner
and rule names.

The rule owner must be the same as the owner of the table the rule
is defined upon. The default owner name is the owner name of the
table it is being defined on. The usual default owner rules do not
apply here.

Statement Type specifies which statements will cause the rule to fire for the given
table. StatementType must be one of the following:

m INSERT
m UPDATE [(ColumnName [, ... 1)]
m DELETE

Each statement type can be listed in the CREATE RULE
statement only once for a given rule. If ColumnNames are specified
for a StatementType of UPDATE, they must exist in the table.

For UPDATE statements in which more than one column is
specified, any one of the column names listed here may be used in
the UPDATE for the rule to affect the statement. When you issue
the UPDATE, it is not necessary to specify all the ColumnNames
in the CREATE RULE statement. At most, 1023 column names
may be specified in this column name list.

[Owner.]Table Name designates the table on which the rule is to operate. Rules cannot
be created on views.

SQL Statements 10-65

CREATE RULE

OldCorrelationName

NewCorrelationName

FiringCondition

[Owner.] Procedure Name

ParameterValue

DBEFileSetName

10-66 SQL Statements

specifies the correlation name to be used within the
FiringCondition and ParameterValue to refer to the old values

of the row (before it was changed by the DELETE or UPDATE
statement). The default OldCorrelationName is OLD. If the
Statement Type is INSERT, an OldCorrelationName will refer to the
new values of the row, since no old values are available.

specifies the correlation name to be used within the
FiringCondition and ParameterValue to refer to the new values
of the row (after it was changed by the INSERT or UPDATE
statement). The default NewCorrelationName is NEW. If the
StatementType is DELETE, a NewCorrelationName will refer to
old values of the row, since no new values are available.

specifies a search condition the current row must meet once the
rule’s statement type has matched before the rule can fire on
that row. Refer to the “Search Conditions” chapter for possible
predicates.

The search condition must evaluate to TRUE to invoke the
specified procedure. The search condition cannot contain any
subqueries, aggregate functions, host variables, local variables,
procedure parameters, dynamic parameters, or the TID function.

specifies the procedure to invoke when a rule fires. The procedure
must exist when the rule is created.

specifies a value for a parameter in the procedure. The parameter
values must correspond in sequential order to the parameters
defined for the procedure.

ParameterValue has the following syntax:

NULL

{ Frpression }
The Fxpression may include anything allowed within an
SQL expression except a subquery, aggregate function, host
variable, TID function, local variable, procedure parameter,
dynamic parameter, or a long column value. Refer to the
“Expressions” chapter for the complete syntax of expressions. In
particular, column references are allowed within the EXECUTE
PROCEDURE clause of the CREATE RULE statement. Column

references may be of the form:

OldCorrelationName. ColumnName
NewCorrelationName. ColumnName
[[Owner.] TableName.] ColumnName

specifies the DBEFileSet in which sections associated with the rule
are to be stored. If not specified, the default SECTIONSPACE
DBEFileSet is used. (Refer to syntax for the SET DEFAULT
DBEFILESET statement.)

CREATE RULE

Description

A rule may be created through ISQL or through an application program.

When a rule is created, information about the rule is stored in the system catalog,
and may be examined through the following system views: SYSTEM.RULE,
SYSTEM.RULECOLUMN, and SYSTEM.RULEDEF.

The FiringCondition and ParameterValue can reference both the unchanged and the
changed values of the row being considered for the firing of a rule. The unchanged values
are known as old values and are referred to by using the OldCorrelationName. Changed
values are known as new values and are referred to by using the NewCorrelationName.

For an INSERT, there is no old value to reference, so the use of OldCorrelationName will be
treated as if NewCorrelationName had been specified.

For a DELETE, there is no new value to reference, so the use of NewCorrelationName will
be treated as if OldCorrelationName had been specified.

If no OldCorrelationName is defined, OLD is the default.
If no NewCorrelationName is defined, NEW is the default.
At most one OldCorrelationName and one NewCorrelationName can be specified.

Use of the TableName has the same effect as use of the NewCorrelationName if the
Statement Type is INSERT or UPDATE. Use of the Table Name has the same effect as use of
the OldCorrelationName if the StatementType is DELETE.

NewCorrelationName and OldCorrelationName must differ from each other. If either is the
same as the TableName, then the correlation name will be assumed to be used wherever
that name qualifies a column reference without an owner qualification also being used. If
the table is called OLD, reference it by using OwnerName.OLD.ColumnName.

Rules can execute in a forward-chaining manner. This occurs when a fired rule invokes a
procedure which contains a statement that causes other rules to fire. The maximum nesting
of rule invocations is 20 levels.

If multiple rules are to be fired by a given statement, the order in which the rules fire may
change when the section is revalidated. You can use the SET PRINTRULES ON statement
to generate messages giving the names of rules as they fire.

If an error occurs during the execution of a rule or its invoked procedure, it will have its
normal effect, that is, a message may be generated, the execution of the statement may be
halted, the effects of the statement may be rolled back, or the connection may be lost. Even
if the error has not caused the transaction to roll back or the connection to be lost, the
statement issued by the user and all rules fired on behalf of that statement (or chained to
by such rules) are undone and have no effect on the database.

The procedure invoked by a rule cannot execute a COMMIT WORK, ROLLBACK WORK,
COMMIT/ROLLBACK ARCHIVE, or SAVEPOINT statement. If the procedure executes
one of these statements, an error occurs, and the effect of the statement that triggered the
procedure is undone.

If a CurrentFunction is used within the FiringCondition or a ParameterValue, it will be
evaluated at the time of the statement that fires the rule.

Any value returned by the procedure with a RETURN statement is ignored by the rule and
not returned to the statement firing the rule.

SQL Statements 10-67

CREATE RULE

m An EXECUTE PROCEDURE call from within a rule is different from one issued as a
regular SQL statement. Within a rule, you cannot specify host variables, local variables,
procedure parameters, or dynamic parameters as parameter values, since host variables
are not accessible from the rule. Also, the key word QOUTPUT cannot be specified, since a
procedure called from a rule cannot return any values. A rule does permit the specification
of columns within the procedure call, since in this context column values are available to be
passed to the procedure from the row the rule is firing on.

m The CREATE RULE statement invalidates sections that contain dependencies upon the
table the rule is defined upon. This is to enable the rule to be included when those sections
are revalidated.

m If a procedure specified in a CREATE RULE statement returns multiple row result set(s),
a warning is issued when the rule is created. Note that no warning is issued when the
procedure is invoked by the rule.

m If the IN DBEFileSetName clause is specified, but the rule owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DBEFILESET statement.)

Authorization

The CREATE RULE statement requires you to have OWNER, authority for the table and
OWNER or EXECUTE authority for the procedure, or to have DBA authority. Once the
rule is defined, users issuing statements which cause the rule to fire need not have EXECUTE
authority for the procedure.

To specify a DBEFileSetName for a rule, the rule owner must have SECTIONSPACE
authority on the referenced DBEFileSet.

Example

First, create a procedure to monitor operations on the Reports table:

CREATE PROCEDURE PurchDB.ReportMonitor (Name CHAR(20) NOT NULL,
Owner CHAR(20) NOT NULL, Type CHAR(10) NOT NULL) AS

BEGIN
INSERT INTO PurchDB.ReportMonitor
VALUES (:Type, CURRENT_DATETIME,
USER, :Name, :Owner);
RETURN ::sqlcode;
END
IN PurchDBFileSet;

10-68 SQL Statements

Next, create three rules that invoke the procedure with parameters:

CREATE RULE PurchDB.InsertReport
AFTER INSERT TO PurchDB.Reports
EXECUTE PROCEDURE PurchDB.ReportMonitor (NEW.ReportName,
EW.ReportOwner, ’INSERT?)
IN PurchDBFileSet;

CREATE RULE PurchDB.DeleteReport
AFTER DELETE FROMPurchDB.Reports
EXECUTE PROCEDURE PurchDB.ReportMonitor (OLD.ReportName,
OLD.ReportOwner, ’DELETE?)
IN PurchDBFileSet;

CREATE RULE PurchDB.UpdateReport
AFTER UPDATE TO PurchDB.Reports
EXECUTE PROCEDURE PurchDB.ReportMonitor (NEW.ReportName,
EW.ReportOwner, ’UPDATE?)
IN PurchDBFileSet;

CREATE RULE

SQL Statements

10-69

CREATE SCHEMA

The CREATE SCHEMA statement creates a schema and associates an authorization name
with it. The schema defines a database containing tables, views, indexes, procedures, rules,
and authorization groups with the same owner name. Entries are created in the system
catalog views upon completion of the execution of this statement.

Scope

ISQL or Application Programs

SQL Syntax

[Table Definition
ViewDefinition
IndexDefinition
ProcedureDefinition
RuleDefinition []
CreateGroup
AddToGroup

GrantStatement

CREATE SCHEMA AUTHORIZATION AuthorizationName

Parameters
AuthorizationName specifies the owner of the database objects.

If you have RESOURCE authority, the AuthorizationName must
be your DBEUserID, a class name, or an authorization group
name to which you belong. You cannot specify a different owner
for the objects you create.

If you have DBA authority, the AuthorizationName can be any
DBEUserID, class name, or authorization group name. The
owner of the objects you create does not have to match the
AuthorizationName if the owner has DBA authority.

You must specify an AuthorizationName; there is no default.

Table Definition defines a table and automatic locking strategy. For complete
syntax, refer to the CREATE TABLE syntax.

ViewDefinition defines a view of a table, another view, or a combination of tables
and views. For complete syntax, refer to the CREATE VIEW
syntax.

IndexDefinition creates an index on one or more columns. For complete syntax,
refer to the CREATE INDEX syntax.

ProcedureDefinition creates a procedure which defines a sequence of SQL statements.
For correct syntax, refer to the CREATE PROCEDURE syntax.

RuleDefinition creates a rule to fire a stored procedure. For complete syntax,

refer to the CREATE RULE syntax.

10-70 SQL Statements

CREATE SCHEMA

CreateGroup defines an authorization group. For complete syntax, refer to the

CREATE GROUP syntax.

AddToGroup adds one or more users, authorization groups, or combination of

users and authorization groups to an authorization group. For
complete syntax, refer to the ADD TO GROUP syntax.

GrantStatement specifies the type of authorities for a table, view, or module. For

complete syntax, refer to the GRANT syntax.

Description

Note that a comma or semicolon is not allowed between the object definitions in the

CREATE SCHEMA syntax.

You cannot use the following CREATLE statements within the CREATE SCHEMA
statement:

o CREATE DBEFILE
o CREATE DBEFILESET

You cannot use this statement to add to a schema that already exists. A schema for a given
authorization name exists if there are any objects (tables, views, indexes, procedures, rules,
or groups) owned by that authorization name.

When the CREATE SCHEMA statement is part of a procedure, no Procedure Definition
may be included.

Authorization

You can execute this statement if you have RESOURCE authority or DBA authority. With
RESOURCE authority you can create a schema by using your own name or the authorization
group name to which you belong. If you have DBA authority, then you can create a schema
with any AuthorizationName.

SQL Statements 10-71

CREATE SCHEMA

Example

In the following example, RecDB is the AuthorizationName (owner name). All the tables
created here are owned by RecDB; it is not necessary to repeat the owner name for each
creation statement.

CREATE SCHEMA AUTHORIZATION RecDB

CREATE PUBLIC TABLE Clubs
(ClubName CHAR(15) NOT NULL
PRIMARY KEY CONSTRAINT Clubs_PK,
ClubPhone SMALLINT,
Activity CHAR(18))
IN RecFS

CREATE PUBLIC TABLE Members
(MemberName CHAR(20) NOT NULL,
Club CHAR(15) NOT NULL,
MemberPhone SMALLINT,
PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
FOREIGN KEY (Club) REFERENCES Clubs (ClubName)
CONSTRAINT Members_FK)
IN RecFS

CREATE PUBLIC TABLE Events
(SponsorClub CHAR(15),
Event CHAR(30),
Date DATE DEFAULT CURRENT_DATE,
Time TIME,
Coordinator CHAR(20),
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES Members (MemberName, Club) CONSTRAINT Events_FK)
IN RecFS

10-72 SQL Statements

CREATE TABLE

CREATE TABLE

The CREATE TABLE statement defines a table. It also defines the locking strategy

that ALLBASE/SQL uses automatically when the table is accessed and in some cases
automatically issues a GRANT statement. It can also define the storage structure of the table
and restrictions or defaults placed on values which the table’s columns can hold. You can also
use this statement to assign a table to a partition for audit logging purposes.

Scope

ISQL or Application Programs

SQL Syntax—CREATE TABLE

PRIVATE
CREATE | - PTOREAD | g p [Owner. | TableName
PUBLIC
PUBLICROW
[LANG = TableLanguageName]
ColumnDefinition
UniqueConstraint
ReferentialConstraint ['])
CheckConstraint
[UNIQUE HASH ON (HashColumnName [,]) PAGES = PrimaryPages
HASH ON CONSTRAINT | ConstraintID|PAGES = PrimaryPages
| CLUSTERING ON CONSTRAINT | ConstraintID |
i PartitionName
IN PARTITION < DEFAULT
NONE

[IN DBEFileSetName1]

Parameters—CREATE TABLE

PRIVATE enables the table to be used by only one transaction at a time.
This is the most efficient option for tables that do not need to be
shared because ALLBASE/SQL can spend less time managing
locks.

This option is in effect by default; grants are not automatically
issued.

PUBLICREAD enables the table to be read by concurrent transactions, but
allows no more than one transaction at a time to update the
table.

This option automatically issues a statement GRANT SELECT
ON TableName TO PUBLIC. This gives any user with
CONNECT authority the ability to read the table. To change this
grant, use the REVOKE statement and the GRANT statement.

SQL Statements 10-73

CREATE TABLE

PUBLIC

PUBLICROW

[Owner.] Table Name

Table LanguageName

ColumnDefinition

UniqueConstraint

ReferentialConstraint

10-74 SQL Statements

The locking strategy remains unchanged, even if you change the
grant.

enables the table to be read and updated by concurrent
transactions. In general, a transaction locks a page in share mode
before reading it and in exclusive mode before updating it.

This option automatically issues the statement GRANT ALL ON
TableName TO PUBLIC. This gives any user with CONNECT
authority the ability to read and modify the table as well as to
alter the table and create indexes on it. To change this grant, use
the REVOKE statement and the GRANT statement. The locking
strategy remains unchanged, even if you change the grant.

enables the table to be read and updated by concurrent
transactions. The locking unit is a row (tuple) in PUBLICROW
tables. In general, a transaction locks a row in share mode before
reading it and in exclusive mode before updating it. For small
tables with small rows, concurrency can be maximized by using

the PUBLICROW type.

This option automatically issues the statement GRANT ALL ON
TableName TO PUBLIC. This gives any user with CONNECT
authority the ability to read and modify the table as well as to
alter the table and create indexes on it. To change this grant, use
the REVOKE statement and the GRANT statement. The locking
strategy remains unchanged, even if you change the grant.

is the name to be assigned to the new table. Two tables cannot
have the same owner name and table name.

You can specify the owner of the new table if you have DBA
authority. If you do not have DBA authority, you can specify

the owner as the name of any group to which you belong. If

you do not specify the owner name, your DBEUserID, schema
authorization name, procedure owner, or the ISQL SET OWNER
name becomes the owner of the new table. For more information,
refer to the section “Default Owner Rules” in the chapter “Using

ALLBASE/SQL.”

specifies the language for the new table. This name must be
either NATIVE-3000 or the language of the DBEnvironment. The
default is the language of the DBEnvironment.

defines an individual column in a table. Fach table must have at
least one column. The syntax for a CREATE TABLE column
definition is presented separately in another section below.

defines a uniqueness constraint for the table. Each table can have
multiple unique constraints, but can have only one specifying
PRIMARY KEY. The syntax for a UniqueConstraint is presented
separately in another section below.

defines a referential constraint of this table with respect to
another (or the same) table. The referencing table (this one) and
the referenced table (the other one) satisfy the constraint if, and

CheckConstraint

UNIQUE HASH ON

HashColumnName

PrimaryPages

HASH ON CONSTRAINT

ConstraintlD

IN PARTITION

PartitionName

DEFAULT

NONE

CLUSTERING ON
CONSTRAINT

CREATE TABLE

only if each row in the referencing table contains either a NULL
in a referencing column, or values in the rows of the referencing
columns equal the values in the rows of the referenced columns.
The syntax of a ReferentialConstraint is presented separately in
another section below.

defines a check constraint for the table. A table can have multiple
check constraints. The syntax for a check constraint is presented
separately in another section below.

specifies a hash structure for the table. Only UNIQUE HASH
structures may be created, and updates on hash key columns are
not permitted (you must first delete, then insert the row with the
new key value).

specifies a column defined in the table that is to participate in the

hash key of this table.

specifies the number of pages used as primary hash buckets. The
minimum is 1 and the maximum is determined by the formula
16*((231)—2072). For good results, use a prime number.

specifies that the named unique constraint be managed through
the use of hash table storage. The unique constraint’s columns
become the hash key columns.

is an optional name specified for the constraint. If none is
supplied, one is generated, as described under “Description”
below.

specifies what partition the table will be in for the purposes of
audit logging.

specifies the partition for the table.

specifies that the default partition of the database will be used.
The number associated with the default partition is determined at
the time the INSERT, UPDATE, or DELETE is executed on the
table. If the default partition is NONE at that time, audit logging
of the operation is not done. Any change to the default partition
number occurring in a START DBE NEWLOG statement alters
the partition number that audit logging uses on tables that are in
the default partition.

specifies that this table is assigned to no partition, and so will
have no audit logging done on it.

specifies that the named unique or referential constraint be
managed through a clustered index structure rather than
nonclustered. The unique constraint’s unique column list, or
referential constraint’s referencing column list, becomes the
clustered key.

SQL Statements 10-75

CREATE TABLE

IN DBEFileSetNamel

causes the index and data pages in which table information

is stored to be allocated from DBIEFiles associated with the
specified DBEFileSet. (Names of available DBEFileSets are
recorded in the SYSTEM.DBEFILESET view.) If a DBEFileSet
name is not specified, the table is created in the default
TABLESPACE DBEFileSet. (Refer to syntax for the SET
DEFAULT DBEFILESET statement.)

You can create a nonhash table in an empty DBEFileSet, but
cannot INSERT any rows or create any indexes for the table until
the DBEFileSet has DBEFiles associated with it.

You cannot create a hash structure in an empty DBEFileSet.

SQL Syntax—Column Definition

ColumnName {

ColumnDataType
LongColumnType [IN DBEFz'leSetName,?]

[LANG = ColumnLanguageName]
[[NOT |CASE SENSITIVE |

Constant
USER

DEFAULT NULL

UNIQUE
NOT NULL

[]

PRIMARY KEY
REFERENCES RefTableName [(RefColumnName) | [CONSTRAINT ConstraintID |

CHECK (SearchCondition) [CONSTRAINT ConstraintID |
i [IN DBEFileSetName3]

Current Function

} [CONSTRAINT ConstraintID |

Parameters—Column Definition

ColumnName

ColumnDataType

LongColumnType

DBEFileSetName2

ColumnLanguageName

10-76 SQL Statements

is the name to be assigned to one of the columns in the new table.
No two columns in the table can be given the same name. You
can define a maximum of 1023 columns in a table.

indicates what type of data the column can contain. Some data
types require that you include a length. See the “Data Types”
chapter for the data types that can be specified.

specifies a LONG data type for the new column. At most 40
columns with a LongColumnType may be defined in a single table.

specifies the DBEFileSet where long column data is to be stored.
This DBEFileSet may be different from that of the table. If a
DBEFileSet is not specified, the LONG data is stored in the
DBEFileSet containing the table.

specifies the language for the column. This can only be specified

for CHAR or VARCHAR columns. This name must be either

CASE SENSITIVE

DEFAULT

NOT NULL

UNIQUE | PRIMARY KEY

REFERENCES

CHECK
SearchCondition

ConstraintlD

DBEFileSetName3

CREATE TABLE

NATIVE-3000 or the language of the DBEnvironment. The
default is the language of the DBEnvironment.

indicates that upper and lower case letters stored in the column
are not considered equivalent. If the column is defined as NOT
CASE SENSITIVE, then its upper and lower case letters are
considered equivalent. The default is CASE SENSITIVE. This
clause is allowed only with CHAR and VARCHAR columns.

specifies the default value to be inserted for this column. The
default can be a constant, NULL, or a date/time current function
The data type of the default value must be compatible with the
data type of the column. DEFAULT cannot be specified for
LONG data type columns.

means the column cannot contain null values. If NOT NULL is
specified, any statement that attempts to place a null value in the
column is rejected. However, if atomicity is set to row level, only
the NULL row receives the error and the statement halts.

specifies a unique constraint placed on the column. The table
level constraint { UNIQUE | PRIMARY KEY } (ColumnName)
is equivalent. See the discussion on table level unique constraints
below.

specifies a Referential Constraint placed on the column.

This is equivalent to the table level constraint FOREIGN

KEY (ColumnName) REFERENCES RefTable Name
[(RefColumnName)]. See the discussion on table level referential
constraint below.

specifies a check constraint placed on the column.

specifies a boolean expression that must not be false. The result
of the boolean expression may be unknown if a value in the
expression is NULL. See the discussion on a table level check
constraint below. In addition, for a column definition check
constraint, the only column the search condition can reference is
ColumnName.

is an optional name specified for the constraint. If none is
supplied, one is generated, as described under “Description”
below.

specifies the DBEFileSet to be used for storing the section
associated with the check constraint. If not specified, the default
SECTIONSPACE DBEFileSet is used. (Refer to syntax for the
SET DEFAULT DBEFILESET statement.)

SQL Statements 10-77

CREATE TABLE

SQL Syntax—Unique Constraint (Table Level)

UNIQUE
PRIMARY KEY

}(ColumnName [,]) [CONSTRAINT Constmz'ntID]

Parameters—Unique Constraint (Table Level)

UNIQUE Each ColumnName shall identify a column of the table, and the
same column shall not be identified more than once. Also, NOT
NULL shall be specified for each column in this unique constraint
column list.

PRIMARY KEY In addition to the rules for the UNIQUE option, PRIMARY KEY
may only be specified once in a table definition. It provides a
shorthand way of referencing its particular unique constraint
column list in a referential constraint.

ColumnName [, ...] is the unique constraint column list, or key list, of the constraint.
No two unique constraints may have identical column lists. The
maximum number of columns in a unique column list is 15. None
of the columns may be a LONG data type.

ConstraintID is an optional name specified for the constraint. If none is
supplied, one is generated, as described under “Description”
below.

SQL Syntax—Referential Constraint (Table Level)

FOREIGN KEY (FKColumnName [, ...])
REFERENCES RefTableName [(RefColumnName [, ... |)] [CONSTRAINT ConstraintID |

Parameters—Referential Constraint (Table Level)

FKColumnName [, ...] identifies the referencing column list. FEach referencing column
shall be a column defined in the referencing table, and the
same column name shall not be identified more than once.
The number of referencing and referenced columns would be
the same. The maximum number of columns in a referencing
column list is 15. None of the columns may be a LONG data

type.
RefTable Name identifies the base table being referenced. If no
RefColumnName list follows this, the base table must contain a

PRIMARY KEY unique constraint with the correct number of
columns, each of the correct data type.

RefColumnName [, ...] identifies the referenced column list. This column list must be
identical to a unique constraint column list of the referenced
table.

ConstraintID is an optional name specified for the constraint. If none is
supplied, one is generated, as described under “Description”
below.

10-78 SQL Statements

CREATE TABLE

SQL Syntax—Check Constraint (Table Level)

CHECK (SearchCondition) [CONSTRAINT ConstraintID| [IN DBEFileSetNames3]

Parameters—Check Constraint (Table Level)

CHECK specifies a check constraint.

SearchCondition specifies a boolean expression for the check constraint. The

result of the boolean expression must not be false for any

row of the table. The result may be unknown if a column

that is part of the expression is NULL. The search condition
may only contain LONG columns if they are within long
column functions. (Refer to long column functions in the
“Expressions” and “Data Types” chapters.) The search
condition cannot contain a subquery, host variable, aggregate
function, built-in variable, local variable, procedure parameter,
dynamic parameter, TID function, current function, or USER.
Refer to the chapter, “Constraints, Procedures, and Rules,” for
more information on check constraints.

ConstraintID is an optional name specified for the constraint. If none is
supplied, one is generated, as described under “Description”
below.

DBEFileSetName3 specifies the DBEFileSet to be used for storing the section

associated with the check constraint. If not specified, the
default SECTIONSPACE DBEFileSet is used. (Refer to syntax
for the SET DEFAULT DBEFILESET statement.)

Description

PUBLIC, PUBLICROW, PUBLICREAD, and PRIVATE are locking modes. They define
the type of locking ALLBASE/SQL uses automatically when the table is accessed. The
LOCK TABLE statement can be used to override automatic locking during any transaction,
if the override is to a more restrictive lock. If no locking mode is specified, PRIVATE is
assumed. For complete information on locking, refer to the chapter “Concurrency Control
through Locks and Isolation Levels.”

For nonhash tables, CREATE TABLE simply enters the new table’s definition into the
system catalog. Until you insert a row into the new table, the table does not occupy any
storage. For hash tables, the number of primary pages is allocated at CREATE TABLE
time.

Data and index values of columns defined as NOT CASE SENSITIVE are not converted to
upper case when stored. However, during comparison, sorting, and indexing operations,
upper and lower case letters are considered equivalent. If a case sensitive column is
compared to a column that is not case sensitive, both columns are treated as case sensitive.
When defining a referential constraint, the case sensitivity of the referenced and referencing
columns must match.

The NOT CASE SENSITIVE clause has no effect if the character set does not differentiate
between upper and lower case, such as Chinese.

SQL Statements 10-79

CREATE TABLE

m Upper and lower case extended characters are treated as equivalent. They are compared to
the collation table of a specific language regardless of case.

m [f no DEFAULT clause is given for a column in the table, an implicit DEFAULT NULL is
assumed. Any INSERT statement, which does not include a column for which a default has
been declared, causes the default value to be inserted into that column for all rows inserted.

m For a CHAR column, if the specified default value is shorter in length than the target
column, it is padded with blanks. For a CHAR or VARCHAR column, if the specified

default value is longer than the target column, it is truncated.

m For a BINARY column, if the specified default value is shorter in length than the target
column, it is padded with zeroes. For a BINARY or VARBINARY column, if the specified
default value is longer than the target column, it is truncated.

m [f a constraint is defined without a ConstraintID, one is generated of the following form:
SQLCON_uniqueid

where the uniqueid is unique across all constraints. You cannot define a constraint starting
with SQLCON_. All constraint names must be unique for a given owner, regardless of which
table they are in.

m Unique constraints are managed through the use of B-tree indexes unless the constraint is
named and its name is referenced in the HASH ON CONSTRAINT clause. If the name is
referenced in the CLUSTERING ON CONSTRAINT clause, the B-tree index is clustered.

m Referential constraints are managed through the use of virtual indexes. A virtual index is
created by ALLBASE/SQL. Virtual indexes can be clustered with respect to the referencing
columns’ values if the constraint is named in the CLUSTERING ON CONSTRAINT clause.

m The behavior by which integrity constraints are enforced is determined by the setting of the
SET DML ATOMICITY and SET CONSTRAINTS statements. Refer to the discussion of

these statements in this chapter for more information.

m Unique constraint indexes use space in this table’s DBEFileSet; but referential constraint
virtual indexes use space in the referenced table’s DBEFileSet.

m If the HASH or CLUSTERING ON CONSTRAINT clause is used without a constraint
name, the PRIMARY KEY of the table is used. If a PRIMARY KEY is not defined, an

error results.

m At most 15 columns may be used in a unique or referential constraint key. The maximum
length of the index key for unique or referential constraints is obtained from the following
formula:

(NumberOfColumns + 3)* 2 + SumColumnlLengths + 10 = 1024

An extra 2 bytes must be added for each column that allows NULLS or is a VARCHAR
data type.

m The data types of the corresponding columns in a referential constraint’s referencing
and referenced column lists must be the same with the following exceptions. CHAR and
VARCHAR are allowed to refer to each other, as are the pairs BINARY and VARBINARY,
and NATIVE CHAR and NATIVE VARCHAR. DECIMAL columns must exactly match in
precision and scale. SMALLINT, INTEGER, FLOAT, and REAL references cannot refer to
a data type other than their same data type. LONG columns may not be used in integrity
constraints.

10-80 SQL Statements

CREATE TABLE

You can use the same set of foreign key columns to reference two different primary keys.

The maximum size of a hash key is the same as a user-defined index key, which is
determined in the following formula:

(NumberOfHashColumns+2)* 2 + SumKeyColumnlLengths + 8 <= 1024

An extra 2 bytes must be added for each column that allows NULLS or is a VARCHAR
datatype.

At most 16 columns are allowed in a hash structure key.

A hash structure may not be dropped, except by dropping the table upon which it is defined
with the DROP TABLE statement.

You cannot create a hash structure as a PUBLICROW table.

If the table is created with a HASH structure, enough empty data and mixed DBEFiles
must exist to contain the primary pages for the hash table data at the time the table is
created. Primary pages for hash tables cannot be placed in DBEFile0, an index DBEFile,
or a nonempty DBEFile. Similarly, data for nonhash tables cannot be placed in a DBEFile
containing primary pages for hash tables.

The partition must be already created by the CREATE PARTITION statement, it must be
the default partition, or it must be specified as NONE.

The partition number of a table’s partition is recorded in any audit logging generated on
that table. Audit logging is done on any INSERT, UPDATE, or DELETE performed on a
table while the DBEnvironment is enabled for DATA audit logging, unless the table is in the
partition NONE.

Audit logging is not done on any LONG column data for the table.
If no partition is specified, the table is placed in the DEFAULT partition.
To specify that a table is in no partition, the partition NONE can be specified.

Partitions can be created and tables placed in them without DATA audit logging being
enabled for a DBEnvironment. However, the partition information is only used in audit log
records. Thus, partition information is not utilized until the DBEnvironment has DATA

audit logging enabled through the START DBE NEWLOG statement.

If the IN DBEFileSetNamel clause is specified for the table or the IN DBEFileSetName?2
clause is specified for a long column, but the table owner does not have TABLESPACE
authority for the specified DBEFileSet, a warning is issued and the default TABLESPACE
DBEFileSet is used instead. (Refer to syntax for the GRANT statement and the SET
DEFAULT DBEFILESET statement.)

If the IN DBEFileSetNamesd clause is specified for a check constraint, but the table owner
does not have SECTIONSPACE authority for the specified DBEFileSet, a warning is issued
and the default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the
GRANT statement and the SET DEFAULT DBEFILESET statement.)

SQL Statements 10-81

CREATE TABLE

Authorization

You must have RESOURCE or DBA authority to use this statement. To define referential
constraints, the table owner must have REFERENCES authority on the referenced table

and referenced columns, own the referenced table, or have DBA authority for the life of

the referential constraint. The REVOKE, DROP GROUP, and REMOVE FROM GROUP
statements are not permitted if they remove REFERENCES authority from the table’s owner
until the referential constraint or table is dropped or ownership is transferred to someone else.

To specify a DBEFileSetName for a long column, the table owner must have TABLESPACE
authority on the referenced DBEFileSet.

To specify a DBEFileSetName for a check constraint, the section owner must have
SECTIONSPACE authority on the referenced DBEFileSet.

Examples
1. Creating and accessing tables

This public table is accessible to any user or program that can start a DBE session. It is
also accessible by concurrent transactions.
CREATE PUBLIC TABLE PurchDB.SupplyPrice
(Partiumber CHAR(16) NOT NULL,
VendorNumber INTEGER NOT NULL,
VendPartlNumber CHAR(16) NOT NULL,
UnitPrice DECIMAL(10,2),
DeliveryDays SMALLINT DEFAULT O,
DiscountQty SMALLINT)

IN PARTITION PartsPart
IN PurchFS;

REVOKE ALL PRIVILEGES ON PurchDB.SupplyPrice FROM PUBLIC
GRANT SELECT,UPDATE ON Purch.DB.SupplyPrice TO Accounting

Now only the DBA and members of authorization group Accounting can access the table.
Later, the accounting department manager is given control.

TRANSFER OWNERSHIP OF PurchDB.SupplyPrice TO MGR@ACCOUNT
2. Creating a table using constraints and LONG columns

In this example, the tables are created with the PUBLIC option so as to be accessible
to any user or program that can start a DBE session. RecDB.Clubs defines those clubs
which can have members and hold events, as shown by the constraint Members_FK.
RecDB.Members defines those members who can have events for certain clubs, as shown by
constraint Events FK. The LONG column Results is used to hold a text file containing
the results of a completed event. No date can be entered for an event that is prior to the
current date. RecDB.Members and RecDB.Events are both created PUBLICROW since
they are small tables on which a large amount of concurrent access is expected.
CREATE PUBLIC TABLE RecDB.Clubs

(Clublame CHAR(15) NOT NULL

PRIMARY KEY CONSTRATNT Clubs_PK,

ClubPhone SMALLINT,

Activity CHAR(18))

NOT CASE SENSITIVE
IN RecFS

10-82 SQL Statements

CREATE TABLE

CREATE PUBLICROW TABLE RecDB.Members
(MemberName CHAR(20) NOT NULL,
Club CHAR(15) NOT NULL,
MemberPhone SMALLINT,
PRIMARY KEY (MemberName, Club) CONSTRAINT Members_PK,
FOREIGN KEY (Club) REFERENCES RecDB.Clubs (Clublame)
CONSTRAINT Members_FK)
IN RecFS

CREATE PUBLICROW TABLE RecDB.Events
(SponsorClub CHAR(15),
Event CHAR(30),
Date DATE DEFAULT CURRENT_DATE,
CHECK (Date >= 21990-01-01’) CONSTRAINT Events_Date_Ck,
Time TIME,
Coordinator CHAR(20),
Results LONG VARBINARY(10000) IN LongF$s,
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members (MemberName, Club)
CONSTRAINT Events_FK)
IN RecFS

3. Creating a table with a hash structure

BEGIN WORK

Statements to create a DBEFile and add it to a DBEFileSet should be in the same
transaction as the statement to create the hash structure. This makes it impossible for
other transactions to use the new DBEFile for hashing before the hash structure is created.

CREATE DBEFILE PurchHashF1 WITH PAGES = 120,
NAME = ’PurchHF1°’,
TYPE = TABLE
ADD DBEFILE PurchHashF1
TO DBEFILESET PurchF$S

CREATE PUBLIC TABLE PurchDB.Vendors
(VendorNumber INTEGER NOT NULL,
VendorName CHAR(30) NOT NULL,
ContactName CHAR(30),
Phonelumber CHAR(15),
VendorStreet CHAR(30) NOT NULL,
VendorCity CHAR(20) NOT NULL,
VendorState CHAR(2) NOT NULL,
VendorZipCode CHAR(10) NOT NULL,
VendorRemarks VARCHAR(60))

UNIQUE HASH ON (VendorHumber) PAGES = 101
IN PurchFS
COMMIT WORK

4. Specify a DBEFileSet for a Check Constraint in the Column Definition

CREATE PUBLIC TABLE RecDB.Events
(SponsorClub CHAR(15),
Event CHAR(30),
Date DATE DEFAULT CURRENT_DATE,

CHECK (Date »>= ’1990-01-01°’) CONSTRAINT Events Date Ck

IN RecEs,

Time TIME,
Coordinator CHAR(20),
Results LONG VARBINARY(10000) IN LongF$s,
FOREIGN KEY (Coordinator, SponsorClub)
REFERENCES RecDB.Members (MemberName, Club)
CONSTRAINT Events_FK)

IN RecFS;

SQL Statements 10-83

CREATE TEMPSPACE

The CREATE TEMPSPACE statement defines and creates a temporary storage space known
as a TempSpace. A TempSpace is a location where ALLBASE/SQL creates temporary files to
store temporary data when performing a sort, if disk space permits.

Scope

ISQL or Application Programs

SQL Syntax

CREATE TEMPSPACE TempSpace Name
WITH [MAXFILEPAGES = MaxzTempFileSize,]LOCATION =’ PhysicalLocation’

Parameters

TempSpace Name is the logical name to be assigned to the new TempSpace. More

than one TempSpace can be defined but only one per physical
location. All TempSpace names must be unique within the
DBEnvironment.

MaxTempFileSize specifies the maximum number of 4096-byte pages allocated for

each temporary file in the PhysicalLocation. The number of pages
must be a number between 128 and 524,284. The default is 256.
Each file may grow in size up to MazTempFileSize.

Physical Location identifies the group and account where the TempSpace is to be

located. You must specify both a group name and an account
name.

Description

If no TempSpaces are defined for a DBEnvironment, sorting is done in the current group.
Each TempSpace should belong to a different disk volume set.

When the size of a temporary file exceeds MaxzTempFileSize pages, ALLBASE/SQL opens a
temporary file in another defined TempSpace. If additional TempSpace is not available, then
temporary files are created in the same TempSpace, if space permits.

The total temporary space required for a DBEnvironment depends on the size of the tables
to be sorted or indexes to be created. It also depends on the expected number of concurrent
sort operations on the system at one time. The MaxzTempFileSize (of each file) should fit
within the space available in the partition where the TempSpace is located.

The location and characteristics of the TempSpace are stored in the system catalog.
TempSpace files are physically created only when needed. When the TempSpace is no
longer needed (the present task completes), the temporary file or files are deleted and the
space is available for use again.

The group specified must be accessible to the DBEnvironment.

If the TempSpace cannot be accessed when a statement requiring temporary space is issued,
a system error is returned due to failure in opening the temporary file.

10-84 SQL Statements

CREATE TEMPSPACE

m To delete the definition of a TempSpace, use the DROP TEMPSPACE statement.

Authorization

You must have DBA authority to use this statement.

Example

TempSpace temporary files are created in SomeGrp.SomeAcct when SQL Statements require
sorting.

CREATE TEMPSPACE ThisTempSpace WITH MAXFILEPAGES = 360,
LOCATION = ?SomeGrp.Somelcct?

TempSpace temporary files will no longer be available in SomeGrp.SomeAcct, but will be
allocated in the current group and account as needed.

DROP TEMPSPACE ThisTempSpace

SQL Statements 10-85

CREATE VIEW

The CREATE VIEW statement creates a view of a table, another view, or a combination of

tables and views.

Scope

ISQL or Application Programs

SQL Syntax

CREATE VIEW [Owner.] ViewName [(ColumnName [,])]
AS QueryFzpression [IN DBEFz'leSetName]
[WITH CHECK OPTION [CONSTRAINT ConstraintID]]

Parameters

[Owner.] ViewName

ColumnName

QueryFLzrpression

10-86 SOQL Statements

is the name to be assigned to the view. One owner cannot own
more than one view with the same name. The view name cannot
bethe same as the table name.

You can specify the owner of the new view if you have DBA
authority. Non-DBA users can specify as owner the name of any
group of which they are a member. If you do not specify the
owner name, your DBEUserID, schema authorization name,
procedure owner, or the ISQL SET OWNER name becomes the
owner of the new table. For more information, refer to the section

“Default Owner Rules” in the chapter “Using ALLBASE/SQL.”

specifies the names to be assigned to the columns of the new view.
The names are specified in an order corresponding to the columns
of the query result produced by the query expression. You can
specify a maximum of 1023 columns for a view.

You must specify the column names if any column of the

query result is defined by a computed expression, aggregate
function, reserved word, or constant in the select list of the query
expression. You must also specify column names if the same
column name (possibly from different table) appears in the select
list more than once.

If you do not specify column names, the columns of the view are
assigned the same names as the columns from which they are
derived. The * is expanded into the appropriate list of column
names.

is the query expression from which the view is derived. The select
list can contain as many as 1023 columns. The query expression
may refer to tables or views or a combination of tables and views.
The query expression may include UNION and/or UNION ALL
operations.

CREATE VIEW

DBEFileSetName specifies the DBEFileSet to be used for storing the section
associated with the view. If not specified, the default
SECTIONSPACE DBEFileSet is used. (Refer to syntax for the
SET DEFAULT DBEFILESET statement.)

ConstraintID is the optional name of the view check constraint.

Description

m A view definition with * in the select list generates a view that refers to all the columns
that exist in the base table(s) at the time the view is created. Adding new columns to the
base tables does not cause these columns to be added to the view.

m A view is said to be updatable when you can use it in DELETE, UPDATE, or INSERT
statements to modify the base table. A view is updatable only if the query from which it is
derived matches the following updatability criteria:

No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT

clause, and no aggregate appears in its select list.

The FROM clause specifies exactly one table, which must be an updatable table. See
“Updatability of Queries” in the “SQL Queries” chapter.

To use INSERT and UPDATLE statements through views, the select list in the view
definition must not contain any arithmetic expressions. It must contain only column
names.

For DELETE WHERE CURRENT and UPDATE WHERE CURRENT statements

operating on cursors defined with views, the view definition must not contain subqueries.

o For noncursor UPDATE, DELETE, and INSERT statements, the view definition must
not contain any subqueries which contain in their FROM clauses a table reference to the
same table as the outermost FROM clause.

m You cannot define an index on a view or alter a view.

m You cannot use host variables, local variables, procedure parameters, or dynamic parameters

in the CREATE VIEW statement.

m Creating a view causes a section to be stored in the system catalog. A description of the
section appears in the SYSTEM.SECTION view.

m If you use the CREATE VIEW statement within the CREATE SCHEMA statement, the
default owner of the view is the schema’s AuthorizationName.

m When you create a view, an entry containing the SELECT statement in the view definition
is stored in the SYSTEM.VIEWDEF view in the system catalog. The view’s name is stored
in SYSTEM.TABLE, and the description of its columns appears in SYSTEM.COLUMN.

m If you use the CREATE VIEW statement with a CREATE PROCEDURE statement, the

default owner is the procedure owner.

m Any attempt to write through a view defined having a WITH CHECK OPTION must
satisfy any conditions specified in the query specification. All underlying view definitions
are also checked. Any constraints in the table on which the view is based are also checked.

m View check constraints are not deferrable.

SQL Statements 10-87

CREATE VIEW

m To drop a constraint on a view, you must drop the view and recreate it without the
constraint.

m You cannot use an ORDER BY clause when defining a view.

m [f the IN DBEFileSetName clause is specified, but the view owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DBEFILESET statement.)

Authorization

You can create a view if you have SELECT or OWNER authority for the tables and views
mentioned in the FROM clause of the SELECT statement or if you have DBA authority. To
operate on a table on which the view is based, the authority you need depends on whether or
not you own the view. The authority needed in either case is specified as follows:

m If you own the view, you need authority for the table(s) or view(s) on which the view is

based.
m If you do not own the view, you need authority granted specifically for the view.

To specify a DBEFileSetName for a view, the view owner must have SECTIONSPACE
authority on the referenced DBEFileSet.

Examples

1. The following view provides information on the value of current orders for each vendor.
Because the view is derived by joining tables, the base tables cannot be updated via this
view.

CREATE VIEW PurchDB.VendorStatistics
(Vendorliumber,
VendorName,
OrderDate,
OrderQuantity,
TotalPrice)
AS SELECT PurchDB.Vendors.VendorNumber,
PurchDB.Vendors.VendorlName,
OrderDate,
OrderQty,
OrderQty*PurchasePrice
FROM PurchDB.Vendors,
PurchDB.0Orders,
PurchDB.0OrderItems
WHERE PurchDB.Vendors.VendorNumber =
PurchDB.0Orders .VendorNumber
AND PurchDB.Orders.OrderNumber =
PurchDB.0OrderItems.0rderNumber
IN PurchDBFileSet

10-88 SQL Statements

CREATE VIEW

2. The following view is updatable because it is created from one table. When the table
is updated through the view, column values in the SET or VALUES clause are checked
against the WHERE clause in the view definitions. If the table on which the view is based
has any check constraints of its own, these conditions are checked along with the WITH

CHECK OPTION of the view.

CREATE VIEW RecDB.EventView
(Event,
Date)
AS SELECT RecDB.Event,
RecDB.Date
FROM RecDB.Events
WHERE Date >= CURRENT_DATE

WITH CHECK OPTION CONSTRAINT EventView WCOD

SQL Statements 10-89

DECLARE CURSOR

The DECLARE CURSOR statement associates a cursor with a specified SELECT or
EXECUTE PROCEDURE statement.

Scope

Application Programs and Procedures

SQL Syntax

DECLARE CursorName [IN DBEFz'leSetName]CURSOR FOR
{ QueryEzpression } [FOR UPDATE OF { ColumnName}[, ... |
FOR READ ONLY
FErecute Procedure Statement

SelectStatementName

FEzecuteStatementName

Parameters

CursorName is the name assigned to the newly declared cursor. Two cursors in
an application program cannot have the same name. The cursor
name must conform to the SQL syntax rules for a basic name,
described in the “Names” chapter of this manual, and must also
conform to the requirements of the application programming
language.

DBFEFileSetName identifies the DBEFileSet in which ALLBASE/SQL is to store the
section associated with the cursor. If not specified, the default

SECTIONSPACE DBEFileSet is used.

QueryFzpression is a static SELECT statement. It determines the rows and
columns to be processed by means of a select cursor. The rows
defined by the query expression when you open the cursor are
called the active set of the cursor. Parentheses are optional.

The BULK and INTO clauses and dynamic parameters are
disallowed.

SelectStatementName is specified when declaring a select cursor for a dynamically
preprocessed SELECT statement. It is the StatementName
specified in the related PREPARE statement.

FOR UPDATE OF specifies the column or columns which may be updated using this
ColumnName cursor. The order of the column names is not important. The
column(s) to be updated need not appear in the select list of
the SELECT statement. If you use a FOR UPDATE clause, the
query expression must be updatable.

FOR READ ONLY indicates that data is to be read and not updated. Specify this
clause when you preprocess and application using the FIPS
127.1 flagger, and the cursor you are declaring reads and does
not update columns. FOR READ ONLY assures optimum
performance in this case.

10-90 SOQL Statements

DECLARE CURSOR

FErecuteProcedureState- is a static EXECUTE PROCEDURE statement. It determines
ment the rows and columns of the query result set or sets to be

processed by means of a procedure cursor. The rows defined when
you open and advance the cursor are called the active set of the
cursor.

FrecuteStatementName is specified when declaring a procedure cursor for a dynamically

preprocessed EXECUTE PROCEDURE statement. It is the
StatementName specified in the related PREPARE statement.

Dynamic parameters are allowed in FzecuteStatementName.

Description

There are two types of cursors. A select cursor is a pointer used to indicate the current row
in a set of rows retrieved by a SELECT statement. A procedure cursor is a pointer used to
indicate the current result set and row in result sets retrieved by SELECT statements in a
procedure and returned to a calling application or ISQL.

The DECLARE CURSOR statement cannot be used interactively.
A cursor must be declared before you refer to it in other cursor manipulation statements.

The active set is defined and the value of any host variables in the associated SELECT or
EXECUTE PROCEDURE statement is evaluated when you issue the OPEN statement.

Use the FETCH statement to move through the rows of the active set.

For procedure cursors only, use the ADVANCE statement to move to the next active set
(query) within a procedure.

For select cursors only, you can operate on the current row in the active set (the most
recently fetched row) with the UPDATE WHERE CURRENT and DELETE WHERE
CURRENT statements.

When using the Read Committed or Read Uncommitted isolation levels, use the REFETCH
statement to verify that the row you want to update or delete still exists.

A select cursor is said to be updatable when you can use it in DELETE WHERE
CURRENT OF CURSOR or UPDATE WHERE CURRENT OF CURSOR statements
to modify the base table. A select cursor is updatable only if the query from which it is
derived matches the following updatability criteria:

No ORDER BY, UNION, or UNION ALL operation is specified.
No DISTINCT, GROUP BY, or HAVING clause is specified in the outermost SELECT

clause, and no aggregate appears in its select list.

The FROM clause specifies exactly one table, whether directly or through a view. If it
specifies a table, the table must be an updatable table. If it specifies a view, the view
definition must satisfy the cursor updatability rules stated here.

For the UPDATE WHERE CURRENT statement, you can only update columns in the
FOR UPDATE list.

For DELETE WHERE CURRENT and UPDATE WHERE CURRENT statements, the
SelectStatement parameter must not contain any subqueries or reference any view whose
view definition contains a subquery.

SQL Statements 10-91

DECLARE CURSOR

m For select cursors only, use the UPDATE statement with the CURRENT OF option to
update columns; you can update the columns identified in the FOR UPDATE OF clause
of the DECLARE CURSOR statement. The restrictions that govern updating via a select
cursor are described above.

m For select cursors only, use the DELETE WHERE CURRENT statement to delete a row in
the active set.

m Use the CLOSE statement when you are finished operating on the active set or (for a
procedure cursor) set(s).

m Declaring a cursor causes a section to be stored in the system catalog. A description of the
section appears in the SYSTEM.SECTION view.

m The FrecuteStatementName, SelectStatementName, and Frecute ProcedureStatement
parameters of the DECLARE CURSOR statement are not allowed within a procedure.

m Host variables for return status and input and output parameters are allowed in
FrecuteProcedureStatement, which is a static EXECUTE PROCEDURE statement. The
appropriate values for input host variables must be set before the OPEN statement. The
output host variables, including return status and output parameters from executing the
procedure are accessible after the CLOSE statement.

m Dynamic parameters for return status and input and output parameters of the procedure
are allowed in FrecuteStatementName. The appropriate values for any input dynamic
parameters or host variables must be placed into the SQLDA or host variables before issuing
the OPEN statement. The USING DESCRIPTOR clause of the FETCH statement is used
to identify where to place selected rows and properly display the returned data. Qutput
host variables or values in the SQLDA, including return status and output parameters from
executing the procedure, are accessible after the CLOSE statement executes.

m [f the IN DBEFileSetName clause is specified, but the module owner does not have
SECTIONSPACE authority for the specified DBEFileSet, a warning is issued and the
default SECTIONSPACE DBEFileSet is used instead. (Refer to syntax for the GRANT
statement and the SET DEFAULT DBEFILESET statement.)

Authorization

For a select cursor, you must have SELECT or OWNER authority for all the tables or views
listed in the FROM clause, or you must have DBA authority.

For a procedure cursor, you must have OWNER or EXECUTE authority on the procedure or
DBA authority.

If you specify the FOR UPDATE clause, you must also have authority to update the specified
columns.

To specify a DBEFileSetName for a cursor, the cursor owner must have SECTIONSPACE
authority on the referenced DBEFileSet.

10-92 SQL Statements

DECLARE CURSOR

Examples
1. Deleting with a cursor

The active set of this cursor will contain values for the OrderNumber stored in :OrdNum.

DECLARE DeleteltemsCursor CURSOR FOR
SELECT ItemNumber ,OrderQty FROM PurchDB.Orderltems
WHERE OrderNumber = :0rdNum

Statements setting up a FETCH-DELETE WHERE CURRENT loop appear here.

OPEN DeleteItemsCursor

Statements for displaying values and requesting whether the user wants to delete the
associated row go here.

FETCH DeleteltemsCursor
INTO :Lin :Linnul, :0rq :0rgnul

DELETE FROM PurchDB.OrderItems
WHERE CURRENT OF DeleteltemsCursor

CLOSE DeleteltemsCursor
2. Updating with a cursor

A cursor for use in updating values in column QtyOnHand is declared and opened.

DECLARE NewftyCursor CURSOR FOR
SELECT Partlumber ,QtyOnHand FROM PurchDB.Inventory
FOR UPDATE OF QtyOnHand

OPEN NewQtyCursor

Statements setting up a FETCH-UPDATE loop appear next.

FETCH NewQtyCursor INTO :HNum :Numllul, :Qty :Qtynul

Statements for displaying a row to and accepting a new QtyOnHand value from the user go
here. The new value is stored in :NewQty.

UPDATE PurchDB.Inventory
SET QtyOnHand = :NewQty
WHERE CURRENT OF HNewQtyCursor

CLOSE NewQtyCursor

3. Bulk fetching

In some instances, using the BULK option is more efficient than advancing the cursor a

row at a time through many rows, especially when you want to operate on the rows with
non-ALLBASE/SQL statements.

DECLARE ManyRows CURSOR FOR
SELECT *
FROM PurchDB.Inventory
OPEN ManyRows

BULK FETCH ManyRows INTO :Rows, :Start, :NumRow

SQL Statements 10-93

DECLARE CURSOR

4. Dynamically preprocessed SELECT

If you know in advance that the statement to be dynamically preprocessed is not a
SELECT statement, you can prepare it and execute it in one step. In other instances, it is
more appropriate to prepare and execute the statement in separate operations.

EXECUTE IMMEDIATE :Dynaml

The statement stored in :Dynaml is dynamically preprocessed.

PREPARE Dynamicl FROM :Dynaml

If Dynamicl is not a SELECT statement, the SQLD field of the SQLDA data structure
is 0, and you use the EXECUTE statement to execute the dynamically preprocessed
statement.

DESCRIBE Dynamicl INTO SQLDA
EXECUTE Dynamicl

If Dynamicl is a SELECT statement and the language you are using supports dynamically
defined SELECT statements, use a cursor to manipulate the rows in the query result.

After you open the cursor and place the appropriate values into the SQL Descriptor Area
(SQLDA), use the USING DESCRIPTOR clause of the FETCH statement to identify

where to place the rows selected and properly display the returned data.
DECLARE DynamiclGursor CURSOR FOR Dynamicl
OPEN DynamiclCursor
FETCH DynamiciCursor USING DESCRIPTOR SQLDA

CLOSE DynamicliCursor

5. Refer to the ALLBASE/SQL Advanced Application Programming Guide for a pseudocode
example of procedure cursor usage.

10-94 SQL Statements

DECLARE Variable

DECLARE Variable

The DECLARE Variable statement lets you define a local variable within a procedure. Local
variables are used only within the procedure.

Scope

Procedures only

SQL Syntax
DECLARE {LocalVarz'able}[,] Variable Type [LANG = VariableLangName]
Constant
DEFAULT ¢ NULL [NOT NULL |
Current Function
Parameters
LocalVariable specifies the name of the local variable. A variable name may not
be the same as a parameter name in the same procedure.
Variable Type specifies the data type of the local variable. All the
ALLBASE/SQL data types are permitted except LONG data
types.
Variable LangName specifies the language of the data (for character data types only)

to be stored in the local variable. This name must be either
NATIVE-3000 or the current language of the DBEnvironment.

DEFAULT specifies the default value of the local variable. The default can
be a constant, NULL, or a date/time current function. The data
type of the default value must be compatible with the data type
of the variable.

NOT NULL means the variable cannot contain null values. If NOT NULL is
specified, any statement that attempts to place a null value in the
variable is rejected.

Description

m Declarations must appear at the beginning of the stored procedure body, following the first
BEGIN statement.

m No two local variables or parameters in a procedure may have the same name.

m Local variable declarations may not be preceded by labels.

m [f no DEFAULT clause is given for a column in the table, an implicit DEFAULT NULL is
assumed. Any INSERT statement, which does not include a column for which a default has
been declared, causes the default value to be inserted into that column for all rows inserted.

m For a CHAR column, if the specified default value is shorter in length than the target
column, it is padded with blanks. For a CHAR or VARCHAR column, if the specified

default value is longer than the target column, it is truncated.

SQL Statements 10-95

DECLARE Variable

m For a BINARY column, if the specified default value is shorter in length than the target
column, it is padded with zeroes. For a BINARY or VARBINARY column, if the specified
default value is longer than the target column, it is truncated.

Authorization
Anyone can use the DECLARE statement in a procedure.

Example

DECLARE input, output CHAR(80);
DECLARE nrows INTEGER;
DECLARE Partllumber CHAR(16) NOT NULL;

10-96 SQL Statements

DELETE

DELETE

The DELETE statement deletes a row or rows from a table.

Scope

ISQL or Application Programs

SQL Syntax

[Owner.] TableName

DELETE |WITH AUTOCOMMIT |FROM .
[] { [Owner.] ViewName

} [WHERE SearchCondz'tz'on]

Parameters

WITH AUTOCOMMIT executes a COMMIT WORK automatically at the beginning
of the DELETE statement and also after each batch of rows is
deleted.

[Owner.] Table Name designates a table from which any rows satisfying the search
condition are to be deleted.

[Owner.] ViewName designates a view based on a single table. ALLBASE/SQL

finds which rows of the view satisfy the search condition; the
corresponding rows of the view’s base table are deleted. Refer
to the CREATE VIEW statement for restrictions governing
modifications via a view.

WHERE SearchCondition specifies which rows are to be deleted. If no rows satisfy the
search condition, the table is not changed. If the WHERLE clause
is omitted, all rows are deleted.

Description

m If all the rows of a table are deleted, the table is empty but continues to exist until you issue
a DROP TABLE statement.

m Use the TRUNCATE TABLE statement to delete all rows from a table instead of the
DELETE statement. The TRUNCATE TABLE statement is faster, and generates fewer log
records.

m If ALLBASE/SQL detects an error during a DELETE statement, the action taken will vary,
depending on the setting of the SET DML ATOMICITY, and the SET CONSTRAINTS
statements. Refer to the description of both of these statements in this chapter for more
details.

m Using DELETE with views requires that the views be based on updatable queries. See
“Updatability of Queries” in the “SQL Queries” chapter.

m The target table of the DELETE statement is specified with Table Name or is the base table
underlying the view definition of ViewName. It must be an updatable table, and it must
not appear in the FROM clause of any subquery specified in the SearchCondition parameter
or any subquery of ViewName.

SQL Statements 10-97

DELETE

m The search condition is effectively executed for each row of the table or view before any
row is deleted. If the search condition contains a subquery, each subquery in the search
condition is effectively executed for each row of the table or view and the results used in the
application of the search condition to the given row. If any executed subquery contains an
outer reference to a column of the table or view, the reference is to the value of that column
in the given row.

m A deletion from a table with a primary key (a referenced unique constraint) fails if any
primary key row affected by the DELETE statement is currently referred to by some
referencing foreign key row. In order to delete such referenced rows, you must first change
the referencing foreign key rows to refer to other primary key rows, to contain a NULL
value in one of the foreign key columns, or to delete these referencing rows. Alternatively,
you can defer error checking (with the SET CONSTRAINT statement) and fix the error
later.

m The DELETE syntax is unchanged for use with LONG columns. It is limited in that a
LONG column cannot be used in the WHERE clause. When LONG data is deleted, the
space it occupied in the DBEnvironment is released when your transaction ends. But the
physical operating system data file created when you selected the long field earlier still
exists and you are responsible for removing it if you desire.

m A check constraint search condition defined on a table never prevents a row from being
deleted, whether or not constraint checking is deferred.

m A rule defined with a StatementType of DELETE will affect DELETE statements performed
on the rule’s target table. When the DELETE is performed, each rule defined on that
operation for the table is considered. If the rule has no condition, it will fire for all rows
affected by the statement and invoke its associated procedure with the specified parameters
on each row. If the rule has a condition, it will evaluate the condition on each row. The
rule will fire on rows for which the condition evaluates to TRUE and invoke the associated
procedure with the specified parameters for each row. Invoking the procedure could cause
other rules, and thus other procedures, to be invoked if statements within the procedure
trigger other rules.

m [f a DISABLE RULES statement is in effect, the DELETE statement will not fire any
otherwise applicable rules. When a subsequent ENABLE RULES is issued, applicable rules
will fire again, but only for subsequent DELETE statements, not for those processed when
rule firing was disabled.

m In a rule defined with a StatementType of DELETE, any column reference in the
Condition or any ParameterValue will refer to the value of the column as it exists in
the database before it is removed by the DELETE statement, regardless of the use of
OldCorrelationName, Table Name, or NewCorrelationName in the rule definition.

m The set of rows to be affected by the DELETE statement is determined before any rule
fires, and this set remains fixed until the completion of the rule. If the rule adds to, deletes
from, or modifies this set, such changes are ignored.

m When a rule is fired by this statement, the rule’s procedure is invoked after the changes
have been made to the database for that row and all previous rows. The rule’s procedure,
and any chained rules, will thus see the state of the database with the current partial
execution of the statement.

m [f an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the statement

10-98 SQL Statements

DELETE

and any procedures invoked by any rules will have no effect, regardless of the current DML
ATOMICITY. Nothing will have been altered in the DBEnvironment as a result of this
statement or the rules it fired. Error messages are returned in the normal way.

m When the WITH AUTOCOMMIT clause is not used, rows that qualify according to the
SearchCondition are deleted internally in batches by ALLBASE/SQL.

When the WITH AUTOCOMMIT clause is used, a COMMIT WORK statement is executed
automatically at the beginning of the DELETE statement and also after each batch of rows is
deleted. This can reduce both log-space and shared-memory requirements for the DELETE
statement. You cannot control the number of rows in each batch.

m The WITH AUTOCOMMIT clause cannot be used in these cases:
0 When deleting rows from a TurboIMAGE data set.

o If a SET CONSTRAINTS DEFERRED statement is in effect.

If a rule exists on the table and rules are enabled for the DBEnvironment. Consider
issuing a DISABLE RULES statement to temporarily disable rules for the DBEnvironment,
issuing the DELETE WITH AUTOCOMMIT statement, and then issuing an ENABLE RULES
statement to turn rule checking back on.

In the DELETE WHERE CURRENT statement.

m [f an active transaction exists when the DELETE WITH AUTOCOMMIT is issued, then the existing
transaction is committed.

m When WITH AUTOCOMMIT is used, any previously issued SET DML ATOMICITY statements are
ignored. For the duration of that DELETE command, row-level atomicity is used.

m If the DELETE WITH AUTOCOMMIT statement fails, it may be true that some (but not all) rows
that qualify have been deleted.

m The DELETE WITH AUTOCOMMIT statement can be used in procedures, but a rule may not
execute that procedure.

Authorization

If you specify the name of a table, you must have DELETE or OWNER, authority for that
table or you must have DBA authority.

If you specify the name of a view, you must have DELETE or OWNER authority for that
view or you must have DBA authority. Also, the owner of the view must have DELETE
or OWNER, authority with respect to the view’s base tables, or the owner must have DBA
authority.

Example

Rows for orders created prior to July 1983 are deleted.

DELETE WITH AUTOCOMMIT FROM PurchDB.Orders
WHERE OrderDate < 219830701’

SQL Statements 10-99

DELETE WHERE CURRENT

The DELETE WHERE CURRENT statement deletes the current row of an active set. The
current row is the row pointed to by a cursor after the FETCH or REFETCH statement is
issued.

Scope

Application Programs

SQL Syntax

[Owner.] TableName

DELETE FROM .
{ [Owner.] ViewName

}WHERE CURRENT OF CursorName

Parameters

LOwner.] Table Name designates the table from which you are deleting a row.

[Owner.] ViewName designates a view based on a single table. ALLBASE/SQL finds

the row of the base table corresponding to the row of the view
indicated by the cursor, and deletes the row from the base table.
Refer to the CREATE VIEW statement for restrictions governing
modifications via a view.

CursorName specifies the name of a cursor. The cursor must be open and

positioned on a row of the table. The DELETE WHERE
CURRENT statement deletes this row, leaving the cursor with no
current row. (The cursor is said to be positioned between the
preceding and following rows of the active set). You cannot use
the cursor for further updates or deletions until you reposition

it using a FETCH statement, or until you close and reopen the
cursor.

Description

This statement cannot be used interactively.

Although the SELECT statement associated with the cursor may specify only some of the
columns in a table, the DELETE WHERE CURRENT statement deletes an entire row.

The DELETE WHERE CURRENT statement can be used on an active set associated with
a cursor defined using the FOR UPDATE clause.

Do not use this statement in conjunction with rows retrieved using a BULK FETCH.

Using the DELETE statement with the WHERE CURRENT OF CURSOR clause requires
that the cursor be defined on the basis of an updatable query. See “Updatability of
Queries” in the “SQIL Queries” chapter.

The target table of the DELETE WHERE CURRENT statement is specified with

Table Name or is the base table underlying ViewName. The base table restrictions that
govern deletions via cursors are presented in the description of the DECLARE CURSOR
statement.

10-100 SAQL Statements

DELETE WHERE CURRENT

If a referential constraint should be violated during processing of the DELETE statement,
the row is not deleted (unless error checking is deferred and the violation is corrected before
you COMMIT WORK). Refer to the discussion of the SET CONSTRAINTS statement in

this chapter for more information.

A deletion from a table with a primary key (a referenced unique constraint) will fail if
any primary key row affected by the DELETE statement is currently referred to by some
referencing foreign key row. In order to delete such referenced rows, you must first change
the referencing foreign key rows to refer to other primary key rows, to contain a NULL
value in one of the foreign key columns, or to delete these referencing rows. Alternatively,
you can defer error checking (with the SET CONSTRAINT statement) and fix the error
later.

The DELETE syntax is unchanged for use with LONG columns. When LONG data is
deleted, the space it occupied in the DBEnvironment is released when your transaction
ends. But the physical operating system data file created when you selected the long field
earlier still exists and you are responsible for removing it if you desire.

A rule defined with a StatementType of DELETE will affect DELETE WHERE CURRENT
statements performed on the rule’s target table. When the DELETE WHERE CURRENT
is performed, each rule defined on that operation for the table is considered. If the rule has
no condition, it will fire and invoke its associated procedure with the specified parameters
on the current row. If the rule has a condition, it will evaluate the condition and fire if

the condition evaluates to TRUE and invoke the associated procedure with the specified
parameters on the current row. Invoking the procedure could cause other rules, and thus
other procedures, to be invoked if statements within the procedure trigger other rules.

If a DISABLE RULES statement is in effect, the DELETE WHERE CURRENT statement
will not fire any otherwise applicable rules. When a subsequent ENABLE RULES is issued,
applicable rules will fire again, but only for subsequent DELETE WHERE CURRENT
statements, not for those rows processed when rule firing was disabled.

In a rule defined with a StatementType of DELETE, any column reference in the Condition
or any ParameterValue will refer to the value of the column as it exists in the database
before it is removed by the DELETE WHERE CURRENT statement, regardless of the use
of OldCorrelationName, TableName, or NewCorrelationName in the rule definition.

When a rule is fired by this statement, the rule’s procedure is invoked after the changes
have been made to the database for that row. The rule’s procedure, and any chained rules,
will thus see the state of the database with the current partial execution of the statement.

If an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the statement
and any procedures invoked by any rules will have no effect. Nothing will have been altered
in the DBEnvironment as a result of this statement or the rules it fired. Error messages are
returned in the normal way.

SQL Statements 10-101

DELETE WHERE CURRENT

Authorization

If you specify the name of a table, you must have DELETE or OWNER, authority for that
table or you must have DBA authority.

If you specify the name of a view, you must have DELETE or OWNER authority for that
view or you must have DBA authority. Also, the owner of the view must have DELETE
or OWNER, authority with respect to the view’s base tables, or the owner must have DBA
authority.

Example

The active set of this cursor will contain values for the OrderNumber stored in :OrdNum.

DECLARE DeleteItemsCursor CURSOR FOR
SELECT ItemNumber,O0rderQty FROM PurchDB.OrderItems
WHERE OrderNumber = :0rdNum

Statements setting up a FETCH-DELETE WHERE CURRENT loop appear here.

OPEN DeleteItemsCursor

Statements for displaying values and requesting whether the user wants to delete the
associated row go here.

FETCH DeleteIltemsCursor INTO :Lin :Linnul, :0rq :0rgnul

DELETE FROM PurchDB. OrderItems
HHERE CURRENT OF DeleteltemsCursor

CLOSE DeleteItemsCursor

10-102 SAQL Statements

DESCRIBE

DESCRIBE

The DESCRIBE statement is used in an application program to pass information about a
dynamic statement between the application and ALLBASE/SQL. It must refer to a statement
preprocessed with the PREPARE statement.

Scope

C and Pascal Applications Only

SQL Syntax

0UTPUT
DESCRIBE INPUT StatementName {

INTO [[SQL|DESCRIPTOR | }{ SQLDA }
RESULT

USING [SQL|DESCRIPTOR AreaName

Parameters

QUTPUT specifies that the characteristics of any output values in the
prepared StatementName be described in the associated
sqlda_type and sqlformat_type data structures. This applies to
query result column definitions in a SELECT statement or to
dynamic return status or output parameters specified as question

marks in an EXECUTE PROCEDURE statement.
OUTPUT is the default.

INPUT specifies that the characteristics of any dynamic input parameters
in the prepared StatementName be described in the associated
sqlda_type and sqlformat_type data structures. This applies to
dynamic input parameters specified as question marks in any
DML statement.

RESULT specifies that the characteristics of any single format multiple
row result sets in a procedure created using the WITH
RESULT clause be described in the associated sqlda_type and
sqlformat_type data structures. This applies to any prepared
EXECUTE PROCEDURE statement.

StatementName identifies a previously preprocessed (prepared) ALLBASE/SQL
statement.

INTO specifies the sqlda_type data structure where data is to be
described.

USING specifies the sqlda_type data structure where data is to be
described.

SQLDA specifies that a data structure of sqlda_type named sqlda is to be
used to pass information about the prepared statement between

the application and ALLBASE/SQL.

SQL Statements 10-103

DESCRIBE

AreaName specifies the user defined name of a data structure of sqlda_type

that is to be used to pass information about the prepared
statement between the application and ALLBASE/SQL.

Description

This statement cannot be used in ISQL, in COBOL and FORTRAN programs, or in
procedures.

If StatementName refers to a SELECT statement, the DESCRIBE statement with the
(default) OUTPUT option sets the s¢ld field of the associated sqlda_type data structure

to the number of columns in the query result and sets the associated sqlformat_type data
structure to each column’s name, length, and data type. On the basis on this information,
an application can parse a data buffer to obtain the column values in the query result. The
application reads the query result by associating the StatementName with a select cursor
and using select cursor manipulation statements (OPEN, FETCH, and CLOSE).

If StatementName does not refer to a SELECT statement, the DESCRIBE statement used
with the OUTPUT option sets the sqld field of the associated sqlda_type data structure to
7ero.

If StatementName refers to a statement in which dynamic parameters have been specified,
the DESCRIBE statement with the INPUT option obtains the number of input dynamic
parameters (in the sqld field of the associated sqlda_type data structure) and sets the
associated sqlformat_type data structure to each column’s name, length, and data type.
The application can use this information to load the appropriate data buffer with dynamic
parameter values.

If StatementName refers to an EXECUTE PROCEDURE statement for a procedure with

multiple row result sets, the sqlmproc field of the associated sqlda_type data structure is set
to a non-zero value. The program reads the query results by associating the StatementName
with a procedure cursor name and using procedure cursor manipulation statements (OPEN,

ADVANCE, FETCH, and CLOSE).

If StatementName refers to an EXECUTE PROCEDURE statement containing output
dynamic parameters, the DESCRIBE statement with the (default) OUTPUT option returns
the number of output dynamic parameters in the sqloparm field of the associated sqlda_type
data structure.

If StatementName refers to an EXECUTE PROCEDURE statement containing both input
and output dynamic parameters, you can issue the EXECUTE statement specifying the
USING INPUT AND OUTPUT option to execute the dynamically preprocessed statement.

If StatementName is an EXECUTE PROCEDURLE statement containing single format
multiple row result set(s), the DESCRIBE statement with the RESULT option returns the
format information of the multiple row result set(s). If the procedure contains more than
one multiple row result set, all must return rows with compatible formats.

If the RESULT option is specified when describing an EXECUTE PROCEDURE statement
for a procedure created with no WITH RESULT clause, the sqld field of the related SQLDA

is set to zero, and no format information is written to the SQL descriptor area.

If the RESULT option is specified when describing a statement other than an EXECUTE
PROCEDURE statement, the DESCRIBE RESULT statement returns an error, and
nothing is written to the SQL descriptor area.

10-104 SAQL Statements

DESCRIBE

m Detailed descriptions of how to use this statement are found in the “Using Dynamic
Operations” chapters of the ALLBASE/SQL C Application Programming Guide and the
ALLBASE/SQL Pascal Application Programming Guide, and in the “Using Parameter
Substitution in Dynamic Statements” chapter and the “Using Procedures in Application
Programs” chapter of the ALLBASE/SQL Advanced Application Programming Guide.

Authorization

To describe a previously preprocessed SELECT statement, you must have authority that
would permit you to execute the SELECT statement. To describe a previously preprocessed
EXECUTE PROCEDURE statement, you must have authority that would permit you

to execute the procedure. You do not need authorization to describe other previously
preprocessed statements.

Examples
1. Prepared statement with known format

If you know in advance that the statement to be dynamically preprocessed is neither a
SELECT statement nor an EXECUTE PROCEDURE statement with results, and does
not contain dynamic parameters nor input/output host variables, you can prepare it and
execute it in one step, as follows:

EXECUTE TMMEDIATE :Dynami
2. Prepared statement with unknown format

In other instances, it is more appropriate to prepare and execute the statement in separate
operations. For example, if you don’t know the format of a statement, you could do the
following;:

PREPARE Dynamicl FROM :Dynaml
The statement stored in :Dynam1l is dynamically preprocessed.
DESCRIBE Dynamicl INTO SqldaDut

If Dynamicl is neither a SELECT statement (Sqld field of the Sqlda data structure is 0)
nor an EXECUTE PROCEDURE statement with results (sqlmproc = 0) and you know
there are no dynamic parameters in the prepared statement, use the EXECUTE statement
to execute the dynamically preprocessed statement.

If Dynamicl is an EXECUTE PROCEDURE statement containing dynamic output
parameters, the sqloparm field of the Sqlda data structure contains the number of such
parameters in the statement. You can access the appropriate format array and data buffer
to obtain the data.

If it is possible that dynamic input parameters are present in the prepared statement

or that the statement is an EXECUTE PROCEDURE statement for a procedure with
multiple row result sets, you must further describe it. See the exproc function below
which emphasizes steps needed to process an EXECUTE PROCEDURE statement for a
procedure with multiple row result sets.

To check for dynamic input parameters in any type of DML statement, describe the
statement for input:

DESCRIBE INPUT Dynamicl USING SQL DESCRIPTOR Sqldaln

SQL Statements 10-105

DESCRIBE

If dynamic input parameters are present, the appropriate data buffer or host variables must
be loaded with the values of any dynamic parameters. Then if the statement is not a query,
it can be executed, as in this example using a data buffer:

EXECUTE Dynamicl USING SQL DESCRIPTOR Sqldaln
If Dynamicl is a SELECT statement and the language you are using supports dynamically
defined SELECT statements, use a cursor to manipulate the rows in the query result:
DECLARE DynamiciCursor CURSOR FOR Dynmamici
Place the appropriate values into the SQL descriptor areas. Use the USING

DESCRIPTOR clause of the OPEN statement to identify where dynamic input parameter
information is located. Load related dynamic parameter data into the input data buffer.

OPEN DynamiclCursor USING SQL DESCRIPTOR SqldaIn

Use the USING DESCRIPTOR clause of the FETCH statement to identify where to place
the rows selected.

FETCH DynamiciCursor USING DESCRIPTOR SqldaOut

When all rows have been processed, close the cursor:

CLOSE DynamicliCursor

3. Prepared statement is EXECUTE PROCEDURE

If the described statement is an EXECUTE PROCEDURE statement for a procedure with
multiple row result sets, the sqlmproc field of the sqlda data structure contains the number
of multiple row result sets (0 if there are none) following execution of the DESCRIBE
statement with default OUTPUT option. For example, if the statement you described
looks like the following, and the procedure was created with two multiple row result
SELECT statements and a WITH RESULT clause:

DynamicCmd = "EXECUTE PROCEDURE ? = proc(?, ? OUTPUT)"
PREPARE cmd FROM :DynamicCmd

Assuming you don’t know the format of this prepared statement:
DESCRIBE OUTPUT cmd INTO sqldaout

The sqld of sqglda is set to 0, sqlmproc to 2, and sqloparm to 2.
DESCRIBE INPUT cmd USING sqldain

The sqld of sqlda is set to 2, sqlmproc to 2, and sqloparm to 0.

10-106 SAQL Statements

DESCRIBE

a. If sqldaout.s¢lmproc <> 0 then, use procedure cursor processing statements to process
multiple row result set(s) from the procedure.

DESCRIBE RESULT cmd USING sqldaresult

DECLARE DynamiclCursor CURSOR FOR cmd
OPEN DynamiciCursor USING sqldain

FETCH DynamiclCursor using DESCRIPTOR sqldaresult

CLOSE DynamiclCursor USING sqldaout

b. Else, execute the procedure with both input and output dynamic parameters.

EXECUTE cmd USING DESCRIPTOR INPUT sqldain AND OUTPUT sqldaout;

SQL Statements 10-107

DISABLE AUDIT LOGGING

The DISABLE AUDIT LOGGING statement stops audit logging for the DBEnvironment
session. It allows you to avoid creating audit log records for SQL statements while hard
resynchronization is performed.

Scope

ISQL or Application Programs

SQL Syntax

DISABLE AUDIT LOGGING

Description

m This statement disables audit logging in the current session only. It suspends the generation
of audit log records for any statements issued during the session.

m This statement and ENABLE AUDIT LOGGING are not used to turn on and off the
AUDIT LOG option specified for processing of all sessions in the DBEnvironment. These
statements affect your current session only. (The statements that affect all processing in the

DBEnvironment are the START DBE NEW and START DBE NEWLOG statements.)

m This statement is not affected by transaction management statements and remains in effect
until an ENABLE AUDIT LOGGING statement is issued, or until the end of the current

session.

Authorization

This statement requires DBA authority.

Example

Perform an initial load of a table without audit logging.
DISABLE AUDIT LOGGING;
LOAD FROM INTERNAL PartsData TO PurchDB.Parts;
COMMIT WORK;

Reenable audit logging and continue.

ENABLE AUDIT LOGGING;

10-108 SAQL Statements

DISABLE RULES

DISABLE RULES

The DISABLE RULES statement turns rule checking off for the current DBEnvironment
session. The statement is for DBA use in testing the operation of rules.

Scope

ISQL or Application Programs

SQL Syntax

DISABLE RULES

Description

m DISABLE RULES turns rule invocation off in the DBEnvironment for the current session or
until the ENABLE RULES statement is issued.

m The statement only affects the current SID (session id). Other users are not affected.

m The DISABLE RULES statement is not cumulative; issuing additional DISABLE RULES
statements will have no effect, and a warning will be issued to this effect.

m Rules are not fired retroactively when the ENABLE RULES statement is issued after the
DISABLE RULES statement has been issued. That is, if a DISABLE RULES statement
is issued, rules that would otherwise be applicable will not fire. Then, when a subsequent
ENABLE RULES is issued, applicable rules will fire again, but only for subsequent data
manipulation statements, not for those statements executed while rule firing was disabled.

m COMMIT WORK and ROLLBACK WORK statements have no effect on whether rules are
enabled or disabled.

Authorization
You must have DBA authority.

Example

The DBA turns off rule invocation for the current session.

DISABLE RULES

The DBA performs operations without rule firing.

The DBA turns on rule invocation.

ENABLE RULES

Normal firing of rules resumes.

SQL Statements 10-109

DISCONNECT

The DISCONNECT statement terminates a connection with a DBEnvironment or terminates
all DBEnvironment connections established within an application or an ISQL session.

Scope

ISQL or Application Programs

SQL Syntax

> ConnectionName’

> DBEnvironment Name’
DISCONNECT { : HostVariable

ALL

CURRENT

Parameters

ConnectionName is a string literal identifying the name associated with this
connection. ConnectionName must be unique for each
DBEnvironment connection within an application (or ISQL).
ConnectionName cannot exceed 128 bytes.

b

"DBFEnvironment Name is the DBEnvironment to which you have connected to using a

CONNECT TO ’DBEnvironment Name’ statement.

HostVariable is a character string host variable containing the ConnectionName
agsociated with this connection.

ALL specifies that all DBEnvironment connections in effect (for an
application or an ISQL session) are to be terminated.

CURRENT specifies that the current connection is to be terminated.
Within an application (or ISQL), the current connection to a
DBEnvironment is set by the most recent statement that connects
to or sets the connection to the DBEnvironment. If there is no
current connection in effect, an error is generated.

Description

m If a ConnectionName refers to a DBEnvironment that is not the one associated with the
current connection, the specified connection is terminated, and the context of the currently
connected DBEnvironment remains unchanged.

m Any active transaction associated with a connection is rolled back before the connection is
terminated.

m No stored section is created for the DISCONNECT statement. DISCONNECT cannot be
used with the PREPARE or EXECUTE IMMEDIATE statements.

m An active transaction is not required to execute a DISCONNECT statement. An automatic
transaction will not be started when executing a DISCONNECT statement.

10-110 SAQL Statements

DISCONNECT

m Any connection name associated with a disconnected connection can be reused.
m A DISCONNECT CURRENT statement is equivalent to a RELEASE statement.

m Following a RELEASE or DISCONNECT CURRENT command, there is no current
connection until a SET CONNECTION command is used to set the current connection to
another existing connection, or a new connection is established by using the CONNECT,

START DBE, START DBE NEW, or START DBE NEW LOG commands.

Authorization
You do not need authorization to use the DISCONNECT statement.

Example
Connect three times to PartsDBE and once to SalesDBE:

CONNECT TO :PartsDBE AS ’Parts1l’
CONNECT TO :PartsDBE AS ’Parts2’
CONNECT TO :PartsDBE AS ’Parts3’
CONNECT TO :SalesDBE AS ’Salesl’

Terminate the connection associated with connection name Partsl:

DISCONNECT ’Partsil’

Terminate the connection associated with the most recently connected DBEnvironment
(the current connection). Following the execution of this statement, SalesDBE is no longer
connected, and no current connection exists:

DISCONNECT CURRENT

Note that another DISCONNECT CURRENT statement at this point would generate an
error. Also any SQL statement that operates on a transaction will fail since there is no
current connection and therefore no current transaction.

Set the current connection to Parts3:

SET CONNECTION ’Parts3’

Terminate the connection associated with the most recently connected DBE (the current
connection). Following the execution of this statement, the Parts3 connection to PartsDBE no
longer exists, and no current connection exists:

DISCONNECT CURRENT

Terminate all established connections. Following this statement, the Parts2 connection to
PartsDBE no longer exists:

DISCONNECT ALL

SQL Statements 10-111

DROP DBEFILE

The DROP DBEFILE statement removes the row describing a DBEFile from the
SYSTEM.DBEFile.

Scope

ISQL or Application Programs

SQL Syntax

DROP DBEFILE DBFEFileName

Parameters
DBEFileName is the name of the DBEFile to be dropped.

Description

m Before dropping a DBEFile previously associated with a DBEFileSet via an ADD DBEFILE
statement, you must use the DROP INDEX and DROP TABLE statements to empty the
DBEFile, then use the REMOVE DBEFILE statement to remove the DBEFile from the
DBEFileSet.

m Although information for the dropped DBEFile is removed from the SYSTEM.DBEFile, the
file is not removed until the transaction is committed.

Authorization

You must have DBA authority to use this statement.

Example

CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
NAME = ’ThisFile’, TYPE = TABLE

CREATE DBEFILESET Miscellaneous
ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, one is
created.

CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
NAME = ’ThatFile’, TYPE = INDEX

ADD DBEFILE ThatDBEFile to DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous
ADD DBEFILE ThatDBEFile TO DBEFILESET SYSTEM

ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

10-112 SAQL Statements

DROP DBEFILE

Now you can use this DBEFile to store an index later if you need one. All rows are later

deleted from the table, so you can reclaim file space.

REMOVE DBEFILE ThisDBEFile FROM DBEFILESET Miscellaneous

DROP DBEFILE ThisDBEFile

The DBEFileSet definition can now be dropped.

DROP DBEFILESET Miscellaneous

SQL Statements

10-113

DROP DBEFILESET

The DROP DBEFILESET statement removes the definition of a DBEFileSet from the system
catalog.

Scope

ISQL or Application Programs

SQL Syntax

DROP DBEFILESET DBEFileSetName

Parameters
DBEFileSetName is the name of the DBEFileSet to be dropped.

Description

m Before you can drop a DBEFileSet, you must use the REMOVE DBEFile statement to
remove any DBEFiles associated with the DBEFileSet.

m You cannot DROP a default DBEFileSet. You must first change the default to some other
DBEFileSet.

m DROP also removes any authorities associated with the DBEFileSet. (Refer to syntax for
the GRANT statement with the ON DBEFILESET clause.)

Authorization

You must have DBA authority to use this statement.

Example

CREATE DBEFILE ThisDBEFile WITH PAGES = 4,
NAME = ’ThisFile’, TYPE = TABLE

CREATE DBEFILESET Miscellaneous
ADD DBEFILE ThisDBEFile TO DBEFILESET Miscellaneous

The DBEFile is used to store rows of a new table. When the table needs an index, one is
created as follows:

CREATE DBEFILE ThatDBEFile WITH PAGES = 4,
NAME = ’ThatFile’, TYPE = INDEX

ADD DBEFILE ThatDBEFile to DBEFILESET Miscellaneous

When the index is subsequently dropped, its file space can be assigned to another
DBEFileSet.

REMOVE DBEFILE ThatDBEFile FROM DBEFILESET Miscellaneous
CREATE DBEFILESET OtherDBEFileSet

ADD DBEFILE ThatDBEFile TO DBEFILESET OtherDBEFileSet

10-114 SAQL Statements

DROP DBEFILESET

The following statement allows you to use ThisDBEFile to store an index later, if you need
one.

ALTER DBEFILE ThisDBEFile SET TYPE = MIXED

If, later, all rows are deleted from the table, you can reclaim file space.

REMOVE DBEFTLE ThisDBEFile FROM DBEFILESET Miscellaneous
DROP DBEFILE ThisDBEFile
If it is not a default DBEFileSet, you can now drop its definition.

DROP DBEFILESET Miscellaneous

SQL Statements 10-115

DROP GROUP

The DROP GROUP statement removes the definition of an authorization group from the
system catalog.

Scope

ISQL or Application Programs

SQL Syntax

DROP GROUP GroupName

Parameters

GroupName identifies the authorization group to be dropped.

Description

m You cannot drop an authorization group if it owns any tables, views, modules, or
authorization groups.

m You cannot drop a group if it has access to a DBA or REFERENCES privilege which was
used to validate the creation of a currently existing foreign key in a table owned by the
group or one of its members.

m You can drop a group even if it still has members.

Authorization

You can use this statement if you have OWNER authority for the authorization group or if
you have DBA authority.

Example

CREATE GROUP Warehse
GRANT CONNECT TO Warehse

GRANT SELECT,
UPDATE (BinNumber,QtyOnHand,LastCountDate)
ON PurchDB.Inventory
TO Warehse

These two users will be able to start DBE sessions, retrieve data from table
PurchDB.Inventory, and update three columns in the table.

ADD CLEM@THOMAS, GEORGEQCRAMMER TO GROUP Warehse

Clem no longer has any of the authorities associated with group Warehse.

REMOVE CLEM@THOMAS FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted. George no longer
has any of the authorities once associated with the group.

DROP GROUP Warehse

10-116 SAQL Statements

DROP INDEX

DROP INDEX
The DROP INDEX statement deletes the specified index.

Scope

ISQL or Application Programs

SQL Syntax

DROP INDEX [Owner. | IndexName [FROM | Owner. | TableName |

Parameters

LOwner.] IndezName is the name of the index to be dropped. It may include the name
of the owner of the table which has the index.

LOwner.] TableName is the name of the table upon which the index was created.

Description

m If a table name is not specified, the index name must be unique for the specified or implicit
owner. The implicit owner, in the absence of a specified table or owner, is the current

DBEUserID.

m Only indexes appearing in the system view SYSTEM.INDEX may be removed with this
statement. Hash table structures cannot be dropped by using this statement; the hash
structure can only be removed by dropping the table with the DROP TABLE statement.
Neither unique constraint indexes nor referential constraint virtual indexes can be dropped
with this statement. Constraints can only be removed through the ALTER TABLE DROP
CONSTRAINT statement or the DROP TABLE statement.

m Issuing the DROP INDEX statement can invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

m If no index owner is specified and no table is specified, the default owner is the current

DBEUserID.

m If no index owner is specified and a table is specified, the default rule owner is the table
owner.

m If a table is specified and no owner is specified for it, the default table owner is the current

DBEUserID.

m The table and index owners must be the same.

SQL Statements 10-117

DROP INDEX

Authorization

You can issue this statement if you have INDEX or OWNER, authority for the table or if you
have DBA authority.

Example

DROP INDEX PartsOrderedIndex
FROM PurchDB.OrderItems

Alternatively:

DROP INDEX PurchDB.PartsOrderedIndex

If you discover that an index does not improve the speed of data access, you can delete it. If
applications change, you can redefine the index.

10-118 SAQL Statements

DROP MODULE

DROP MODULE

The DROP MODULE statement deletes any sections associated with preprocessed SQL
statements from the ALLBASE/SQL system catalog.

Scope

ISQL or Application Programs

SQL Syntax

DROP MODULE | Owner. | ModuleName | PRESERVE |

Parameters
LOwner.] Module Name identifies the module to be dropped.

PRESERVE causes ALLBASE/SQL to retain the module’s authorization
records. If you preprocess a new version of an application
program, you do not have to repeat the process of granting RUN
authority to everyone who will run the program. If you do not
specify the PRESERVE option, all authority that had been
granted for the module is revoked.

Description

m When an application program is preprocessed, information needed for efficient database
access is stored as a module in the system catalog. The system catalog also contains
a record of the module’s owner and any GRANT statements that have been issued to
authorize other users to run the program. The DROP MODULLE statement deletes all this
information unless the PRESERVE option is specified; if the PRESERVE option is specified,
the DROP MODULE statement deletes all but the RUN authorization information.

m A module name can also identify a set of one or more dynamically preprocessed statements
created in the interactive environment with the PREPARE statement. The DROP
MODULE statement can be used to drop such a set of dynamically preprocessed
statements, and optionally any associated authorization data, in addition to the uses of the
DROP MODULE statement described above.

m The DROP MODULE statement can invalidate stored sections. Refer to the
ALLBASE/SQL Database Administration Guide for additional information on section
validation.

Authorization

You can use the DROP MODULE statement if you have OWNER authority for the module or
if you have DBA authority.

SQL Statements 10-119

DROP MODULE

Examples
1. Dropping preprocessed application programs

A module for the application program MyProg is created and stored in the system catalog
by one of the preprocessors.

GRANT RUN ON MyProg TO PUBLIC

DROP MODULE MyProg PRESERVE

Authorization information for MyProg is retained, but the module is deleted from the
system catalog. You can re-preprocess MyProg and not have to redefine its authorization.

2. Dropping interactively prepared modules

Two sections for a module named Statistics are stored in the system catalog.

PREPARE Statistics (1)
FROM °UPDATE STATISTICS FOR TABLE PurchDB.Orders’

PREPARE Statistics (2)
FROM ’UPDATE STATISTICS FOR TABLE PurchDB.OrderItems’

This only executes Statistics(1). The statistics for table PurchDB.Orders are updated:

EXECUTE Statistics

The statistics for table PurchDB.Orderltems are updated:

EXECUTE Statistics(2)

Both sections of the module are deleted.

DROP MODULE Statistics

10-120 SAQL Statements

DROP PARTITION

DROP PARTITION

The DROP PARTITION statement removes the definition of a partition for audit logging
purposes.

Scope

ISQL or Application Programs

SQL Syntax

DROP PARTITION PartitionName

Parameters

PartitionName specifies the name of the partition to be dropped.

Description

m The partition being dropped must not have any tables associated with it. Use the ALTER
TABLE SET PARTITION statement to remove any tables associated with it before
dropping the partition.

m The DEFAULT partition cannot be dropped. It can be reset to NONE or to another
partition with the START DBE NEWLOG statement.

Authorization

You must have DBA authority to use this statement.

Example
A partition can be dropped after all tables in it are assigned to PARTITION NONE.

CREATE PARTITION PartsPart WITH ID = 10;
ALTER TABLE PurchDB.Parts SET PARTITION PartsPart;

ALTER TABLE PurchDB.Parts SET PARTITION NONE;

DROP PARTITION PartsPart;

SQL Statements 10-121

DROP PROCEDURE
The DROP PROCEDURE statement deletes the specified procedure.

Scope

ISQL or Application Programs

SQL Syntax

DROP PROCEDURE [Quwner. | Procedure Name |PRESERVE |

Parameters
wner.] Procedure Name specifies the name of the procedure that is to be dropped.
0 Procedure N ifies th f th dure that is to be d d
PRESERVE specifies that EXECUTE authorities associated with the
procedure should be retained in the system catalog.
Description

m If you do not specify PRESERVE, the EXECUTE authorities associated with the procedure
are removed.

m If a rule attempts to execute a procedure that has been dropped, the rule will fail and all
the effects of the statement that fired the rule are undone.

m The DROP PROCEDURE statement does not drop rules that invoke the procedure. All
rules invoking the procedure are preserved.

m The DROP PROCEDURE statement will invalidate stored sections that depend on invoking
the procedure from a rule. The loss of the procedure will be reported as an error when there
is an attempt to revalidate these sections.

Authorization

You must be the owner of the procedure or have DBA authority to use the DROP
PROCEDURE statement.

Example

DROP PROCEDURE Process12 PRESERVE

10-122 SAQL Statements

DROP RULE

DROP RULE
The DROP RULE statement deletes the specified rule.

Scope

ISQL or Application Programs

SQL Syntax

DROP RULE | Owner. | RuleName | FROM TABLE | Owner. | TableName |

Parameters

[Owner.]RuleName identifies the rule to be dropped.
[Owner.]Table Name identifies the table the rule is defined on.
Description

m If a TableName is specified, the rule must exist on that table or an error will be returned.

m If no TableName is specified, the rule is located and dropped. Since rule names are unique
per owner, not per table, there is no ambiguity in references to Rule Name.

m The DROP RULE statement invalidates stored sections that have dependencies defined
upon the table the rule is defined on. This will permit the rule to be removed when the
sections are revalidated.

m The procedure a rule invokes will not be affected by the removal of that rule.

m If no rule owner is specified and no table is specified, the default owner is the current

DBEUserID.

m If no rule owner is specified and a table is specified, the default rule owner is the table
owner.

m If a table is specified and no owner is specified for it, the default table owner is the current

DBEUserID.

m The table and rule owners must be the same.

Authorization

You can issue this statement if you have OWNER authority for the rule or if you have DBA
authority.

Example

DROP RULE PurchDB.InsertReport
DROP RULE PurchDB.DeleteReport
DROP RULE PurchDB.UpdateReport

SQL Statements 10-123

DROP TABLE

The DROP TABLE statement deletes the specified table, including any hash structure or
constraints associated with it, all indexes, views, and rules defined on the table, and all
authorizations granted on the table.

Scope

ISQL or Application Programs

SQL Syntax

DROP TABLE | Owner. | TableName

Parameters
LOwner.] TableName identifies the table to be dropped.

Description

m The DROP TABLE statement may invalidate stored sections. Refer to the ALLBASE/SQL
Database Administration Guide for additional information on section validation.

m You cannot drop a table which has a primary or unique constraint referenced by a foreign
key in another table. (You can, however, if the only foreign keys are within the same table.)

m Any authorities used to authorize a foreign key on the table are released when the table is
dropped.

Authorization

You can issue this statement if you have OWNER authority for the table or if you have DBA
authority.

10-124 SAQL Statements

DROP TABLE

Example
This table is private by default.

CREATE TABLE VendorPerf
(OrderNumber INTEGER NOT NULL,
ActualDelivDay SMALLINT,
ActualDelivMonth SMALLINT,
ActualDelivYear SMALLINT,
ActualDelivQty SMALLINT
Remarks VARCHAR(60))

IN Miscellaneous

CREATE UNIQUE INDEX VendorPerfIndex
ON VendorPerf
(0rderNumber)

CREATE VIEW VendorPerfView
(0rderNumber,
ActualDelivQty,
Remarks)

AS SELECT OrderNumber,
ActualDelivQty,
Remarks
FROM VendorPerf

Only the table creator and members of authorization group Warehse can update table

VendorPerf.

GRANT UPDATE ON VendorPerf TO Warehse
The table, the index, and the view are all deleted; and the grant is revoked.

DROP TABLE VendorPerf

SQL Statements 10-125

DROP TEMPSPACE

The DROP TEMPSPACE statement removes the definition of a temporary storage space
(TempSpace) from the system catalog.

Scope

ISQL or Application Programs

SQL Syntax

DROP TEMPSPACE TempSpaceName

Parameters

TempSpace Name is the name of the TempSpace to be dropped.

Description

m [f a TempSpace is dropped while temporary files currently exist under the path name
it specifies, those files remain until the sort using them completes. However, no further
temporary files are created in that TempSpace.

m [f a TempSpace is being used by another user when the DROP TEMPSPACE statement is
issued, then the DROP statement is blocked until the TempSpace usage is finished.

Authorization

You must have DBA authority to use this statement.

Example
TempSpace temporary files are created in SomeGrp.SomeAcct when SQL statements require
sorting.

CREATE TEMPSPACE ThisTempSpace WITH MAXFILEPAGES = 360,
LOCATION = ’SomeGrp.SomeAcct’

DROP TEMPSPACE ThisTempSpace

TempSpace temporary files will no longer be available in SomeGrp.SomeAcct but will be
allocated in the current group and account as needed.

10-126 SAQL Statements

DROP VIEW

DROP VIEW

The DROP VIEW statement deletes the definition of the specified view from the system
catalog, all authorization granted on the view, and any view that references the dropped view.

Scope

ISQL or Application Programs

SQL Syntax

DROP VIEW [Owner.] ViewName

Parameters

LOwner.] ViewName identifies the view to be dropped.

Description
m This statement does not affect the base tables on which the views were defined.

m The DROP VIEW statement can invalidate stored sections. Refer to the ALLBASE/SQL

Database Administration Guide for additional information on stored section validation.

m You cannot use this statement on system views.

m If the view was defined with a WITH CHECK OPTION constraint, the view check
constraint is also deleted.

Authorization

You can use the DROP VIEW statement if you have OWNER authority for the view or if you
have DBA authority.

Example

The view is dropped. Any grants referencing the view are automatically revoked.

DROP VIEW ReorderParts

SQL Statements 10-127

ENABLE AUDIT LOGGING

The ENABLE AUDIT LOGGING statement restarts audit logging for the DBEnvironment
after a DISABLE AUDIT LOGGING has been performed.

Scope

ISQL or Application Programs

SQL Syntax

ENABLE AUDIT LOGGING

Description

m This statement reenables audit logging in the current session only.

m This statement and DISABLE AUDIT LOGGING are not used to turn on and off the
AUDIT LOG option specified for processing of all sessions in the DBEnvironment. These
statements affect your current session only. (The statements that affect all processing in the

DBEnvironment are the START DBE NEW and START DBE NEWLOG statements.)

m This statement is not affected by transaction management statements and remains in effect

until a DISABLE AUDIT LOGGING statement is issued.

Authorization
This statement requires DBA authority.

Example

Perform an initial load of a table without audit logging.

DISABLE AUDIT LOGGING;
LOAD FROM INTERNAL PartsData TO PurchDB.Parts;
COMMIT WORK;

Reenable audit logging and continue.

ENABLE AUDIT LOGGING;

10-128 SAQL Statements

ENABLE RULES

ENABLE RULES

The ENABLE RULES statement turns rule checking on for the current DBEnvironment
session. The statement is for DBA use in tuning the DBEnvironment and testing the
operation of rules.

Scope

ISQL or Application Programs

SQL Syntax

ENABLE RULES

Description

ENABLE RULES returns the DBEnvironment session to its default behavior of firing all
applicable rules.

The statement only affects the current SID (session id). Other users are not affected.

The ENABLE RULES statement is not cumulative; issuing additional ENABLE RULES
statements will have no effect, and a warning will be issued to this effect.

Rules are not fired retroactively when the ENABLE RULES statement is issued after the
DISABLE RULES statement has been issued. That is, if a DISABLE RULES statement
is issued, rules that would otherwise be applicable will not fire. Then, when a subsequent
ENABLE RULES is issued, applicable rules will fire again, but only for subsequent data
manipulation statements, not for rows processed while rule firing was disabled.

COMMIT WORK and ROLLBACK WORK statements have no effect on whether rules are
enabled or disabled.

Authorization

You must have DBA authority.

Example

The DBA turns off rule invocation.

DISABLE RULES

The DBA performs operations without rule firing.

The DBA turns on rule invocation.

ENABLE RULES

Normal firing of rules resumes.

SQL Statements 10-129

END DECLARE SECTION

The END DECLARE SECTION preprocessor directive indicates the end of the host variable
declaration section in an application program.

Scope
Application Programs Only

SQL Syntax

END DECLARE SECTION

Description

m This directive cannot be used interactively.

m Use this directive in conjunction with the BEGIN DECLARE SECTION directive.

Authorization
You do not need authorization to use the END DECLARE SECTION statement.

Example

BEGTN DECLARE SECTION
Define host variables here, including indicator variables, if any.

END DECLARE SECTIDN

10-130 SAQL Statements

EXECUTE

EXECUTE

The EXECUTE statement causes ALLBASE/SQL to execute a statement that has been
dynamically preprocessed by means of the PREPARE statement.

Scope

ISQL or Application Programs

SQL Syntax
EXECUTE { StatementName }
[Owner.]ModuleName [(SectionNumber)]
[INPUT | { SULDA }
AreaNamel
[SQL |DESCRIPTOR [AND QUTPUT {SQLDA ”
AreaName2
USING 0UTPUT { SQLDA }
AreaName

[INPUT] HostVariableSpecificationl

[AND QUTPUT HostVarz’ableSp@czﬁcatz’on?]
QUTPUT HostVariableSpecification

: Buffer [, :StartIndex [s :NumberOfRows]]

Parameters

StatementName identifies a dynamically preprocessed statement to be executed in
an application program. The StatementName corresponds to one
specified in a previous PREPARE statement. This form of the
EXECUTE statement cannot be used interactively.

LOwner.] Module Name identifies a dynamically preprocessed statement to be executed
[(SectionNumber)] interactively. The preprocessed statement cannot be a SELECT
statement. This form of the EXECUTE statement cannot
be used in an application program. If the section number is
omitted, section number one is assumed. You can omit the verb
EXECUTE interactively.

USING allows dynamic parameter substitution in a prepared statement in
an application program.

[SQL]DESCRIPTOR indicates that a data structure of sqlda_type is used to pass
dynamic parameter information between the application and

ALLBASE/SQL.

SQLDA specifies that a data structure of sqlda_type named sqlda is used
to pass dynamic parameter information between the application

and ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of type
sqlda_type that is used to pass dynamic parameter information
between the application and ALLBASE/SQL.

SQL Statements 10-131

EXECUTE

Host VariableSpecification

INPUT

OUTPUT

INPUT AND OUTPUT

Buffer

specifies host variable(s) that hold dynamic parameter values at
run time. The syntax of HostVariableSpecification is presented
separately below.

is the default for any EXECUTE statement and can be specified,
as required, for any type of prepared statement containing input
dynamic parameters.

is only allowed when the prepared statement is an EXECUTE
PROCEDURE statement. It can be used when the statement
contains output dynamic parameters.

is only allowed when the prepared statement is an EXECUTE
PROCEDURE statement. It can be used when the statement
contains both input and output dynamic parameters.

is a host variable array structure containing rows that are the
input for a BULK INSERT statement. This structure contains
fields for each column to be inserted and indicator variables for
columns that can contain null values. Whenever a column can
contain nulls, an indicator variable must be included in the array
definition immediately after the definition of that column. This
indicator variable is an integer that can have the following values:

> =0 the value is not NULL
<0 the value is NULL

Note To be consistent with standard SQL and to support portability of code, it is
strongly recommended that you use a —1 to indicate a null value. However,
ALLBASE/SQL interprets all negative indicator variable values to mean a null

value.

Startindex

NumberOfRows

is a host variable whose value specifies the array subscript
denoting where the first row to be inserted is stored; default is the
first element of the array.

is a host variable whose value specifies the number of rows to
insert; default is to insert from the starting index to the end of
the array.

SQL Syntax—HostVariableSpecification

:HostVarz'ableName[[INDICATOR] : IndicatorVariable] [Y e]

10-132 SAQL Statements

EXECUTE

Parameters—HostVariableSpecification

HostVariableName specifies a host variable name that at run time contains the

data value that is assigned to a dynamic parameter defined in a
prepared statement.

Host variables must be specified in the same order as the dynamic
parameters in the prepared statement they represent. There must
be a one to one correspondence between host variable names and
the dynamic parameters in the prepared statement. A maximum
of 1024 host variable names can be specified.

IndicatorVariable names an indicator variable, whose value determines whether the

associated host variable contains a NULL value:
>=0 the value is not NULL
<0 the value is NULL

Description

There must be a one to one mapping of the input and/or output parameters in a prepared
statement and its associated EXECUTE statement.

INPUT is the default for any EXECUTE statement and can be specified, as required, for
any type of prepared statement.

The OUTPUT clause is only allowed when the prepared statement is an EXECUTE
PROCEDURE statement containing output dynamic parameters.

An INPUT AND OUTPUT clause is only allowed when the prepared statement is
an EXECUTE PROCEDURE statement containing both input and output dynamic
parameters.

If StatementName is an EXECUTE PROCEDURE statement without any input and output
dynamic parameters, you can execute the procedure by issuing EXECUTE StatementName.

If StatementName is an EXECUTE PROCEDURE statement with either input or output
dynamic parameters, you can use the EXECUTE USING statement with INPUT (default)
or OUTPUT option to execute the dynamically preprocessed statement.

If StatementName is an EXECUTE PROCEDURE statement with both input and output
dynamic parameters, you can use the EXECUTE USING statement with the INPUT AND
OUTPUT option to execute the dynamically preprocessed statement.

Use the USING clause for either an SQLDA DESCRIPTOR or a HostVariableSpecification

for input and/or output dynamic parameter substitution in a prepared statement.

The : Buffer [,:Startindex [, : NumberOfRows]| option is only used in association with a
BULK INSERT statement.

If StatementName is an EXECUTE PROCEDURE statement, and there are multiple row
result sets from the procedure, you must use the procedure cursor method to retrieve result
sets. A warning is returned if a procedure cursor is not used in this case; the return status
and output parameters are returned as usual.

SQL Statements 10-133

EXECUTE

Authorization

In an application program, the EXECUTE statement does not require any special
authorization. The user running the program must have whatever authorization is required by
the dynamically preprocessed statement being executed.

To use the EXECUTE statement in the interactive environment, you must have RUN or
OWNER authority for the dynamically preprocessed statement or have DBA authority.
In addition, the owner of the dynamically preprocessed statement must have whatever
authorization the dynamically preprocessed statement itself requires.

Examples

1. Interactive execution

isql=> PREPARE Statistics(1)
> FROM ’UPDATE STATISTICS FOR TABLE PurchDB.Orders’

isql=> PREPARE Statistics(2)
> FROM ’UPDATE STATISTICS FOR TABLE PurchDB.OrderItems’

Two sections for module Statistics are stored in the system catalog.

isql=> EXECUTE Statistics(1)

The statistics for table PurchDB.Orders are updated.

isql=> EXECUTE Statistics(2)

The statistics for table PurchDB.Orderltems are updated.

isql=> DROP MODULE Statistics

Both sections of the module are deleted.
2. Programmatic execution

If you know that the statement to be dynamically preprocessed is not a SELECT statement
and does not contain dynamic parameters, you can prepare it and execute it in one step, as
follows:

EXECUTE IMMEDIATE :Dynaml

You can prepare and execute the statement in separate operations. For example, if you
don’t know the format of a statement, you could do the following;:

PREPARE Dynamicl FROM :Dynaml
The statement stored 1n :Dynaml 1s dynamically preprocessed.

DESCRIBE Dynamicl INTO SqldaOut

If Dynamicl is not a SELECT statement, the Sqld field of the Sqlda data structure is 0. If
you know there are no dynamic parameters in the prepared statement, use the EXECUTE
statement to execute the dynamically preprocessed statement.

If it is possible that dynamic parameters are in the prepared statement, you must describe
the statement for input:

DESCRIBE INPUT Dynamicl USING SQL DESCRIPTOR SqldaIn

10-134 SAQL Statements

EXECUTE

If the prepared statement could be an EXECUTE PROCEDURE statement (sqld = zero
on DESCRIBE OUTPUT) with dynamic output parameters, you must describe it for
output:

DESCRIBE OUTPUT Dynamici USING SQL DESCRIPTOR Sqldalut
If only dynamic input parameters are present, the appropriate data buffer or host variables

must be loaded with the values of any dynamic parameters. Then if the statement is not a
query, it can be executed, as in this example using a data buffer:

EXECUTE Dynamicl USING SQL DESCRIPTOR Sqldaln

However, if the prepared statement is an EXECUTE PROCEDURE statement with
multiple row result sets (sqlmproc = non-zero) and dynamic input and output parameters
execute it as follows:

EXECUTE Dynamicl USING SQL INPUT DESCRIPTODR Sqldaln
and OUTPUT DESCRIPTOR SqldaOut

SQL Statements 10-135

EXECUTE IMMEDIATE

The EXECUTE IMMEDIATE statement dynamically prepares and executes an SQL
statement.

Scope

ISQL or Application Programs

SQL Syntax
EXECUTE TMMEDIATE | V"9
: Host Variable

Parameters

String is the ALLBASE/SQL statement to be executed.
HostVariable identifies a character-string host variable containing the

ALLBASE/SQL statement to be executed.

Description

m When used interactively, a host variable cannot be specified.
m The SQL statement cannot contain host variables nor dynamic parameters.

m You cannot use the EXECUTE IMMEDIATE statement for any of the following statements:

BEGIN DECLARE SECTION EXECUTE SELECT
CLOSE EXECUTE IMMEDIATE SQLEXPLATN
DECLARE CURSOR FETCH UPDATE WHERE CURRENT
DELETE WHERE CURRENT INCLUDE WHENEVER
DESCRIBE OPENl
END DECLARE SECTION PREPARE
Authorization

You can use EXECUTE IMMEDIATE if your authorization permits you to issue the
statement to be executed.

Example

If you know that the statement to be dynamically preprocessed is neither a SELECT
statement nor an EXECUTE PROCEDURE statement with results, and has neither input nor
output dynamic parameters, you can prepare it and execute it in one step.

EXECUTE IMMEDIATE :Dynaml

In other instances, it is more appropriate to prepare and execute the statement in separate
operations.

10-136 SAQL Statements

EXECUTE PROCEDURE

EXECUTE PROCEDURE
The EXECUTE PROCEDURE statement invokes a procedure.

Scope

ISQL or Application Programs

Syntax
EXECUTE PROCEDURE [: ReturnStatusVariable =] [Ouwner.]PmcedureName
[([ActualPammeter] [s [ActualPammeter]] [])]

Parameters

ReturnStatusVariable is an integer host variable, or, for a prepared EXECUTE
PROCEDURE statement, a dynamic parameter, that receives the
return status from the procedure. ReturnStatusVariable can only
be used when invoking a procedure from an application program,
and it is always an output variable.

[Owner.]Procedure Name specifies the owner and the name of the procedure to execute. If
an owner name is not specified, the owner is assumed to be the
current DBEUserID.

ActualParameter specifies a parameter value that is passed into and/or out of the
procedure. The syntax of ActualParameter is presented separately
below.

SQL Syntax—ActualParameter

[PammeterName =]PammeterValue [OUTPUT [ONLYH

Parameters—ParameterDeclaration
ParameterName is the parameter name.
ParameterValue a value that is passed into and/or out of the procedure.

For an input only parameter, the value can be any expression that
does not include any aggregate function, add_months function,
LONG column function, TID function, local variable, procedure
parameter, or built-in variable. Column values are allowed only
when the EXECUTE PROCEDURE statement is defined in a

rule.

For an OUTPUT or OUTPUT ONLY parameter, the value
must be a single host variable, or in a prepared EXECUTE
PROCEDURE statement, a single dynamic parameter.

You can omit a parameter in calling the procedure by using a
comma by itself, which is equivalent to specifying a value of
NULL or the default (if one was defined when the procedure was

SQL Statements 10-137

EXECUTE PROCEDURE

created). However, if a ParameterName is specified, use of a
comma by itself is disallowed.

QUTPUT specifies that the caller wishes to retrieve the output value of

the parameter. QOUTPUT must also have been specified for
the corresponding parameter in the CREATE PROCEDURE
statement.

If OUTPUT is not specified, no output value is returned to the
caller.

ONLY specifies that the caller wishes to retrieve the output value of

the parameter and will not provide an input value. You must
also have specified ONLY for the corresponding parameter in
the CREATE PROCEDURE statement. ONLY should be used,
when applicable, to avoid unnecessary initialization of procedure
parameters.

Description

You cannot execute a procedure from within another procedure.

If OUTPUT ONLY is not specified, a parameter that is not given a value in the EXECUTE
PROCEDURE statement is assigned its default value if one was specified, or otherwise
NULL if the parameter was not declared NOT NULL.

If OUTPUT ONLY is not specified, no value is provided for a parameter, a default is
not specified, and NOT NULL is specified, an error is returned and the procedure is not
executed.

If a procedure terminates abnormally (an error occurs in evaluating the condition in

an IF or WHILE statement, or in evaluating the expression in a parameter or variable
assignment), any cursors opened by the procedure (including KEEP cursors) are closed.
Otherwise, except in a procedure invoked by a rule, any cursor opened by the procedure,
and left open when the procedure terminates, remains open and may therefore be accessed
when the procedure is executed again.

If OUTPUT has been specified for a parameter in both the CREATE PROCEDURE and
EXECUTE PROCEDURE statements, any changes made to the parameter value within
the procedure are returned to the calling application. The actual parameter for an output
parameter can be a host variable or a dynamic parameter.

If you execute a procedure that returns multiple row result sets (contains one or more
SELECT statements with no INTO clause) without using a procedure cursor, a warning is
returned to the application, no result set data is returned, and any return status and output
parameters are returned as usual.

You can execute procedures in ISQL, through application programs, or via rules. Further
information on executing a procedure from an application is found in the ALLBASE/SQL
Advanced Application Programming Guide. For the execution of procedures through rules,
refer to the CREATE RULE statement.

In ISQL, you cannot specify OUTPUT for a parameter. Although return status cannot be
specified in the EXECUTE PROCEDURE statement, ISQL does report the return status.
Also, within ISQL, actual parameter values cannot include host variables.

10-138 SAQL Statements

EXECUTE PROCEDURE

If you attempt to execute a procedure that contains invalid sections, ALLBASE/SQL
silently revalidates the sections. You can also use the VALIDATE statement to revalidate
invalid sections in procedures.

You can PREPARE and EXECUTE an EXECUTE PROCEDURE statement containing

dynamic parameters.

You can use EXECUTE PROCEDURE inside an EXECUTE IMMEDIATE statement,
provided the EXECUTE PROCEDURE statement includes neither dynamic parameters nor
host variables.

If you do not specify OUTPUT for a parameter declared as OUTPUT in the CREATE
PROCEDURE statement, no value is returned.

You cannot specify OUTPUT for a parameter not declared as OUTPUT in the CREATE
PROCEDURE statement.

OUTPUT ONLY must be specified for any parameter declared as OUTPUT ONLY in the
CREATE PROCEDURE statement if an actual parameter is provided. Use of OUTPUT
ONLY improves performance, since no time is spent initializing the parameter to the input
value, default value, or null.

Within a procedure, a single row SELECT statement (one having an INTO clause) that
returns multiple rows will assign the first row to output parameters or local variables, and a
warning is issued. In an application, this case would generate an error.

Authorization

You must have OWNER or EXECUTE authority for the procedure or DBA authority to use

this statement.

Examples

1. From an application program:

EXECUTE PROCEDURE :Status = Processl2(:PartName, :Quantity,
:SalesPrice OUTPUT ONLY)

2. Within ISQL:

isql=> execute procedure Process12(’Widget’,150);

SQL Statements 10-139

FETCH

The FETCH statement advances the position of an opened cursor to the next row of the
active set and copies selected columns into the specified host variables or data buffer. The row
to which the cursor points is called the current row.

Scope

Application Programs Only

SQL Syntax

[BULK |FETCH CursorName

Parameters
BULK

CursorName

INTO

USING

Host VariableSpecification

10-140 SAQL Statements

INTO HostVariableSpecification
SQLDA }

SQL |DESCRIPTOR
[9] {AreaName

USING
HostVariableSpecification

is specified in an application program to retrieve multiple rows
with a single execution of the FETCH statement. After a BULK
FETCH statement, the current row is the last row fetched.

BULK can be specified with the INTO clause (for a statically
executed cursor), but not with the USING clause (for a
dynamically executed cursor).

BULK is disallowed in a procedure.

identifies a cursor. The cursor’s active set, determined when the
cursor was opened, and the cursor’s current position in the active
set determine the data to be returned by each successive FETCH
statement.

The INTO clause defines where to place rows fetched for a
statically preprocessed SELECT or EXECUTE PROCEDURE

statement.

The USING clause defines where to place rows fetched for a
dynamically preprocessed SELECT or EXECUTE PROCEDURE
statement, or for a statically preprocessed EXECUTE
PROCEDURE statement with an unknown format.

identifies one or more host variables for holding and describing the
row(s) in the active set.

When used with the INTO clause, the syntax of
HostVariableSpecification depends on whether the BULK option
is specified. If BULK is specified, HostVariableSpecification
identifies an array that holds the rows fetched. If BULK is

not specified, the host variable declaration identifies a list of
individual host variables. The syntax of BULK and non-BULK
variable declarations is shown in separate sections below.

DESCRIPTOR

SQLDA

AreaName

FETCH

The USING clause with a HostVariableSpecification allows
non-BULK variable declarations only.

The DESCRIPTOR identifier defines where to place rows
selected in accord with a dynamically preprocessed SELECT or
EXECUTE PROCEDURE statement that has been described by
a DESCRIBE statement. For a select cursor, specify the same
location (SQLDA, area name, or host variable) as you specified
in the DESCRIBE statement. For a procedure cursor, specify
the same location you specified in the ADVANCE statement or
DESCRIBE RESULT statement (for a procedure created WITH
RESULT).

specifies that a data structure of sqlda_type named sqlda is to be
used to pass information about the prepared statement between

the application and ALLBASE/SQL.

specifies the user defined name of a data structure of sqlda_type
that is to be used to pass information about the prepared
statement between the application and ALLBASE/SQL.

SQL Syntax—BULK HostVariableSpecification

: Buffer [, :StartIndex [s :NumberOfRows]]

Parameters—BULK HostVariableSpecification

Buffer

Startindex

NumberOfRows

is a host array structure that is to receive the output of the FETCH
statement. This structure contains fields for each column in the active set
and indicator variables for columns that contain null values. Whenever a
column can contain nulls, an indicator variable must be included in the
structure definition immediately after the definition of that column. The
indicator variable can receive the following integer values after a FETCH:

0 meaning the column’s value is not null
-1 meaning the column’s value is null
>0 meaning the column’s value is truncated (for CHAR,

VARCHAR, BINARY, and VARBINARY columns)

is a host variable whose value specifies the array subscript denoting where
the first row fetched should be stored; default is the first element of the
array.

is a host variable whose value specifies the maximum number of rows to
fetch; default is to fill from the starting index to the end of the array.

The total number of rows fetched is returned in the SQLERRD field of the
SQLCA. You should check this area in case the number of rows returned
is less than the maximum number of rows so that you don’t process an
incomplete result.

SQL Statements 10-141

FETCH

SQL Syntax—non-BULK HostVariableSpecification

{ : Host Variable [[INDICATOR] :Indicator] }[y e]

Parameters—non-BULK HostVariableSpecification

HostVariable identifies the host variable corresponding to one column in the row fetched.

Indicator names the indicator variable, an output host variable whose value depends on

whether the host variable contains a null value. The following integer values
are valid:

0 meaning the column’s value is not null
-1 meaning the column’s value is null

>0 meaning the column’s value is truncated (for CHAR, VARCHAR,
BINARY, and VARBINARY columns)

Description

This statement cannot be used interactively.

When using this statement to access LONG columns, the name of the file is returned in
the appropriate field in the host variable declaration parameter, SQLDA, or area name

parameter specified. If the output mode is specified with §, then each LONG column in
each row accessed is stored in a file with a unique name.

The use of a descriptor area implies a multiple row result set. You cannot use the BULK
keyword if you employ the DESCRIPTOR, identifier.

For a procedure cursor that returns results of a single format, if the procedure was created
with the WITH RESULT clause, since all result sets have the same format, it is not
necessary to issue an ADVANCE statement to advance from one result set to the next. No
end of result set condition is generated on a FETCH statement until all result sets have
been fetched. When the end of a result set has been reached, the next FETCH statement
issued causes procedure execution to continue either until the next result set is encountered
and the first row of the next result set is returned or until procedure execution terminates.

The USING clause is not allowed within a procedure.
The BULK option is not allowed within a procedure.

Authorization

You do not need authorization to use the FETCH statement.

10-142 SAQL Statements

FETCH

Examples
1. Static update

A cursor for use in updating values in column QtyOnHand is declared and opened.

DECLARE New(QtyCursor CURSOR FOR
SELECT PartHlumber,QtyOnHand FROM PurchDB.Inventory
FOR UPDATE OF QtyOnHand

OPEN NewQtyCursor
Statements setting up a FETCH-UPDATE loop appear next.
FETICH NewQtyCursor INTO :Nlum ;Numnul, :Qty :Qtynul

Statements for displaying a row to and accepting a new QtyOnHand value from a user go
here. The new value is stored in :NewQty.

UPDATE PurchDB.Inventory
SET QtyOnHand = :NewQty
WHERE CURRENT OF NewQtyCursor

CLOSE NewQtyCursor

2. Static bulk fetch

DECLARE ManyRows CURSOR FOR
SELECT * FROM PurchDB.Inventory

In some instances, using the BULK option is more efficient than advancing the cursor a
row at a time through many rows, especially when you want to operate on the rows with

non-ALLBASE/SQL statements.

OPEN ManyRows

BULE FETCH ManyRows INTD :Rows, :Start, :NumBRow
The query result is returned to an array called Rows.
3. Dynamic select cursor using an sqlda_type data structure

Assume that host variable Dynam1 contains a SELECT statement. The statement stored
in :Dynaml is dynamically preprocessed.

PREPARE Dynamicl FROM :Dynaml

The DESCRIBE statement loads the specified sqlda_type data structure with the
characteristics of the FETCH statement. See the ALLBASE/SQL application programming
guides for complete information regarding this data structure.

DESCRIBE Dynamicl INTO SQLDA

Define a cursor to be used to move through the query result row by row.
DECLARE DynamiclCursor CURSOR FOR Dynamicl
Open the cursor to define rows of the active set.

OPEN DynamiclCursor

Fetch the selected data into the data buffer. Additional rows are fetched with
each execution of the FETCH statement until all rows have been fetched. See the
ALLBASE/SQL application programming guides for more detailed examples.

EETCH DynamiciCursor USING DESCRIPTOR SQLDA

SQL Statements 10-143

FETCH

Close the cursor to free the active set.

CLOSE DynamicliCursor
4. Dynamic select cursor using host variables

Assume that host variable Dynam1 contains a SELECT statement. The statement stored
in :Dynaml is dynamically preprocessed.

PREPARE Dynamicl FROM :Dynaml

Define a cursor to be used to move through the query result row by row.
DECLARE DynamiclCursor CURSOR FOR Dynamicl

Open the cursor to define rows of the active set.

OPEN DynamiclCursor

Fetch the selected data into the specified host variables. With each execution of the
FETCH statement one additional row is fetched until all rows have been fetched.

FETCH DynamiclCursor USING :HostVariablel, :HostVariable2

Close the cursor to free the active set.

CLOSE DynamicliCursor

5. Refer to the ALLBASE/SQL Advanced Application Programming Guide for a pseudocode
example of procedure cursor usage.

10-144 SAQL Statements

GENPLAN

GENPLAN

The GENPLAN statement places the access plan generated by the optimizer for a SELECT,
UPDATE, or DELETE statement into the pseudotable SYSTEM.PLAN. You can then view
the access plan by issuing the following statement from within the same transaction:

isql=> SELECT #* FROM SYSTEM.PLAN;

Scope
ISQL or Application Programs

SQL Syntax

GENPLAN [WITH (HostVariableDefinition) | FOR
SQLStatement
MODULE SECTION [Owner.]ModuleName(Section Number)
PROCEDURE SECTION [Owner.]ProcedureName(Section Number)

Parameters

WITH is used when simulating embedded statements taken from
application programs. The WITH clause defines variables of a
specified data type. The variables are used in the WHERE clause
where an input host variable would appear if the SQLStatement
were embedded in an application.

HostVariable Definition designates a variable used to simulate a host variable that would

appear in a statement in an application program. This clause is
only allowed for an SQLStatement.

SQLStatement can be any valid SQL SELECT, UPDATE, or DELETE statement
including complex statements containing UNION, OUTER JOIN,
or nested subqueries.

[Owner].Module Name identifies the module section whose access plan is to be

(Section Number) generated. The owner name is the DBEUserID of the person who
preprocessed the program or the owner name specified when the
program was preprocessed. The Module Name is the name stored

in the CATALOG.SECTION view.

[Owner.]Procedure Name identifies the procedure section whose access plan is to be

(Section Number) generated. The owner name is the DBEUserID of the person
who created the procedure or the owner name specified when the
procedure was created. The ProcedureName is the name stored

in the CATALOG.PROCEDURE view or CATALOG.SECTION

view.

SQL Statements 10-145

GENPLAN

Description

m The GENPLAN statement can only be used in ISQL. It cannot be used in an application, in
a static SQL statement, or in dynamic preprocessing.

Note GENPLAN checks only for syntax errors. It does not check for mismatched
data types or other errors that may occur. In order to guarantee complete
error checking, do not include a statement in GENPLAN unless it has
previously run without errors.

m You should take the following steps when embedding a statement from an application in the
GENPLAN statement:

0 In the GENPLAN WITH clause, define variable names and compatible SQL data types
for each input host variable appearing in the application statement. Do not include
indicator variables in the WITH clause for columns that allow nulls. Indicator variables
are not used by GENPLAN.

0 Remove the INTO clause and its associated output host variables. Only input host
variables are considered when generating the access plan.

m The following language specific tables show the SQL data type that must be placed in the
WITH clause of the GENPLAN statement for each type of host variable, if an accurate
access plan is to be generated. In some cases, the data type specified in the WITH clause
of the GENPLAN statement is not the same data type which is compatible with the SQL
data type of the column containing the data. The data type specified below must be used,
regardless of the SQL column data type. This ensures that the plan displayed by the
GENPLAN statement is the same as the plan chosen by the optimizer when the statement
is preprocessed in an application.

Table 10-3. GENPLAN WITH Clause Data Types—COBOL

COBOL Host Variable GENPLAN WITH Clause
Data Type Declaration SQL Data Type

01 DATA-NAME PIC X. CHAR

01 DATA-NAME PIC X(n). CHAR(n)

01 GROUP-NAME. VARCHAR(n)

49 LENGTH-NAME PIC S9(9) COMP.
49 VALUE-NAME PIC X(n).

01 DATA-NAME PIC S9(4) COMP. SMALLINT

01 DATA-NAME PIC S9(9) COMP. INTEGER

01 DATA-NAME PIC S9(p-s)V9(s) COMP-3. | DECIMAL(p,s)

10-146 SAQL Statements

Table 10-4. GENPLAN WITH Clause Data Types—Pascal

GENPLAN

Pascal Host Variable
Data Type Declaration

GENPLAN WITH Clause
SQL Data Type

DataName :
DataName :
DataName :
DataName :
DataName :
DataName :
DataName :
DataName :

char;

array [L..n] of char;
packed array [1..n] of char;
string[n];

smallint;

integer;

longreal,

real;

CHAR
CHAR(n)
CHAR(n)
VARCHAR(n)
SMALLINT
INTEGER
FLOAT

REAL

Table 10-5. GENPLAN WITH Clause Data Types—FORTRAN

FORTRAN Host Variable

Data Type Declaration

GENPLAN WITH Clause
SQL Data Type

CHARACTER DataName

CHARACTER*n DataName

INTEGER*2 DataName

INTEGER DataName

REAL DataName

REAL*4 DataName

DOUBLE PRECISION DataName

REAL*8 DataName

CHAR
CHAR(n)
SMALLINT
INTEGER
REAL
REAL
FLOAT
FLOAT

SQL Statements

10-147

GENPLAN

Table 10-6. GENPLAN WITH Clause Data Types—C

C Host Variable GENPLAN WITH Clause
Data Type Declaration SQL Data Type
char dataname; CHAR
char dataname[n+1]; VARCHAR(n)
short dataname; SMALLINT
short int dataname; SMALLINT
int dataname; INTEGER
long int dataname; INTEGER
long dataname; INTEGER
float dataname; REAL
double dataname; FLOAT
Note It is your responsibility to ensure that for each simulated host variable defined

in the GENPLAN statement WITH clause, you use the SQL data type shown
in the tables. If you use an incorrect data type, GENPLAN will generate a
plan. However, it may not be the plan the optimizer will choose when your
application is preprocessed.

m For each individual session, SYSTEM.PLAN stores the result of only one GENPLAN at
a time. If GENPLAN is issued twice in succession, the second plan will replace the first.
The access plan generated by GENPLAN is removed from SYSTEM.PLAN as soon as a
COMMIT WORK or ROLLBACK WORK statement is issued.

m GENPLAN can be applied to a type Il insert query.

m The active SETOPT will be used for the statement of GENPLAN on an SQLStatement
only. A currently active SETOPT is ignored if a GENPLAN statement is executed on a
section.

m You can find the section number from the source file produced by the preprocessor after the
application is processed.

m Use the following information to find the section number for a procedure statement:

0 A section exists for each SQL statement in a procedure except:
m BEGIN WORK
s ROLLBACK WORK
m SAVEPOINT
m OPEN cursor
m CLOSE cursor
0 Procedure sections are numbered consecutively, starting with 1, from the start of the
procedure, with no regard to any branching or looping constructs in the procedure.

m Multiple sessions may issue the GENPLAN statement at the same time because each session
has its own individual copy of SYSTEM.PLAN.

10-148 SAQL Statements

GENPLAN

m See the section “Using GENPLAN to Display the Access Plan” in the “SQL Queries”
chapter for information on how to interpret the plan.

m You cannot use GENPLAN with the SYSTEM or CATALOG views.

Authorization

To execute GENPLAN, you must have DBA authority or the appropriate combination
of SELECT, UPDATE, or DELETE authorities for the tables and views accessed by the

included SQL statement. In the case of views, you must have the appropriate authorities for
all underlying views and base tables, as well.

Examples

1. Interactive SQL statement for the following query:

>isql=> SELECT PartName, VendorNumber, UnitPrice
> FROM Purchdb.Parts p, PurchDB.SupplyPrice sp

> WHERE p.Partllumber = sp.PartNumber

> AND p.PartNumber = ’1123-P-017;

Generate the Plan:

isql=> GENPLAN FOR

> SELECT partname, vendornumber, UnitPrice

> FROM PurchDB.Parts p, PurchDB.SupplyPrice sp
> WHERE p.Partllumber = sp.PartNumber

> AND p.PartNumber = ’1123-P-017;

Display the Plan:

isql=> SELECT #* FROM System.Plan;

SELECT * FROM System.Plan;

——————————— B . T e e ST TR
QUERYBLOCK |STEP | LEVEL | OPERATION | TABLENAME
——————————— B . T e e ST TR

1] 1] 2|index scan | PARTS

1] 2] 2|serial scan | SUPPLYPRICE

1] 31 1|nestedloop join

Humber of rows selected is 3
Ulpl, dlown], 1[eft], r[ight], t[opl, blottom], prlint], <n>, or e[nd] >r

e e e
| OWNER. | INDEXNAME

e e e
| PURCHDB | PARTNUMINDEX

| PURCHDB |

Humber of rows selected is 3
Ulpl, dlownl], 1[eft], r[ight], tl[opl, blottom], pr[int], <n>, or e[nd] >e

2. SQL statement simulating use of host variables in an application for the following query
taken from an application:

EXEC SQL SELECT PartName, VendorNumber, UnitPrice
INTO :PartName, :VendorNumber, :UnitPrice
FROM PurchDB.Parts p, PurchDB.SupplyPrice sp
WHERE p.PartNumber = sp.Partlumber
AND p.Partllumber = :PartNumber

SQL Statements 10-149

GENPLAN

Remove INTO clause when placing the statement into GENPLAN.
Generate the plan in ISQL:

Define input host variable names and compatible SQL data types in WITH clause.

isql=> GENPLAN WITH (PartNumber char(16)) FOR

> SELECT PartName, VendorNumber, UnitPrice

> FROM PurchDB.Parts p, PurchDB.SupplyPrice sp
> WHERE p.Partlumber = sp.PartNumber

> AND p.PartNumber = :PartHumber;

Display the plan:

isql=> SELECT #* FROM System.Plan;

SELECT * FROM System.Plan;

——————————— e e
QUERYBLOCK |STEP | LEVEL | OPERATION | TABLENAME
——————————— e e

1] 1] 2|index scan | PARTS

1] 2] 2|serial scan | SUPPLYPRICE

1] 31 1|nestedloop join

Humber of rows selected is 3
Ulpl, dlown], 1[eft], r[ight], t[opl, blottom], prlint], <n>, or e[nd] >r

e e e
| OWNER. | INDEXNAME

e e e
| PURCHDB | PARTNUMINDEX

| PURCHDB |

Humber of rows selected is 3
Ulpl, dlown], 1[eft], r[ight], t[op]l, blottom], prlint], <n>, or e[nd] >e

3. Example of GENPLAN for a MODULE SECTION.

GENPLAN FOR MODULE SECTION MyModule(10);

10-150 SAQL Statements

GOTO

GOTO

The GOTO statement permits a jump to a labeled statement within a procedure.

Scope

Procedures only

SQL Syntax
GOTO Label
GO TO Integer
Parameters

Label specifies an identifier label for branching within the procedure.

Integer specifies an integer label for branching within the procedure.

Description

The label or integer referred to in a GOTO statement is followed by a colon and a statement.

Authorization

Anyone can use the GOTO statement.

Example

CREATE PROCEDURE Process10 AS
BEGIN
INSERT INTO SmallOrders VALUES (’Widget’, 10);
IF ::sqlcode <> O THEN

GOTO Errors ;

ENDIF;
RETURN 0;

Errors: PRINT ’There were errors.’;
RETURN 1;
END;

SQL Statements 10-151

GRANT

The GRANT statement gives specified authority to one or more users or authorization groups.
The following forms of the GRANT statement are described individually:

m Grant table or view authority.

m Grant RUN or EXECUTE authority.

m Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE authority.
m Grant SECTIONSPACE or TABLESPACE authority for a DBEFileSet.

For detailed information about security schemes, refer to the “DBEnvironment Configuration
and Security” chapter of the ALLBASE/SQL Database Administration Guide.

Scope

ISQL or Application Programs

SQL Syntax—Grant Table or View Authority

ALL [PRIVILEGES]
SELECT
INSERT
DELETE
ALTER s e
INDEX
UPDATE [({ ColumnName}[y s])]
REFERENCES [({ ColumnName }[, ...]|)]
DBEUserlD

on { [Owner.] Table Name }TO GroupName [

[Ouwner.] ViewName ClassName P

PUBLIC
BY DBEUserlD
ClassName

Parameters—Grant Table or View Authority

GRANT

| [WITH GRANT OPTION |

ALL [PRIVILEGES] is the same as specifying all privileges you can grant on
that table or view. For OWNER or DBA the privileges are
SELECT, INSERT, DELETE, ALTER, INDEX, UPDATE, and
REFERENCES. The word PRIVILEGES is not required; you can
include it if you wish to improve readability. ALTER, INDEX,
and REFERENCES are not applied when using GRANT ALL on

views.

SELECT grants authority to retrieve data.
INSERT grants authority to insert rows.
DELETE grants authority to delete rows.

10-152 SAQL Statements

ALTER

INDEX

UPDATE

REFERENCES

[Owner.] TableName
[Owner.] ViewName

TO

WITH GRANT OPTION

BY

GRANT

grants authority to add new columns. ALTER authority is not
allowed for a view.

grants authority to create and drop indexes. INDEX authority is
not allowed for a view.

grants authority to change data in existing rows. A list of column
names can be specified to grant UPDATE authority only for
specific columns. Omitting the list of column names grants
authority to update all columns.

grants authority to reference columns in the table from the foreign
keys in other tables. A list of column names can be specified

to grant REFERENCES authority only for specific columns.
Omitting the list of column names grants authority to reference
all columns. REFERENCES authority is not allowed for a view.

designates a table for which authority is to be granted.
designates a view for which authority is to be granted.

The TO clause designates the users, authorization groups, and
classes to be given the specified authority. You must specify a
logon name when specifying a DBEUserID. Authority granted to
PUBLIC can be exercised by all users having CONNECT or DBA
authority. Granting authority to a class is useful when program
modules are owned by a class.

allows the grantee of a privilege to grant that same privilege to
another user. If WITH GRANT OPTION is specified, then all
privileges being granted in the statement are granted with the
grant option to all grantees. The grantee cannot be a group. The
authority to grant cannot come solely from group membership.

specifies a DBEUserlD or class as grantor of a privilege. This
clause is used to provide a parent for an orphaned privilege. The
named grantor cannot be a group or PUBLIC.

Authorization—Grant Table or View Authority

If you have DBA or OWNER authority directly (not due to group membership), or were
previously granted table privileges with the WITH GRANT OPTION clause, you can issue
the GRANT statement with the WITH GRANT OPTION clause for that table or view.

The BY clause can only be used by a DBA.

A user may be granted a privilege from one grantor only. OWNER, DBA, or grantable
authority is required to issue the GRANT statement.

SQL Statements 10-153

GRANT

SQL Syntax—Grant RUN or EXECUTE Authority

GRANT {
DBEUserlD

GroupName [y e

ClassName
PUBLIC

RUN ON [Owner. | Module Name 0
EXECUTE ON PROCEDURE [Owner. | Procedure Name

]

Parameters—Grant RUN or EXECUTE Authority

RUN

[Owner.] Module Name

EXECUTE

[Owner.] Procedure Name

TO

grants authority to execute a specified module created
interactively or by using a preprocessor.

specifies the name of the module for which authority is to be
granted.

grants authority to execute a specified procedure.

specifies the name of the procedure for which authority is to be
granted.

The TO clause tells which users and authorization groups are to
be granted the specified authority. You must specify a logon name
when specifying a DBEUserID. Authority granted to PUBLIC can
be exercised by any user with CONNECT authority.

Authorization—Grant RUN or EXECUTE Authority
If you have DBA authority or OWNER authority, you can issue GRANT statements for any

module or procedure.

To grant CONNECT, DBA, or RESOURCE authority, you must have DBA authority.

SQL Syntax—Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE

Authority

CONNECT
DBA

DBEUserlD

GRANT{ INSTALL [AS OwnerlD] T0 ¢ GroupName [,]

MONITOR
RESOURCE

10-154 SAQL Statements

ClassName

GRANT

Parameters—Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE
Authority

CONNECT grants authority to use the CONNECT statement.

DBA grants authority to issue any valid ALLBASE/SQL statement.
A user with DBA authority is exempt from all authorization
restrictions.

RESOURCE grants authority to create tables and authorization groups.

MONITOR grants authority to run SQLMON.

INSTALL grants authority to INSTALL modules where the owner name

equals the OQwnerID. If the “AS OwnerID” clause is omitted, then
grants authority to INSTALL modules having any owner name.

Modules for an application are created and installed when that
application is preprocessed using one of the SQL preprocessors.
Modules can also be installed by using the ISQL INSTALL
command. See the ISQL Reference Manual for ALLBASE/SQL
and IMAGE/SQL for more details.

T0 The TO clause specifies the users, authorization groups, and
classes to be given the specified authority. You must specify
a logon name when specifying a DBEUserID. Granting DBA
authority to a class is useful when program modules are owned by
a class.

Description—Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE
Authority

m [f MONITOR authority is granted to a user, authorization group, or class that already has
DBA authority, a warning is returned and explicit MONITOR, authority is not granted since
a DBA already has MONITOR authority.

m [f DBA authority is granted to a user, authorization group, or class that already has
MONITOR authority, MONITOR authority is upgraded to DBA authority.

Authorization—Grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE
Authority

If you have OWNER authority for a table, view, or module, you can issue GRANT statements
for that table or view. If you have DBA authority, you can issue GRANT statements for any
table, view, or module. To grant CONNECT, DBA, INSTALL, MONITOR, or RESOURCE
authority, you must have DBA authority.

SQL Statements 10-155

GRANT

SQL Syntax—Grant DBEFileSet Authority

TABLESPACE
DBEUserlID
GroupName
ClassName [
PUBLIC

GRANT {

SECTIONSPACE

}[, ... | ON DBEFILESET DBEFileSetName TO

Parameters—Grant DBEFileSet Authority

SECTIONSPACE

TABLESPACE

DBEFileSetName

Description

grants authority to store sections in the specified DBEFileSet.

A grant of SECTIONSPACE causes a check to see whether the
STOREDSECT table has yet been created for the DBEFileSet. If
there is no related STOREDSECT table, it is created.

When a user specifies a DBEFileSet for a section in a CREATE
TABLE (check constraints), ALTER TABLE (check constraints),
CREATE PROCEDURE, CREATE RULE, or PREPARE
statement, in preprocessing, or in the ISQL INSTALL command,
the owner of the section is checked for SECTIONSPACE
authority on the DBEFileSet. If the user does not have
SECTIONSPACE authority, the default SECTIONSPACE
DBEFileSet is used instead. (See the SET DEFAULT
DBEFILESET statement.) This applies even if the user has DBA
authority.

grants authority to store table and long column data in the
specified DBEFileSet.

When a user specifies the IN DBEFileSet clause in a CREATE
TABLE statement for either the table or for a LONG column, the
owner of the table is checked for TABLESPACE authority on the
DBEFileSet. If the user does not have TABLESPACE authority,
the default TABLESPACE DBEFileSet is used instead (See the
SET DEFAULT DBEFILESET statement.) This applies even if
the user has DBA authority.

designates the DBIEFileSet for which authority is to be granted.

m The execution of this statement causes modification to the HPRDBSS.SPACEAUTH
system catalog table. Refer to the ALLBASE/SQL Database Administration Guide “System

Catalog” chapter.

10-156 SAQL Statements

GRANT

Authorization—Grant DBEFilesSet Authority

To grant SECTIONSPACE or TABLESPACE, you must have DBA authority. If you have
DBA authority, you can issue the GRANT statement for any DBEFileSet.

Examples

1. Authorization groups

CREATE GROUP Warehse
GRANT CONNECT TO Warehse

GRANT SELECT,
UPDATE (BinNumber,QtyOnHand,LastCountDate)
ON PurchDB.Inventory
TO Warehse

These two users now will be able to start DBE sessions for PartsDBE, retrieve data from
table PurchDB.Inventory, and update three columns in the table.

ADD CLEM@DBMS, GEORGE@DBMS TO GROUP Warehse

CLEM@DBMS no longer has any of the authorities associated with group Warehse.

REMOVE CLEM@DBMS FROM GROUP Warehse

Because this group does not own any database objects, it can be deleted.
GEORGE@DBMS no longer has any of the authorities once associated with the group.

DROP GROUP Warehse

2. Using the WITH GRANT OPTION clause
CLEM@DBMS and GEORGE@QDBMS have the SELECT privilege on the Inventory table
as well as the ability to grant the SELECT privilege on this table to other users.

GRANT SELECT
ON PurchDB.Inventory
TO CLEM@DBMS, GEORGE@DBMS WITH GRANT OPTION

3. Module grants
GRANT RUN ON Statistics TO HelperDBA
GRANT RUN ON MyProg TO PUBLIC

Rows associated with module Statistics are deleted from the system catalog.
DROP MODULE Statistics
Authorization information for MyProg is retained, but the program is deleted from

the system catalog. You can re-preprocess MyProg and do not have to redefine its
authorization.

DROP MODULE MyProg PRESERVE

4. Procedure grants

GRANT EXECUTE ON PROCEDURE Process10 TO Managers
GRANT EXECUTE ON PROCEDURE Processl12 TO AllUsers

5. DBEFileSet grants
Grant the ability to store sections in DBEFileSet1 to PUBLIC.

SQL Statements 10-157

GRANT

GRANT SECTIONSPACE ON DBEFILESET DBEFileSetl TO PUBLIC;

Grant the ability to store table and long column data in DBEFileSet2 to PUBLIC.

GRANT TABLESPACE ON DBEFILESET DBEFileSet2 TO PUBLIC;

6. Grant authority to run SQLMON

GRANT MONITOR TO HelperDBA;

7. Grant a DBFEUserID the authority to create modules owned by a specified QwnerID.

GRANT INSTALL AS JOHN@BROCK TO CLEM@DBUS;

10-158 SAQL Statements

IF

The IF statement is used to allow conditional execution of one or more statements within a
procedure.

Scope
Procedures only
SQL Syntax

IF Condition THEN [Statement; [-]]
|ELSEIF Condition THEN | Statement; [... |]]

[ELSE [Statement; [... ||| ENDIF;
Parameters
Condition specifies anything that is allowed in a search condition

except subqueries, column references, host variables, dynamic
parameters, aggregate functions, string functions, date/time
functions involving column references, long column functions, or
TID functions. Local variables, built-in variables, and parameters
may be included. See the “Search Conditions” chapter for more
information.

Statement is any statement allowed in a procedure, including a compound
statement. The statement may also be empty.

Description

m [I statements can be nested. In a nested IF statement, each ELSE is associated with the
closest preceding IF.

m Local variables, and parameters can be used anywhere a host variable would be allowed.

m Bach Statement may be a single simple statement, a compound statement, or empty.

Authorization

Anyone can use the IF statement.

SQL Statements 10-159

IF

Example
Create a procedure to enter orders into different tables according to the size of the order:

CREATE PROCEDURE OrderEntry (PartName CHAR(20) NOT NULL,
Quantity INTEGER NOT NULL) AS
BEGIN
IF :Quantity < 100 THEN
INSERT INTO SmallOrders
VALUES (:PartWName, :Quantity);
ELSE
INSERT INTO LargeOrders
VALUES (:PartWName, :Quantity);
ENDIF;
END

Execute the procedure with different parameters. The first execution adds a row to the
LargeOrders table.

EXECUTE PROCEDURE Reorder (’Widget’, 1500)

The second execution adds a row to the SmallOrders table.

EXECUTE PROCEDURE Reorder (’Widget’, 15)

10-160 SAQL Statements

INCLUDE

INCLUDE

The INCLUDE preprocessor directive is used in an application program to declare the

SQLCA or the SQLDA.

Scope

Application Programs Only

SQL Syntax
{SQLCA [[IS |EXTERNAL | }
INCLUDE
SQLDA

Parameters

SQLCA and SQLDA identify data structures with special predefined meaning as
follows:

m SQLCA is an area for ALLBASE/SQL output messages
concerning the status of each SQL statement.

m SQLDA is an area for use in conjunction with dynamic
preprocessing of SELECT statements.

Refer to the ALLBASE/SQL Application Programming Guide for

the language you are using for more information on these data

structures.

IS EXTERNAL for the COBOL preprocessor only; declares the SQLCA structure
as EXTERNAL. Then the SQLCA will not have to be passed
explicitly to subprograms.

Description

m This directive cannot be used interactively or in procedures.

m You must always include the SQLCA in your ALLBASE/SQL application programs by
using the INCLUDE statement or explicitly declaring the SQLCA yourself. At run time,
ALLBASE/SQL puts information into the SQLCA that describes how SQL statements in
the program executed.

Authorization
You do not need authorization to use the INCLUDE statement.

Example

INCLUDE SQLCA IS EXTERNAL

INCLUDE SQLDA

SQL Statements 10-161

INSERT

The INSERT command adds rows to a table. The following two forms of the INSERT
command are described individually:

m The form used to add rows having values you define. You can add a single row or (in an
application program) you can insert multiple rows using the bulk facility. There is special
syntax for prepared INSERT and BULK INSERT statements that use dynamic parameter
substitution.

m The form used to add rows defined by a SELECT command. This form copies rows from
one or more tables or views into a table and is called a Type 2 INSERT.

Rules defined with a StatementType of INSERT will affect both forms of INSERT command.

Scope

ISQL or Application Programs
SQL Syntax - Insert Rows with Defined Values

[BULK] INSERT INTO { [Owner. | TableName}

[Owner.] ViewName

[({ ColumnName}[e])]
SingleRow Values
VALUES ({ BulkValues)

?

Parameters - Insert Rows with Defined Values

BULK is specified in an application program to insert multiple rows with
a single execution of the INSERT command.

[Owner.] Table Name identifies the table to which data is to be added.

[Owner.] ViewName identifies a view on a single table; the data is added to the table
upon which the view is based. Refer to the CREATE VIEW

command for restrictions governing insertion via a view.
ColumnName specifies a column for which values are supplied.

If you omit any of the table’s columns from the column name list,
the INSERT command places the default value of the respective
column definitions in the omitted columns. For columns with no
default value, the null value is placed in the omitted columns. If
the table definition specifies NOT NULL for any of the omitted
columns, the INSERT command fails.

You can omit the column name list if you provide values for all
columns of the table in the same order the columns were specified

in the CREATE TABLE (or CREATE VIEW) command.

VALUES The VALUES clause specifies the values corresponding to the
columns in the column name list, or the columns specified in the

10-162 SAQL Statements

INSERT

CREATE TABLE or CREATE VIEW commands, if no column

name list exists. Character and date/time literals must be in

single quotes.

defines column values when you insert a single row. The syntax

for Single RowValues is presented separately below and includes
single row syntax for statements that do not use dynamic

defines values when you use the BULK option. The syntax for
BulkValues is presented separately below and includes bulk

value syntax for statements that do not use dynamic parameter

is a dynamic parameter value that defines column values within
a prepared insert statement that uses dynamic parameter
substitution. The syntax for DynamicParameterValues is
presented separately below and includes both single row and bulk

SingleRow Values
parameter substitution.
BulkValues
substitution.
?
processing for such statements.
SQOL Syntax—SingleRowValues
The following syntax applies to single row inserts that do not use dynamic parameter
substitution.
NULL
USER

: HostVariable [[INDICATOR] : IndicatorVariable]

?

: Local Variable
: Procedure Parameter
: 2 Built-in Variable
ConversionFunction
Current Function

. Integer
[_] Float

Decimal

> CharacterString’
0x HezadecimalString
> LongColumnlOString’

Parameters—SingleRowValues

NULL
USER

indicates a null value.

evaluates to the current DBEUserID. In ISQL, it evaluates to

the logon name of the ISQL user. From an application program,
it evaluates to the logon name of the individual running the
program.

USER behaves like a CHAR(20) constant, with trailing blanks if

the logon name has fewer than 20 characters.

SQL Statements 10-163

INSERT

HostVariable contains a value in an application program being input to the
expression.
IndicatorVariable names an indicator variable, whose value determines whether the

associated host variable contains a NULL value:
> =0 the value is not NULL

<0 the value is NULL (The value in the host variable will
be ignored.)

Note To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a —1 to indicate a null value. However,
ALLBASE/SQL interprets all negative indicator variable values to mean a null
value.

? is a place holder for a dynamic parameter in a prepared SQL
statement in an application program. The value of the dynamic
parameter is supplied at run time.

LocalVariable contains a value in a procedure.
Procedure Parameter contains a value that is passed into or out of a procedure.
Built-in Variable is one of the following built-in variables used for error handling:

m ::sqlcode

m ::sqlerrd?2
m ::sqlwarn(
m ::sqlwarnl
m :sqlwarn2
m :sqlwarn6
m :activexact

The first six of these have the same meaning that they have

as fields in the SQLCA in application programs. Note that in
procedures, sqlerrd2 returns the number of rows processed, for all
host languages. However, in application programs, sqlerrd3 is
used in COBOL, Fortran, and Pascal, while sqlerr2 is used in C.
iactivexact indicates whether a transaction is in progress or not.
For additional information, refer to the application programming
guides and to the chapter “Constraints, Procedures, and Rules.”

ConversionFunction returns a value that is a conversion of a date/time data type into

an INTEGER or CHAR value, or from a CHAR value.

Current Function indicates the value of the current DATE, TIME, or DATETIME
function.

Integer specifies a value of type INTEGER or SMALLINT.
Float specifies a value of type FLOAT or REAL.
Decimal specifies a value of type DECIMAL.

CharacterString specifies a CHAR, VARCHAR, DATE, TIME, DATETIME, or
INTERVAL value.

10-164 SAQL Statements

INSERT

HezadecimalString specifies a BINARY or VARBINARY value. If the string is
shorter than the target column, it is padded with binary zeroes; if
it is longer than the target column, the string is truncated.

LongColumnlOString specifies the input and output locations for the LONG data. The
specification for this string is given below.

SQL Syntax—LongColumnlOString

Fz'leName[. Group[.Account]]
hHeapAddress: LengthofHeap

Parameters—LongColumnlOString

FileName[.GroupName[.AccountName] |
hHeapAddress Value

LengthOfHeap

>>

>1$

> Fz'leName[. Group[.Account]]
>> CharString$
>1 CharString$ CharString

>1$

is the location of the input file.

is the heap address where the input is located or
where the output is to be located.

is the length of the heap specified for input.
The length is used only for the input portion of
the string.

specifies that output is placed in the following
file. If the file already exists, it is not
overwritten nor appended to, and an error is
generated.

specifies that output will be appended to the
following file name. If the file does not exist, it
is created.

specifies that output is placed in the following
file name. If the file already exists, it is
overwritten.

is a heap address, generated by
ALLBASE/SQL, where the output is placed.

This option cannot be used with a file name.

is the wild card character that represents a
random 5 byte alphanumeric character string in
file names.

SQL Statements 10-165

INSERT

Description—LongColumnlOString
m The input device must not be locked or have privilege security.

m An input device file can be a standard MPE/iX file with fixed record size, valid blocking
factor, valid file equations, ASCII/binary option, and user labels option. Any related output
device file will have the same characteristics as the input device file.

m When the input device is a heap address and no output device is specified, output is a
standard MPE/iX file with an 80-byte record size, a blocking factor of 1, a binary option,
and a file size equal to the LONG column size.

When the input device is a file and no output device is specified, ALLBASE/SQL generates
a random file name with the same characteristics as the input file specified in the LONG
column I/O string. If the input file contains labels, then the output file contains the same
amount of labels.

m When no portion of the output device name is specified, the default file name, tmp$, is
used. The wildcard character ($) indicates a random, five-byte, alphanumeric character
string. This file is created in the local group.

m When you specify a portion of the output file name in conjunction with the wildcard
character §, a five-byte, alphanumeric character string replaces the wildcard. The wildcard
character can appear in any position of the output device name except the first. The
maximum file name being 8 bytes, you can specify 3 bytes of the device name, at least one
of which is in the first character position of the name and is not numeric.

m The wildcard character, whether user specified or part of the default output device name, is
an almost unique five-byte, alphanumeric character string. The possibility of two identical
wildcards being generated is remote.

m When a file is used as the LONG column input or output device and you do not specify
a group and account name in the LONG column I/O string, the default is the group and
account in which your program is running.

m The output device cannot be overwritten with a SELECT or FETCH command unless you
use the INSERT or UPDATE command with the overwrite option.

SQL Syntax—BulkValues

The following syntax applies only to statements that do not use dynamic parameter
substitution.

: Buffer [, :StartIndex [s :NumberOfRows]]

Parameters—BulkValues

Buffer is a host array or structure containing rows that are the input for the
INSERT command. This array contains elements for each column
to be inserted and indicator variables for columns that can contain
null values. Whenever a column can contain nulls, an indicator
variable must be included in the array definition immediately after the
definition of that column. This indicator variable is an integer that
can have the following values:

> =0 the value is not NULL

10-166 SAQL Statements

INSERT

<0 the value is NULL

Note To be consistent with the standard SQL and to support portability of code, it
is strongly recommended that you use a —1 to indicate a null value. However,
ALLBASE/SQL interprets all negative indicator variable values to mean a null

value.

StartIndex is a host variable whose value specifies the array subscript denoting
where the first row to be inserted is stored in the array; default is the
first element of the array.

NumberOfRows is a host variable whose value specifies the number of rows to insert;

default is to insert from the starting index to the end of the array.

Description—Insert Rows with SingleRowValues and BulkValues

m When you enter SQL commands interactively, you cannot use host variables or the BULK
option.

m You cannot use the BULK option in a procedure.

m If you omit any of the table’s columns from the column name list, the INSERT command
places the default value of the respective column definitions in the omitted columns. For
columns with no default value, the null value is placed in the omitted columns. If the table
definition specifies NOT NULL for any of the omitted columns, the INSERT command fails.

m If ALLBASE/SQL detects an error during a BULK INSERT operation, the error
handling behavior is determined by the setting of the SET DML ATOMICITY and SET
CONSTRAINTS statements. Refer to the discussion of these statements in this chapter for
more information.

m For CHAR and VARCHAR data, if a CharacterString literal is shorter than the target
column, it is padded with blanks; if it is longer than the target column, the string is
truncated. Refer to the “Data Types” chapter for information on overflow and truncation of
other data types.

m No error or warning condition is generated by ALLBASE/SQL when a character or binary
string is truncated during an INSERT operation.

m Using the INSERT command with views requires that the views be based on queries that
are updatable. See “Updatability of Queries” in the chapter “SQL Queries.”

m Values in referenced (primary key) columns must be inserted before values in referencing
(foreign key) columns. However, if you do a bulk insertion, inserting the primary key rows
after the foreign key rows does not cause an error message, because the constraints are

satisfied by the time you COMMIT WORK.
m A table on which a unique constraint is defined cannot contain duplicate rows.

m BINARY and VARBINARY data can be inserted in character or hexadecimal format.
Character format requires single quotes and hexadecimal requires a 0x before the value.

m Under the default settings for the SET DML ATOMICITY and SET CONSTRAINTS
statements, integrity constraints on tables and views are enforced on a statement level basis
and if a constraint should be violated during processing of the insert, no rows are inserted.

However, the SET DML ATOMICITY and SET CONSTRAINTS statements both override

SQL Statements 10-167

INSERT

the default behavior. For more information, it is important that you refer to the section
“Error Conditions in ALLBASE/SQL” in the “Introduction” chapter, and the SET DML
ATOMICITY or the SET CONSTRAINTS statements in this chapter.

m Rows being inserted must not cause the search condition of the table check constraint to be
false and must cause the search condition of the view check constraint to be true.

m Rows being inserted in the table through a view having a WITH CHECK OPTION must
satisfy the check constraint of the view and any underlying views in addition to satisfying
any constraints of the table. Refer to the “Check Constraints” section in the “Constraints,
Procedures, and Rules” chapter for more information on check constraints.

m Rules defined with a StatementType of INSERT will affect all kinds of INSERT statements
performed on the rules’ target tables. When the INSERT is performed, ALLBASE/SQL
considers all the rules defined for that table with the INSERT StatementType. If the rule
has no condition, it will fire for all rows affected by the statement and invoke its associated
procedure with the specified parameters on each row. If the rule has a condition, it will
evaluate the condition on each row. The rule will fire on rows for which the condition
evaluates to TRUE and invoke the associated procedure with the specified parameters for
each row. Invoking the procedure could cause other rules, and thus other procedures, to be
invoked if statements within the procedure trigger other rules.

m [f a DISABLE RULES statement is in effect, the INSERT statement will not fire any
otherwise applicable rules. When a subsequent ENABLE RULES is issued, applicable rules
will fire again, but only for subsequent INSERT statements, not for those rows processed
when rule firing was disabled.

m In a rule defined with a StatementType of INSERT, any column reference in the Condition
or any ParameterValue will refer to the value of the column as it is assigned in the INSERT
statement, or by the default value of the column if it is not included in the INSERT
statement.

m When a rule is fired by this statement, the rule’s procedure is invoked after the changes
have been made to the database for that row and all previous rows. The rule’s procedure,
and any chained rules, will thus see the state of the database with the current partial
execution of the statement.

m [f an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the statement
and any procedures invoked by any rules will have no effect. Nothing will have been altered
in the DBEnvironment as a result of this statement or the rules it fired. Error messages are
returned in the normal way.

m The BULK option is not allowed within a procedure.

SQL Syntax—DynamicParameterValues
The following syntax applies to single row and bulk inserts that use

dynamic parameter substitution.

e [,... D

10-168 SAQL Statements

INSERT

Parameters—DynamicParameterValues

L ... D represents one or motre host variables in a prepared INSERT statement.

Each 7 corresponds in sequential order to a column in the column name
list of the prepared statement (even when BULK is used).

When you use a data structure of sqlda_type to pass dynamic
parameter information between the application and ALLBASE/SQL,
the number of “?”s specified must match the sqld field of the descriptor
area and the number of values in a single element of the data buffer.

When you use host variables to pass dynamic parameter data values
between the application and ALLBASE/SQL, the number of “?”s
specified must match the number and order of the host variables in
the related EXECUTE statement. This does not apply when you
use the BULK option as you cannot mix host variables and dynamic
parameters.

Description—Insert Rows with DynamicParameterValues

Statements using question marks (7) indicating dynamic parameters can be intermixed
with items in SingleRow Values and they can return either a value or a format. When
using dynamic parameters for values, the dynamic parameter becomes the data type

of the column. When using dynamic parameters for conversion functions, they become
the data type to which they are assigned (CHAR 72). Only TO_DATE, TO_TIME,
TO_DATETIME, and TO_INTERVAL are allowed here; TO_CHAR and TO _INTEGER

are not allowed.

When using the BULK option, statements using question marks (?), indicating dynamic
parameters, can contain only question marks (and no host variables) to indicate column
input.

The BULK option used with host variables is available for C, COBOL, and FORTRAN

applications.

The BULK option used with an sqlda_type data structure is available for C and Pascal
applications.

A detailed description of how to use this statement with dynamic parameters is found in the

ALLBASE/SQL Advanced Application Programming Guide.

Authorization—Insert Rows with SingleRowValues and Bulk Values

If you specify the name of a table, you must have INSERT or OWNER authority for that
table or you must have DBA authority.

If you specify the name of a view, you must have INSERT or OWNER authority for that view
or you must have DBA authority. Also, the owner of the view must have INSERT or OWNER
authority with respect to the view’s base tables, or the owner must have DBA authority.

SQL Statements 10-169

INSERT

SQL Syntax—INSERT Rows Defined by a SELECT Command (Type 2 Insert)

[Owner.] TableName

INSERT INTO .
{ [Owner. | ViewName

} [(ColumnName [s e])] QueryFLzrpression

Parameters—INSERT Rows Defined by a SELECT Command (Type 2 Insert)
[Owner.] Table Name identifies the table to which data is to be added.

[Owner.] ViewName identifies a view on a single table; the data is added to the table
upon which the view is based. Refer to the CREATE VIEW

command for restrictions governing inserts via a view.

ColumnName specifies a column for which data is supplied from the select list
in the SELECT command. Each column named must have a
corresponding select list item. You can omit the column name list
if you provide a select list item for all columns in the target table
in the same order the columns were specified in the CREATE
TABLE (or CREATE VIEW) command.

QueryFLzrpression defines the rows to be inserted based on one or more tables
and/or views in the DBEnvironment. The name of the target
table cannot appear within the FROM clause or in a FROM
clause of any subquery. The query expression cannot contain an
INTO clause or a union operation.

The data types of each column in the select list must be
compatible with the data types of corresponding columns in the
target table. The first select list item defines the first column in
the target table, the second select list item defines the second
column in the target table, and so forth. The number of select list
items must equal the number of columns in the target table.

Any column in the target table can contain null values only if it
was not defined with the NOT NULL attribute. Therefore ensure
either that select list items are not null for any NOT NULL target
column, or that the NOT NULL target columns have default
values defined for them.

Description—INSERT Rows Defined by a SELECT Command (Type 2 Insert)
m You cannot use the ORDER BY clause in a Type 2 Insert.
m You cannot insert into a LONG column with this kind of INSERT operation.

m You cannot specify a LONG column in the QueryExpression in this kind of INSERT
operation, except in a long column or string function.

m [f you omit any of the table’s columns from the column name list, the INSERT command
places the default value of the respective column definitions in the omitted columns. For
columns with no default value, the null value is placed in the omitted columns. If the table
definition specifies NOT NULL for any of the omitted columns, the INSERT command fails.

10-170 SAQL Statements

INSERT

If ALLBASE/SQL detects an error during this kind of INSERT operation, error
handling behavior is determined by the setting of the SET DML ATOMICITY and SET
CONSTRAINTS statements. Refer to the discussion of these statements in this chapter.

Using the INSERT command with views requires that the views be based on updatable
queries. See “Updatability of Queries” in the “SQL Queries” chapter.

A table on which a unique constraint is defined cannot contain duplicate rows.

Under the default settings for the SET DML ATOMICITY and SET CONSTRAINTS
statements, integrity constraints on tables and views are enforced on a statement level basis
and if a constraint should be violated during processing of the insert, no rows are inserted.
However, the SET DML ATOMICITY and SET CONSTRAINTS statements both override
the default behavior. For more information, it is important that you refer to the section
“Error Conditions in ALLBASE/SQL” in the “Introduction” chapter, and the SET DML
ATOMICITY or the SET CONSTRAINTS statements in this chapter.

Rows being inserted must not cause the search condition of the table check constraint to be
false and must cause the search condition of the view check constraint to be true.

Rows being inserted in the table through a view having a WITH CHECK OPTION must

satisfy the check constraint of the view and any underlying views in addition to satisfying

any constraints of the table. Refer to the “Check Constraints” section of the “Constraints,
Procedures, and Rules” chapter for more information on check constraints.

Values in referenced (primary key) columns must be inserted before values in referencing
(foreign key) columns. However, if you do a bulk insertion, inserting the primary key rows
after the foreign key rows does not cause an error message, as the constraints are satisfied

by the time you COMMIT WORK.

BINARY and VARBINARY data can be inserted in character or hexadecimal format.
Character format requires single quotes and hexadecimal requires a 0x before the value.

Rules defined with a StatementType of INSERT will affect all kinds of INSERT statements
performed on the rules’” target tables. When the INSERT is performed, ALLBASE/SQL
considers all the rules defined for that table with the INSERT StatementType. If the rule
has no condition, it will fire for all rows affected by the statement and invoke its associated
procedure with the specified parameters on each row. If the rule has a condition, it will
evaluate the condition on each row. The rule will fire on rows for which the condition
evaluates to TRUE and invoke the associated procedure with the specified parameters for
each row. Invoking the procedure could cause other rules, and thus other procedures, to be
invoked if statements within the procedure trigger other rules.

If a DISABLE RULES statement is in effect, the INSERT statement will not fire any
otherwise applicable rules. When a subsequent ENABLE RULES is issued, applicable rules
will fire again, but only for subsequent INSERT statements, not for those rows processed
when rule firing was disabled.

In a rule defined with a StatementType of INSERT, any column reference in the Condition
or any ParameterValue will refer to the value of the column as it is assigned in the INSERT
statement, or by the default value of the column if it is not included in the INSERT
statement.

The set of rows to be inserted by a type 2 INSERT (that is, an INSERT defined by a
SELECT statement) is determined before any rule fires, and this set remains fixed until the

SQL Statements 10-171

INSERT

completion of the rule. In other words, if the rule adds to, deletes from, or modifies this set,
such changes are ignored.

m When a rule is fired by this statement, the rule’s procedure is invoked after the changes
have been made to the database for that row and all previous rows. The rule’s procedure,
and any chained rules, will thus see the state of the database with the current partial
execution of the statement.

m [f an error occurs during processing of any rule considered during execution of this
statement (including execution of any procedure invoked due to a rule firing), the statement
and any procedures invoked by any rules will have no effect. Nothing will have been altered
in the DBEnvironment as a result of this statement or the rules it fired. Error messages are
returned in the normal way.

Authorization—INSERT Rows Defined by a SELECT Command (Type 2 Insert)

To insert rows into a table, you must have INSERT or OWNER authority for that table or
you must have DBA authority.

To insert rows using a view, you must have INSERT or OWNER authority for that view or
you must have DBA authority. Also, the owner of the view must have INSERT or OWNER
authority with respect to the view’s base tables, or the owner must have DBA authority.

If you specify the name of a table in the FROM clause of the SELECT command, you must
have SELECT or OWNER authority for the table or you must have DBA authority. If

you specify the name of a view in the FROM clause of the SELECT command, you must
have SELECT or OWNER authority for the view or you must have DBA authority. Also,
the owner of the view must have SELECT or OWNER authority with respect to the view’s
definition, or the owner must have DBA authority.

Examples

1. Single-row insert

INSERT INTO PurchDB.Vendors

VALUES (9016,
’Secure Systems, Inc.’,
>John Secret’,
?454-255-2087",
’1111 Encryption Way’,
’Hush’,
JMD?
?00007°,
’discount rates are carefully guarded secrets’)

A new row is added to the PurchDB.Vendors table.
2. Bulk insert

BULK INSERT INTO PurchDB.Parts
(Partliumber, Partlame)
VALUES (:NewRow, :Indx, :NumRow)

Programmatically, you can insert multiple rows with one execution of the INSERT
command if you specify the BULK option. In this example, the rows to be inserted are in
the array called NewRow.

10-172 SAQL Statements

INSERT

3. Insert using SELECT operation

CREATE PUBLIC TABLE PurchDB.CalifVendors

(Vendorlame CHAR(30) NOT NULL,
Partlumber CHAR(16) NOT NULL,
UnitPrice DECIMAL(10,2),
DeliveryDays SMALLINT,

VendorRemarks VARCHAR(60))

IN PurchFS

This table has the same column attributes as corresponding columns in
PurchDB.SupplyPrice and PurchDB.Vendors.

INSERT INTO PurchDB.CalifVendors
SELECT VendorName, PartNumber, UnitPrice, DeliveryDays, VendorRemarks
FROM PurchDB.Supplyprice, PurchDB.Vendors
WHERE PurchDB.SupplyPrice.VendorNumber = PurchDB.Vendors.VendorNumber
AND VendorState = ’CA’

Rows for California vendors are inserted based on a query result obtained by joining
PurchDB.SupplyPrice and PurchDB.Vendors. A column list is omitted because all columns
in the target table have a corresponding select list item.

4. Single row insert using dynamic parameters with host variables

PREPARE CHD FROM >TNSERT TNTO PurchDB.Parts (Partiimber, PartWame)
VALUES(?,7);°
A new row is added to the PurchDB.Parts table based on the prepared INSERT statement
called CMD. Row values are provided at run time, and an EXECUTE statement using two
host variables is required to complete the INSERT.

EXECUTE CMD USING :PartHumber, :PartlName;

5. Bulk insert using dynamic parameters with host variables

PREPARE CHMD FROM ’BULK INSERT INTO PurchDB.Parts (PartNumber, Partiame)
VALUES(?,7);’

Multiple rows can be added to the PurchDB.Parts table. Row values are provided at run
time, and an EXECUTLE statement using the address of a host variable array containing
dynamic parameter data and host variables containing the starting index and number of
rows to be inserted complete the INSERT.

EXECUTE CMD USING :DataBuffer, :StartIndex, :NumberOfRows;
6. Bulk insert or single row insert using dynamic parameters with sqlda_type and related data
structures

PREPARE CHMD FROM ’BULK INSERT INTO PurchDB.Parts (PartNumber, Partiame)
VALUES(?,7);’

One or more rows can be added to the PurchDB.Parts table. Row values are provided at
run time, and an EXECUTE statement using a descriptor area is required to complete the

INSERT.

Before issuing the execute statement, you must set certain fields in the descriptor area.
(The ALLBASE/SQL application programming guides contain detailed information
regarding this technique.) Then you describe the input to ALLBASE/SQL.

DESCRIBE INPUT CMD INTO Sqlda;
EXECUTE CMD USING DESCRIPTOR Sqlda;

SQL Statements 10-173

Labeled Statement
A Label identifies an SQL statement that can be referred to within the procedure.

Scope

Procedures only

SQL Syntax

Label: Statement

Parameters

Label is an integer or a name which conforms to the SQL syntax rules for a
basic name.

Statement is the statement within a procedure to be labeled.

Description

m A label may appear only at the start of a ProcedureStatement that is not part of a
compound statement. It cannot appear with a local variable declaration or a WHENEVER
directive.

m Labels within a procedure should be unique.

m A label can only be referred to from a GOTO statement and WHENEVER ... GOTO

directive.

Authorization

Anyone can use this statement.

10-174 SAQL Statements

Labeled Statement

Example

CREATE PROCEDURE Process19 (paraml integer, param2 float) AS
BEGIN
DECLARE valuel integer;

WHENEVER sqlerror GOTO errorexit ;
DECLARE cursorl CURSOR FOR

SELECT columnl

FROM tablel

WHERE columnl > :paraml;
OPEN cursorl;
WHILE ::sqlcode < > 100 do

FETCH cursorl into :valuel;

IF ::sqlcode = 100 THEN

GOTO0 loopexit ;
ENDIF;
INSERT INTO table2

VALUES (:valuel, :param2);

UPDATE table3 SET columnl = CURRENT_DATE WHERE column2 = :valuel;
IF ::sqlerrd2 < 1 THEN

INSERT INTO table3

VALUES (CURRENT_DATE, :valuel);
ENDIF;
ENDWHILE;

loopexit:

CLOSE cursori;

RETURN O;

errorexit;

PRINT ’Procedure terminated due to error:?;
PRINT

sqlcode;

END;

EXECUTE PROCEDURE Processl19;

SQL Statements 10-175

LOCK TABLE

The LOCK TABLE statement provides a means of explicitly acquiring a lock on a table, to
override the automatic locking provided by ALLBASE/SQL in accord with the CREATE
TABLE locking modes.

Scope

ISQL or Application Programs

SQL Syntax

SHARE [UPDATE
LOCK TABLE | Owner. | TableName IN { |] }MODE

EXCLUSIVE

Parameters
[Owner.] Table Name specifies the table to be locked.

SHARE allows other transactions to read but not change the table during
the time you hold the lock.

Your transaction is delayed until any active transactions that have
changed the table have ended. Then you can retrieve from the
specified table with no further delays or overhead due to locking.
Automatic locking of pages or rows takes place as usual any time
your transaction changes the table.

SHARE UPDATE indicates that you may wish to update the rows selected. Other
transactions may not update the data page you are currently
reading. If you decide to update the row, an exclusive lock
is obtained, so that other transactions cannot read or update
the page; This lock is held until the transaction ends with a
COMMIT WORK or ROLLBACK WORK statement.

EXCLUSIVE prevents other transactions from reading or changing the table
during the time you hold the lock.

Your transaction is delayed until any transactions that were

previously granted locks on the table have ended. Then your
transaction experiences no further overhead or delays due to
locking on the specified table.

Description

m Of the three lock types described here, the highest level is exclusive (X), the next share
update (SIX), and the lowest share (S). When you request a lock on an object which is
already locked with a higher severity lock, the request is ignored.

m This statement can be used to avoid the overhead of acquiring many small locks when
scanning a table. For example, if you know that you are accessing all the rows of a table,
you can lock the entire table at once instead of letting ALLBASE/SQL automatically lock
each individual page or row as it is needed.

10-176 SAQL Statements

LOCK TABLE

m LOCK TABLE can be useful in avoiding deadlocks by locking tables in a predetermined
order.

m To ensure data consistency, all locks are held until the end of the transaction, at which
point they are released. For this reason no UNLOCK statement is available or necessary.

Authorization

You can issue this statement if you have SELECT or OWNER authority for the table or if
you have DBA authority.

Examples
1. Share Mode Lock
BEGIN WORK

Other transactions can issue only SELECT statements against the table until this
transaction is terminated.

LOCK TABLE PurchDB.0OrderItems in SHARE MODE

The lock is released when the transaction is either committed or rolled back.
COMMIT WORK
2. Share Update Mode Lock
BEGIN WORK
Other transactions can issue only SELECT statements against the table:
LOCK TABLE PurchDB.OrderItems in SHARE UPDATE MODE
Other transactions can read the same page as the current transaction.

SELECT ... FROM PurchDB.OrderItems

The shared lock is now upgraded to an exclusive lock for the page on which the update is
taking place. Other transactions must wait for this transaction to be committed or rolled

back.

UPDATE PurchDB.OrderItems SET ...

All locks are released when the transaction is either committed or rolled back.

COMMIT WORK

SQL Statements 10-177

LOG COMMENT

The LOG COMMENT statement permits the entry of comments into the ALLBASE/SQL
DBELog file. These comments can be extracted using the Audit Tool.

Scope

ISQL or Application Programs

SQL Syntax

> String’
: Host Variable
LOG COMMENT { : ProcedureParameter
: Procedure Local Variable

?

Parameters

String specifies the comment as a constant character string (up to 3996
bytes)

HostVariable specifies the comment to be logged as a host variable. No
indicator may be specified. The data type of the host variable
must be CHAR or VARCHAR. If the value is null, an error is
returned and no comment is logged.

Procedure Parameter or specifies the comment to be logged as a procedure parameter or

ProcedureLocal Variable local variable. If the value is null, an error is returned and no
comment is logged. The data type must be CHAR or VARCHAR.

? specifies the comment to be logged as a dynamic parameter. The
data type is assumed to be VARCHAR(3996). If the value is null,
an error is returned and no comment is logged.

Description

m The maximum length of a comment is 3996 bytes.
m A comment can use the DBEnvironment language or the native language.

m An error is returned if LOG COMMENT is used and audit logging is not enabled with the
COMMENT audit element or the COMMENT PARTITION is NONE.

Authorization

Any user can issue this statement from within a database session.

Example
Generate a comment audit log record.

LOG COMMENT ’Select From Table PurchDB. Parts?;
SELECT Partllo FROM PurchDB.Parts WHERE PartNo=’12347;

10-178 SAQL Statements

OPEN

OPEN

The OPEN statement is used in an application program or a procedure to open a cursor, that
is, make the cursor and its associated active set available to manipulate a query result.

Scope

Application Programs and Procedures Only

SQL Syntax

WITH LOCKS
OPEN CursorName [KEEP CURSOR []]

WITH NOLOCKS

[SQL |DESCRIPTOR{ > -4
USING AreaName
HostVarz'ableName[[INDICATOR] IndicatorVariable] [Y e]
Parameters
CursorName specifies the cursor to be opened. The cursor name must first be
defined with a DECLARE CURSOR statement.
KEEP CURSOR maintains the cursor position across transactions until a CLOSE

statement is issued on the cursor.

This clause is not available for procedure cursors (those declared

for an EXECUTE PROCEDURE statement).

WITH LOCKS keeps only those locks associated with the position of the kept
cursor after a COMMIT WORK statement, and releases all other
locks. This is the default.

WITH NOLOCKS releases all locks associated with the kept cursor after a COMMIT
WORK statement.

USING allows dynamic parameter substitution in a prepared statement.

This clause can only be specified within an application when
opening a cursor on a dynamically prepared SELECT or
EXECUTE PROCEDURE statement.

SQL DESCRIPTOR specifies a location that at run time contains the data value
assigned to an input dynamic parameter specified in a prepared

SELECT or EXECUTE PROCEDURE statement.

Specify the same location (SQLDA or AreaName) as you specified
in the DESCRIBE INPUT statement.

SQLDA specifies that a data structure of sqlda_type named sqlda is used
to pass dynamic parameter data between the application and
ALLBASE/SQL.

AreaName specifies the user defined name of a data structure of type

sqlda_type that is used to pass dynamic parameter data between

the application and ALLBASE/SQL.

SQL Statements 10-179

OPEN

HostVariableName sp